Chapter 1

Introduction

1.1 Examples

- Chemical reactions (see [8], pages 115-116)

Brusselator: Six substances (species) A, B, D, E, X, Y undergo the following reactions:

$$
\begin{gathered}
A \xrightarrow{k_{1}} X \\
B+X \xrightarrow{k_{2}} Y+D \\
2 X+Y \xrightarrow{k_{3}} 3 X \\
X \xrightarrow{k_{4}} E
\end{gathered}
$$

Here, k_{i} are the rate constants.
Using the law of mass action (Massenwirkungsgesetz) we obtain the following differential equations for the concentrations $c_{A}, c_{B}, c_{D}, c_{X}, c_{Y}$:

$$
\begin{aligned}
c_{A}^{\prime}(t) & =-k_{1} c_{A}(t), \\
c_{B}^{\prime}(t) & =-k_{2} c_{B}(t) c_{X}(t), \\
c_{D}^{\prime}(t) & =k_{2} c_{B}(t) c_{X}(t), \\
c_{E}^{\prime}(t) & =k_{4} c_{X}(t), \\
c_{X}^{\prime}(t) & =k_{1} c_{A}(t)-k_{2} c_{B}(t) c_{X}(t)+k_{3} c_{X}(t)^{2} c_{Y}(t)-k_{4} c_{X}(t), \\
c_{Y}^{\prime}(t) & =k_{2} c_{B}(t) c_{X}(t)-k_{3} c_{X}(t)^{2} c_{Y}(t) .
\end{aligned}
$$

Initial conditions: $c_{A}(0), c_{B}(0), c_{D}(0), c_{E}(0), c_{X}(0), c_{Y}(0)$ are given

- Mechanical systems (see [8], pages 8, 30, 31)
m : mass of the point mass.
$x(t), y(t)$: position of the point mass at time t.
- Elastic pendulum in 1D: $x(t)=0$,

Newton's second law:

$$
m \ddot{y}(t)=-m g-k(y(t)-(-\ell))
$$

with the acceleration of gravity g, the length of the spring at rest ℓ and the spring constant k (Hooke's law).
Initial conditions:

$$
y(0)=y_{0}, \quad \dot{y}(0)=v_{0} .
$$

Rewriting in Lagrangian mechanics: Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{y}}=\frac{\partial \mathcal{L}}{\partial y}
$$

with the Lagrangian

$$
\mathcal{L}=T-U
$$

with the kinetic energy T and the potential energy U. Here:

$$
T=\frac{m}{2} \dot{y}^{2}, \quad U=m g y+\frac{k}{2}(y+\ell)^{2} .
$$

- Elastic pendulum in 2D:

$$
\mathcal{L}=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-m g y-\frac{k}{2}\left(\sqrt{x^{2}+y^{2}}-\ell\right)^{2} .
$$

Euler-Lagrange equations:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}}=\frac{\partial \mathcal{L}}{\partial x}, \quad \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{y}}=\frac{\partial \mathcal{L}}{\partial y} .
$$

Here:

$$
\begin{aligned}
& m \ddot{x}=-k\left(\sqrt{x^{2}+y^{2}}-\ell\right) \frac{x}{\sqrt{x^{2}+y^{2}}}, \\
& m \ddot{y}=-m g-k\left(\sqrt{x^{2}+y^{2}}-\ell\right) \frac{y}{\sqrt{x^{2}+y^{2}}},
\end{aligned}
$$

or, equivalently

$$
\begin{aligned}
& m \ddot{x}=-2 \lambda x, \\
& m \ddot{y}=-m g-2 \lambda y
\end{aligned}
$$

with

$$
\lambda=\frac{k}{2} \frac{\sqrt{x^{2}+y^{2}}-\ell}{\sqrt{x^{2}+y^{2}}}=\frac{k}{2}\left(1-\frac{\ell}{\sqrt{x^{2}+y^{2}}}\right) . \quad \text { i.e. } \quad x^{2}+y^{2}=\frac{\ell^{2}}{\left(1-\frac{2 \lambda}{k}\right)^{2}} .
$$

In the limit case $k \rightarrow \infty$ (pendulum with fixed length) we obtain a system of differential algebraic equations (DAE):

$$
\begin{aligned}
m \ddot{x} & =-2 \lambda x \\
m \ddot{y} & =-m g-2 \lambda y \\
0 & =x^{2}+y^{2}-\ell^{2} .
\end{aligned}
$$

Initial conditions: $x(0), \dot{x}(0), y(0), \dot{y}(0)$,
Extension of the Lagrangian mechanics to mechanical systems with constraints: Euler-Lagrange equations

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}}=\frac{\partial \mathcal{L}}{\partial x}, \quad \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{y}}=\frac{\partial \mathcal{L}}{\partial \dot{y}}
$$

with

$$
\mathcal{L}=T-U-\lambda\left(x^{2}+y^{2}-\ell^{2}\right),
$$

where λ is called a Lagrangian multiplier.

