
Chapter 2

Euler’s Method

See also: Hairer, Nørsett, Wanner, [8], I.7.

Leonhard Euler: 1707 - 1788, Swiss mathematician

Initial value problem (IVP):

u′(t) = f(t, u(t)), t ∈ (t0, T )

u(t0) = u0

subdivision of [t0, T ]:
t0 < t1 < . . . < tm = T

Notations:

• τj = tj+1 − tj: step size (tj+1 = tj + τj)

• τ = (τ0, τ1, . . . , τm−1).

• |τ | = maxj=0,1...,m−1 τj

For t ∈ [t0, t1]:

u(t) ≈ u(t0) + (t− t0) u
′(t0) = u0 + (t− t0) f(t0, u0) = uτ (t)

u1 = uτ (t1) = u0 + τ0 f(t0, u0).

For t ∈ [t1, t2]:

u(t) ≈ u(t1) + (t− t1) u
′(t1) ≈ u1 + (t− t1) f(t1, u1) = uτ(t)

u2 = uτ (t2) = u1 + τ1 f(t1, u1).

and so on.
uτ (t) is a polygonal approximation of u(t) (Euler polygon). It connects the points (tj, uj)
with

uj+1 = uj + τj f(tj , uj), j = 0, 1, . . . , m− 1.

Euler’s method (1768).
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Theorem 2.1 (Cauchy, 1789-1857, French mathematician). Let f be continuous on D,
‖f‖ bounded by A on D, and let f satisfy the Lipschitz condition

‖f(t, w)− f(t, v)‖ ≤ L ‖w − v‖

on D, with
D = {(t, v) ∈ R × R

n : t0 ≤ t ≤ T, ‖v − u0‖ ≤ b}.

If T − t0 ≤ b/A, then we have:

a) For |τ | → 0, the Euler polygons converge uniformly to a continuous function u(t).

b) u(t) is continuously differentiable and solves (IVP) on [t0, T ].

c) There is no other solution of (IVP) on [t0, T ].

Proof. Let τ be a subdivision of [t0, T ] with grid points tj and τ̂ a refinement of τ . Let
t ∈ [t0, T ] with tj < t ≤ tj+1.

• Then (see tutorial):
‖uτ (t) − u0‖ ≤ A |t− t0|.

Therefore, (t, uτ(t)) ∈ D.

• f is uniformly continuous on the compact set D:

Therefore, for each ε > 0, there is a δ > 0 such that

|t− s| ≤ δ and ‖w − v‖ ≤ Aδ imply ‖f(t, w) − f(t, v)‖ ≤ ε

for all (s, v), (t, w) ∈ D.

Then (see tutorial):
‖dk‖ ≤ ε (tk − tk−1) if |τ | ≤ δ

with
dk = uτ̂(tk) −

[

uτ̂(tk−1) + τk−1 f(tk−1, uτ̂(tk−1))
]

.

• Let d′k be the difference of the values of Euler’s method at t using subdivision τ start-
ing in tk with initial values uτ̂ (tk) and uτ̂(tk−1) + τk−1 f(tk−1, uτ̂(tk−1)), respectively.

Then (see tutorial):
‖d′k‖ ≤ eL (t−tk) ‖dk‖.

• Then, for e = uτ̂ (t) − uτ(t), (see tutorial):

‖e‖ ≤ ε
[

eL (t−t1)(t1 − t0) + eL (t−t2)(t2 − t1) + . . .+ eL (t−tj )(tj − tj−1) + (t− tj)
]

≤ ε

∫ t

t0

eL (t−s) ds =
ε

L

(

eL (t−t0) − 1
)

.
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• Therefore, uτ converges uniformly to a continuous function u, if |τ | → 0, see tutorial.

• u solves (IVP) (see tutorial).

• u is the only solution to (IVP) (see tutorial).

Error estimate:

• Global error:

If |τ | ≤ δ, then

‖u(t) − uτ (t)‖ ≤
ε

L

(

eL (t−t0) − 1.
)

Euler’s method is convergent.

If, additionally,
‖f(t, v) − f(s, v)‖ ≤M |t− s| on D, (2.1)

then, for |t− s| ≤ δ and ‖w − v‖ ≤ Aδ,

‖f(t, w) − f(s, v)‖ ≤ ‖f(t, w) − f(t, v)‖ + ‖f(t, v) − f(s, v)‖

≤ L ‖w − v‖ +M |t− s| ≤ (AL+M) δ

and, therefore,

‖u(t) − uτ (t)‖ ≤
AL+M

L

(

eL (t−t0) − 1
)

|τ |1

Euler’s method is of convergence order 1.

Sufficient conditions for the Lipschitz conditions:

∥

∥

∥

∥

∂f

∂u
(t, v)

∥

∥

∥

∥

≤ L,

∥

∥

∥

∥

∂f

∂t
(t, v)

∥

∥

∥

∥

≤ M on D.

• Local error:
dτ (tj+1 = u(tj+1) −

[

u(tj) + τj f(tj , u(tj))
]

We have:
‖dτ (tj+1)‖ ≤ ε τj,

Euler’s method is consistent with (IVP).

Under the additional condition (2.1), we have

‖dτ (tj+1)‖ ≤ (AL+M)τ 2
j .

Euler’s method is of consistency order 1.
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• Approximation error

Euler’s method as a finite difference method: u′(tj) is replaced by the forward differ-
ence quotient:

1

τj

(

u(tj+1) − u(tj)
)

This leads to the FDM
1

τj

(

uj+1 − uj

)

= f(tj, uj)

for the approximation uj of u(tj). The corresponding approximation error is given
by

ψτ (tj+1) =
1

τj

(

u(tj+1) − u(tj)
)

+ f(tj , u(tj)).

Observe

ψτ (tj+1) =
1

τj
dτ(tj+1).

We have the following estimates:

‖ψτ (tj+1)‖ ≤ ε

Euler’s method is consistent with (IVP).

‖ψτ (tj+1)‖ ≤ (AL+M)τ 1
j

Euler’s method is of consistency order 1.

Local variant:

Theorem 2.2. Let U ⊂ R
n × R be an open set and let f and ∂f

∂u
continuous on U . Then,

for every (t0, u0) ∈ U , there exists a unique solution of (IVP), which can be continued up
to the boundary of U .

Example. Restricted three body problem

y′′1 = y1 + 2y2 − µ′
y1 + µ

D3
1

− µ
y1 − µ′

D3
2

y′′2 = y2 − 2y1 − µ′
y2

D3
1

− µ
y2

D3
2

with
D1 =

[

(y1 + µ)2 + y2
2

]1/2
, D2 =

[

(y1 − µ′)2 + y2
2

]1/2

and µ = 0.012277471, µ′ = 1 − µ. Initial conditions: y1(0), y′1(0), y2(0), y′2(0) are given.
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