Lemma 1.56

If $r_{k-1} \neq 0$:
(a) $p_{k-1} \neq 0$
(b) $\mathcal{K}_{k}\left(A, r_{0}\right)=\operatorname{span}\left(r_{0}, \ldots, r_{k-1}\right)=\operatorname{span}\left(p_{0}, \ldots, p_{k-1}\right)$
(c) $\left(r_{k}, p_{j}\right)=0 \quad \forall j=0,1, \ldots, k-1$
(d) $\left(A p_{k}, p_{j}\right)=0 \quad \forall j=0,1, \ldots, k-1$

Proof by induction.

For $k=1$ the statements are trivial or follow from (18), (19).
Suppose that (a)-(d) hold for k and assume that $r_{k} \neq 0$.

$$
r_{k}=r_{k-1}-\alpha_{k} A p_{k-1} \in \mathcal{K}_{k}\left(A, r_{0}\right)+A\left(\mathcal{K}_{k}\left(A, r_{0}\right)\right) \subset \mathcal{K}_{k+1}\left(A, r_{0}\right) .
$$

Proof of (a) and (b).
From (b) and (c) we know that $r_{k} \perp \mathcal{K}_{k}\left(A, r_{0}\right)$, which implies that

$$
\mathcal{K}_{k}\left(A, r_{0}\right) \subsetneq \operatorname{span}\left(r_{0}, \ldots, r_{k}\right) \subset \mathcal{K}_{k+1}\left(A, r_{0}\right) .
$$

However, $\operatorname{dim}\left(\mathcal{K}_{k+1}\left(A, r_{0}\right)\right)=\operatorname{dim}\left(\mathcal{K}_{k}\left(A, r_{0}\right)\right)+1$. Therefore,

$$
\operatorname{span}\left(r_{0}, \ldots, r_{k}\right)=\mathcal{K}_{k+1}\left(A, r_{0}\right)
$$

From the definition of the algorithm we know that $r_{k}=p_{k}-\beta_{k-1} p_{k-1}$. Hence,

$$
\operatorname{span}\left(p_{0}, \ldots, p_{k}\right)=\operatorname{span}\left(p_{0}, \ldots, p_{k-1}, r_{k}\right) \stackrel{(\mathrm{b})}{=} \operatorname{span}\left(r_{0}, \ldots, r_{k}\right)
$$

This means, (a) and (b) hold for $k+1$.
Proof of (c).
From formula (18) we know that $\left(r_{k+1}, p_{j}\right)=0$ for $j=k$. For $j<k$,

$$
\left(r_{k+1}, p_{j}\right)=\left(r_{k}-\alpha_{k} A p_{k}, p_{j}\right)=\left(r_{k}, p_{j}\right)-\alpha_{k}\left(A p_{k}, p_{j}\right) \stackrel{(\mathrm{c}),(\mathrm{d})}{=} 0
$$

Thus, $r_{k+1} \perp \operatorname{span}\left(p_{0}, \ldots, p_{k}\right)=\mathcal{K}_{k+1}\left(A, r_{0}\right)$ and so (c) holds for $k+1$.

Proof of (d).

From formula (19) we know that $\left(A p_{k+1}, p_{j}\right)=0$ for $j=k$. For $j<k$,

$$
\left(A p_{k+1}, p_{j}\right)=\left(p_{k+1}, A p_{j}\right)=\underbrace{(r_{k+1}, \underbrace{A p_{j}}_{\in \mathcal{K _ { k + 1 } (A , r _ { 0 })}})}_{=0}+\beta_{k} \underbrace{\left(p_{k}, A p_{j}\right)}_{\stackrel{(\mathrm{d})}{=} 0}=0
$$

This means (d) holds for $k+1$, which completes the proof.