- Partial differential equations

Initial boundary value problems

- Heat equation

1D example:

$$
u_{t}-a u_{x x}=f \quad x \in(0,1), t>0
$$

boundary conditions:

$$
u(0, t)=u(1, t)=0 \quad t>0
$$

initial conditions:

$$
u(x, 0)=u_{0}(x) \quad x \in[0,1]
$$

The problem can also be seen as an initial value problem of an ODE (ordinary differential equation) in Banach space:

$$
\begin{aligned}
u^{\prime}+A u & =f \\
u(0) & =u_{0}
\end{aligned}
$$

with $u:[0, T] \longrightarrow V \subset \mathbb{R}^{\Omega}, t \mapsto u(t)=u(., t)$
Semi-discretization in space: method of lines
Finite difference method (FDM) on an equidistant mesh with nodes $x_{i}=i \cdot h$ for $i=0,1, \ldots, n+1$ and mesh size $h=1 /(n+1)$. The expression

$$
u_{x x}\left(x_{i}, t\right)
$$

is replaced by

$$
\frac{1}{h^{2}}\left[u\left(x_{i-1}, t\right)-2 u\left(x_{i}, t\right)+u\left(x_{i+1}, t\right)\right] .
$$

This leads to the following (ordinary) differential equations for approximate solutions $u_{i}(t)$ to $u\left(x_{i}, t\right)$:
For $i=1$:

$$
u_{1}^{\prime}(t)-\frac{a}{h^{2}}[\underbrace{u_{0}(t)}_{=0}-2 u_{1}(t)+u_{2}(t)]=f\left(x_{1}, t\right)
$$

For $i=2, \ldots, n-1$:

$$
u_{i}^{\prime}(t)-\frac{a}{h^{2}}\left[u_{i-1}(t)-2 u_{i}(t)+u_{i+1}(t)\right]=f\left(x_{i}, t\right)
$$

For $i=n$:

$$
u_{n}^{\prime}(t)-\frac{a}{h^{2}}[u_{n-1}(t)-2 u_{n}(t)+\underbrace{u_{n+1}(t)}_{=0}]=f\left(x_{n}, t\right)
$$

In matrix-vector notation:

$$
\underline{u}_{h}^{\prime}(t)+K_{h} \underline{u}_{h}(t)=\underline{f}_{h}(t)
$$

with

$$
K_{h}=\frac{a}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right], \quad \underline{u}_{h}(t)=\left[\begin{array}{c}
u_{1}(t) \\
u_{2}(t) \\
\vdots \\
u_{n}(t)
\end{array}\right], \quad \underline{f}_{h}(t)=\left[\begin{array}{c}
f\left(x_{1}, t\right) \\
f\left(x_{2}, t\right) \\
\vdots \\
f\left(x_{n}, t\right)
\end{array}\right]
$$

Initial conditions

$$
\underline{u}_{h}(0)=\underline{u}_{h 0} \quad \text { with } \quad \underline{u}_{h 0}=\left[\begin{array}{c}
u_{0}\left(x_{1}\right) \\
u_{0}\left(x_{2}\right) \\
\vdots \\
u_{0}\left(x_{n}\right)
\end{array}\right] .
$$

The finite element method (FEM) with continuous and piecewise linear elements leads to similar problems:

$$
\begin{aligned}
M_{h} \underline{u}_{h}^{\prime}(t)+K_{h} \underline{u}_{h}(t) & =\underline{f}_{h}(t) \\
M_{h} \underline{u}_{h}(0) & =\underline{g}_{h}
\end{aligned}
$$

where M_{h} is the so-called mass matrix.
Both systems of differential equations are special cases of linear systems with constant coefficients:

$$
u^{\prime}(t)=J u(t)+f(t)
$$

Here: $J=-K_{h}$ or $J=-M_{h}^{-1} K_{h}$. The eigenvalues of J are real and negative. The problem is an example of a stiff problem.
MultiD: replace $u_{x x}$ by Δu with

$$
\Delta u=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}
$$

- Wave equation

1D example:

$$
u_{t t}-c^{2} u_{x x}=f \quad x \in(0,1), t>0
$$

boundary conditions:

$$
u(0, t)=u(1, t)=0 \quad t>0
$$

initial conditions:

$$
\begin{array}{lc}
u(x, 0)=u_{0}(x) & x \in[0,1], \\
u_{t}(x, 0)=v_{0}(x) & x \in[0,1]
\end{array}
$$

The problem can also be seen as an initial value problem of an ODE (ordinary differential equation) in Banach space:

$$
\begin{aligned}
u^{\prime \prime}+A u & =f, \\
u(0) & =u_{0}, \\
u^{\prime}(0) & =v_{0}
\end{aligned}
$$

with $u:[0, T] \longrightarrow V \subset \mathbb{R}^{\Omega}, t \mapsto u(t)=u(., t)$
Semi-discretization in space by a FDM:

$$
\begin{aligned}
\underline{u}_{h}^{\prime \prime}(t)+K_{h} \underline{u}_{h}(t) & =\underline{f}_{h}(t), \\
\underline{u}_{h}(0) & =\underline{u}_{h 0}, \\
\underline{u}_{h}^{\prime}(0) & =\underline{v}_{h 0} .
\end{aligned}
$$

