ÜBUNGEN ZU NUMERIK ZEITABHÄNGIGER PROBLEME

für den 19.10.2009

1. Let $f: \mathbb{R} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be continuous on the set

$$
D=\left\{(t, v) \in \mathbb{R} \times \mathbb{R}^{b}: t_{0} \leq t \leq T,\left\|v-u_{0}\right\| \leq b\right\}
$$

Assume that there are constants A and L such that

$$
\|f(t, v)\| \leq A \quad \text { for all }(t, v) \in D
$$

and

$$
\|f(t, w)-f(t, v)\| \leq L\|w-v\| \quad \text { for all }(t, v),(t, w) \in D
$$

and assume that $T-t_{0} \leq b / A$.
Consider the following initial value problem: Find $u:\left[t_{0}, T\right] \longrightarrow \mathbb{R}$ such that

$$
\begin{aligned}
u^{\prime}(t) & =f(t, u(t) \quad t \in(0, T), \\
u\left(t_{0}\right) & =u_{0} .
\end{aligned}
$$

Let τ be a subdivision of $\left[t_{0}, T\right]$ with grid points $t_{j}, j=0,1, \ldots, m$ and step sizes $\tau_{j}=t_{j+1}-t_{j}, j=0,1, \ldots, m-1$.
Show for the corresponding Euler polygon u_{τ} :

$$
\left\|u_{\tau}(t)-u_{0}\right\| \leq A\left|t-t_{0}\right| \quad \text { for all } t \in\left[t_{0}, T\right] .
$$

2. Since f is uniformly continuous on the compact set D, we have: For each $\varepsilon>0$ there is a $\delta>0$ such that

$$
|t-s| \leq \delta \quad \text { and } \quad\|w-v\| \leq A \delta \quad \text { imply } \quad\|f(t, w)-f(s, v)\| \leq \varepsilon
$$

for all $(s, v),(t, w) \in D$.
Let $\hat{\tau}$ be a further subdivision of $\left[t_{0}, T\right]$ with grid points $\hat{t}_{j}, j=0,1, \ldots, \hat{m}$ such that $\left\{t_{0}, t_{1}, \ldots, t_{m}\right\} \subset\left\{\hat{t}_{0}, \hat{t}_{1}, \ldots, \hat{t}_{\hat{m}}\right\}(\hat{\tau}$ is then called a refinement of $\tau)$.
Show:

$$
\text { If } \quad|\tau| \leq \delta, \quad \text { then } \quad\left\|d_{k}\right\| \leq \varepsilon\left(t_{k}-t_{k-1}\right),
$$

where d_{k} is the difference between $u_{\hat{\tau}}\left(t_{k}\right)$ and $u_{\hat{\tau}}\left(t_{k-1}\right)+\tau_{k-1} f\left(t_{k-1}, u_{\hat{\tau}}\left(t_{k-1}\right)\right)$.
Hint: Since t_{k-1} is also a grid point of $\hat{\tau}$, the Euler polygon $u_{\hat{\tau}}(t)$ conincides for $t \geq t_{k-1}$ with the Euler polygon that starts at t_{k-1} with the value $u_{\hat{\tau}}\left(t_{k-1}\right)$. Compare this Euler polygon with $u_{\hat{\tau}}\left(t_{k-1}\right)+\left(t-t_{k-1}\right) f\left(t_{k-1}, u_{\hat{\tau}}\left(t_{k-1}\right)\right)$ for $t \in\left[t_{k}-t_{k-1}\right]$.
3. Consider, for the subdivision τ, the Euler polygon that starts at t_{k} with the value $u_{\hat{\tau}}\left(t_{k}\right)$ and the Euler polygon that starts at t_{k} with the value $u_{\hat{\tau}}\left(t_{k-1}\right)+\tau_{k-1} f\left(t_{k-1}, u_{\hat{\tau}}\left(t_{k-1}\right)\right)$. The difference between these two Euler polygons at some point $t \geq t_{k}$ is denoted by d_{k}^{\prime}.
Show

$$
\left\|d_{k}^{\prime}\right\| \leq e^{L\left(t-t_{k}\right)}\left\|d_{k}\right\|
$$

Hint: Show for two sequences $\left(v_{j}\right)$ and $\left(w_{j}\right)$, given by

$$
v_{j+1}=v_{j}+\tau_{j} f\left(t_{j}, v_{j}\right), \quad w_{j+1}=w_{j}+\tau_{j} f\left(t_{j}, w_{j}\right)
$$

that

$$
\left\|w_{j+1}-v_{j+1}\right\| \leq\left(1+\tau_{j} L\right)\left\|w_{j}-v_{j}\right\| \leq e^{\tau_{j} L}\left\|w_{j}-v_{j}\right\|
$$

4. Show for $e(t)=u_{\hat{\tau}}(t)-u_{\tau}(t)$ with $t_{j}<t \leq t_{j+1}$ the following estimate:

$$
\begin{aligned}
\|e\| & \leq \varepsilon\left[e^{L\left(t-t_{1}\right)}\left(t_{1}-t_{0}\right)+e^{L\left(t-t_{2}\right)}\left(t_{2}-t_{1}\right)+\ldots+e^{L\left(t-t_{j}\right)}\left(t_{j}-t_{j-1}\right)+\left(t-t_{j}\right)\right] \\
& \leq \varepsilon \int_{t_{0}}^{t} e^{L(t-s)} d s=\frac{\varepsilon}{L}\left(e^{L\left(t-t_{0}\right)}-1\right) .
\end{aligned}
$$

5. Show that u_{τ} converges uniformly to a continuous function u, if $|\tau| \rightarrow 0$.

Hint: Verify the Cauchy criterion: For each $\varepsilon>0$ there is a $\delta>0$ such that

$$
|\tau|,|\hat{\tau}| \leq \delta \quad \text { implies } \quad \max _{t \in\left[t_{0}, T\right]}\left\|u_{\hat{\tau}}(t)-u_{\tau}(t)\right\| \leq \varepsilon
$$

for all subdivisions τ and $\hat{\tau}$.
Hint: Use the triangle inequality with a third subdvision $\hat{\boldsymbol{\tau}}$, which is a refinement of both subdivisions τ and $\hat{\tau}$.
6. Show that the limit u of the Euler polygons u_{τ} for $|\tau| \rightarrow 0$ is differentiable with derivative $f(t, u(t))$ at t.
Hint: Let t be a grid point of the subdivision τ. Show (see Exercise 2):

$$
\left\|u_{\tau}(t+\delta)-u_{\tau}(t)-\delta f\left(t, u_{\tau}(t)\right)\right\| \leq \varepsilon(\delta) \delta
$$

with

$$
\varepsilon(\delta)=\sup \{\|f(t, w)-f(s, v)\|:|t-s| \leq \delta,\|w-v\| \leq A \delta,(t, w),(s, v) \in D\}
$$

Take the limit $\delta \rightarrow 0$.