This leads to the following first order linear system:

$$
u^{\prime}(t)=J u(t)+f(t)
$$

with

$$
u(t)=\left[\begin{array}{l}
\underline{u}_{h}(t) \\
\underline{u}_{h}^{\prime}(t)
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & I \\
-K_{h} & 0
\end{array}\right] .
$$

All eigenvalues of J are purely imaginary. This problem is also an example of a stiff problem.

- Navier-Stokes equations

The velocity u and the pressure p of a Newtonian fluid satisfy the following system of PDEs:

$$
\begin{array}{rl}
u_{t}-(u \cdot \nabla) u-\nu \Delta u+\nabla p=f & x \in \Omega, t>0, \\
\nabla \cdot u=0 & x \in \Omega, t>0
\end{array}
$$

with appropriate boundary and initial conditions.
Semi-discretization in space leads to a DAE:

$$
\begin{aligned}
M_{h} \underline{u}_{h}^{\prime}(t)+A_{h}\left(\underline{u}_{h}(t)\right) \underline{u}_{h}(t)+B_{h}^{T} \underline{p}_{h}(t) & =\underline{f}_{h}(t) & & t>0, \\
B_{h} \underline{u}_{h} & =\underline{g}_{h} & & x \in \Omega, t>0 .
\end{aligned}
$$

1.2 Standard Forms

- explicit ODEs:

Find $u:[0, T] \longrightarrow \mathbb{R}^{n}$ such that

$$
\begin{aligned}
u^{\prime}(t) & =f(t, u(t)) \quad t \in(0, T), \\
u(0) & =u_{0}
\end{aligned}
$$

with given right-hand side $f: D \times(0, T) \longrightarrow \mathbb{R}^{n}, D \subset \mathbb{R}^{n}$ and initial value $u_{0} \in \mathbb{R}^{n}$. Second (and higher) order initial value problems like

$$
\begin{aligned}
u^{\prime \prime}(t) & =f\left(t, u(t), u^{\prime}(t)\right) \quad t \in(0, T), \\
u(0) & =u_{0} \\
u^{\prime}(0) & =v_{0}
\end{aligned}
$$

can be transformed into this standard form: With

$$
u_{1}(t)=u(t), u_{2}(t)=u^{\prime}(t)
$$

we have

$$
u_{1}^{\prime}(t)=u_{2}(t), \quad u_{2}^{\prime}(t)=f\left(t, u_{1}(t), u_{2}(t)\right)
$$

with initial conditions:

$$
u_{1}(0)=u_{0}, \quad u_{2}(0)=v_{0} .
$$

Special cases:

- Linear ODEs with constant coefficients

$$
u^{\prime}(t)=J u(t)+f(t)
$$

- Right-hand side does not depend on u :

$$
u^{\prime}(t)=f(t)
$$

Then

$$
u(t)=u(0)+\int_{0}^{t} u^{\prime}(s) d s=u_{0}+\int_{0}^{t} f(s) d s
$$

(integration problem)

- autonomous ODEs:

$$
u^{\prime}(t)=f(u(t))
$$

Each ODE of the form

$$
u^{\prime}(t)=f(t, u(t))
$$

can be transformed into an equivalent autonomous problem: With

$$
u_{1}(t)=t, \quad u_{2}(t)=u(t)
$$

we obtain

$$
u_{1}^{\prime}(t)=1, \quad u_{2}^{\prime}(t)=f\left(u_{1}(t), u_{2}(t)\right)
$$

Initial conditions:

$$
u_{1}(0)=0, \quad u_{2}(0)=u_{0} .
$$

Formulation as a Volterra integral equation:

$$
u(t)=u_{0}+\int_{0}^{t} f(s, u(s)) d s
$$

Formulation as an operator equation:

$$
\mathcal{F}(u)=0 \quad \text { with } \quad \mathcal{F}(u)=\left[\begin{array}{c}
u^{\prime}(t)-f(t, u(t)), \quad t \in(0, T) \\
u(0)-u_{0}
\end{array}\right]
$$

e.g.: $\mathcal{F}: C^{1}(0, T) \cap C[0,1] \longrightarrow C(0, T) \times \mathbb{R}$.

- (fully) implicit ODEs:

$$
F\left(t, u(t), u^{\prime}(t)\right)=0
$$

- semi-explicit DAEs:

$$
\begin{gathered}
u(t)=\left[\begin{array}{l}
y(t) \\
z(t)
\end{array}\right] \\
y^{\prime}(t)=f(t, y(t), z(t)), \\
0=g(t, y(t), z(t)) .
\end{gathered}
$$

