Chapter 1

Introduction

1.1 Examples

e Chemical reactions (see [8], pages 115 - 116)

Brusselator: Six substances (species) A, B, D, E, X, Y undergo the following reac-
tions:

AL x
B+X 2 vy4+D
2X +Y 23X

XM p

Here, k; are the rate constants.

Using the law of mass action (Massenwirkungsgesetz) we obtain the following differ-
ential equations for the concentrations cy, cg, ¢p, cx, cy:

Ay (t) = —kycalt),

p(t) = —kacp(t)ex(t),

cp(t) = ka cp(t)ex(t),

p(t) = kyex(t),

A (t) = kica(t) — kycg(t)ex (t) + ks ex(t)ey (t) — kyex (),
Ay (t) = kacp(t)ex(t) — ks ex(t) ey (t).

Initial conditions: c4(0), ¢g(0), ¢p(0), cg(0), cx(0), ¢y (0) are given

e Mechanical systems (see [8], pages 8, 30, 31)

m: mass of the point mass.
x(t), y(t) : position of the point mass at time ¢.
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— Elastic pendulum in 1D: z(t) = 0,
Newton’s second law:

mij(t) = —mg =k (y(t) = (=0))

with the acceleration of gravity g, the length of the spring at rest ¢ and the
spring constant k (Hooke’s law).

Initial conditions:
y(O) = Yo, y(O) = o-

Rewriting in Lagrangian mechanics: Fuler-Lagrange equation

doc _oc
dt 0y Oy
with the Lagrangian
L=T-U

with the kinetic energy T and the potential energy U. Here:
. k 2
T=3y, Usmy+3y+0"

— Elastic pendulum in 2D:

2
=" (:t2+y2)—mgy—g(\/x2+y2—€> :

2

Euler-Lagrange equations:

doc_oc doc _oc
dtoi  0r' dtoy Oy

Here:

22 + 42
miy=—mg—k (\/372 +y? — E) L,
N
or, equivalently
mi=—2\x,

with
R AR, YT aony



In the limit case k& — oo (pendulum with fixed length) we obtain a system of
differential algebraic equations (DAE):

mi=-—2\zx
miy=-—mg—2\y
0=a?+y*— 1~
Initial conditions: z(0), #(0), y(0), ¥(0),

Extension of the Lagrangian mechanics to mechanical systems with constraints:
Euler-Lagrange equations

doL oL doc oL
dtox  Ox’ dtoy Oy
with
L=T-U-X("+y" -0,

where A is called a Lagrangian multiplier.

o Partial differential equations

Initial boundary value problems

— Heat equation

1D example:
U —aug, =f xe€(0,1), t>0

boundary conditions:
uw(0,t) =u(l,t) =0 ¢t>0

initial conditions:
u(z,0) =up(x) =z €]0,1]

The problem can also be seen as an initial value problem of an ODE (ordinary
differential equation) in Banach space:

u + Au = f,
u(0) = g

with w: [0, 7] — V C Rt u(t) = u(.,t)
Semi-discretization in space: method of lines

Finite difference method (FDM) on an equidistant mesh with nodes z; =i - h
fori=0,1,...,n+ 1 and mesh size h = 1/(n + 1). The expression
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is replaced by

ﬁ [U(.’Ei,b t) — QU(.’EZ, t) + U(.Tzqu, t)] .
This leads to the following (ordinary) differential equations for approximate
solutions w;(t) to u(x;,t):
For s = 1: a
~——
=0
Fori=2...,n—1:

() = 5 w1 () = 20i(6) + win (O] = Flai,)

For i = n:
a

(1) = 5 1 () = 20(8) + 1 ()] = Fs 1)
=0

In matrix-vector notation:

with
2 1 uy (1) fa1,t)
Kh:% -1 2 n w,(t) = us(t) L= f(x2,1)
1 2 un(t) f(@n, t)

Initial conditions

up(0) = wy  With =
uo(xy,)

The finite element method (FEM) with continuous and piecewise linear elements
leads to similar problems:

My () + Knw, (t) = £, ()
My, (0) = g

where M, is the so-called mass matrix.

Both systems of differential equations are special cases of linear systems with
constant coefficients:

u'(t) = Ju(t) + f(2)
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Here: J = —Ky or J = —Mh_lKh. The eigenvalues of J are real and negative.
The problem is an example of a stiff problem.

MultiD: replace u,, by Au with

Wave equation

1D example:

Uy — gy = f x€(0,1), >0

boundary conditions:

uw(0,t) =u(l,t) =0 ¢t>0

initial conditions:

u(z,0) = ug(x) =z €][0,1],
ug(z,0) = vo(x) 2« €0,1]

The problem can also be seen as an initial value problem of an ODE (ordinary
differential equation) in Banach space:

u' + Au = f,
u(0) = uy,
u'(0) = g

with w: [0,T] — V C Rt u(t) = u(.,t)
Semi-discretization in space by a FDM:
up(t) + Ky (1) = (1),

u, (0) = Upp,

1y, (0) = wpo-

This leads to the following first order linear system:

u'(t) = Ju(t) + f(t)

_u(?) _ 0 I
=B o[
All eigenvalues of J are purely imaginary. This problem is also an example of a
stiff problem.

with
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— Navier-Stokes equations

The velocity u and the pressure p of a Newtonian fluid satisfy the following
system of PDEs:

u—(u-Vyu—vAu+Vp=f z€Q, t>0,
V-u=0 z2z€Q,t>0

with appropriate boundary and initial conditions.

Semi-discretization in space leads to a DAE:

My, () + An(uy (8)) wy (8) + Byyp, (1) = £, (t) ¢ >0,
Bhgh:gh reQ, t>0.

1.2 Standard Forms

e explicit ODEs:
Find w : [0,7] — R™ such that

u'(t) = f(tu)) te(0,7T),

with given right-hand side f : D x (0,7) — R", D C R" and initial value uy € R™.

Second (and higher) order initial value problems like

u'(t) = f(tu(t) (1) ¢ € (0,T),

can be transformed into this standard form: With
uy(t) = u(t), us(t) = u'(t)

we have
ui(t) = ua(t), uy(t) = f(t,ui(t), ua(t))
with initial conditions:
u1(0) = ug, u9(0) = vy.

Special cases:

— Linear ODEs with constant coefficients
u'(t) = Ju(t) + f(t)

1-6



— Right-hand side does not depend on wu:

u'(t) = f(t)
Then

(integration problem)

— autonomous ODEs:

Each ODE of the form
u'(t) = f(t, u(t))

can be transformed into an equivalent autonomous problem: With
w(t) =t ua(t) =ut)

we obtain

Initial conditions:

Formulation as a Volterra integral equation:
u(t) = ug + /Ot f(s,u(s)) ds
Formulation as an operator equation:
F(u)=0 with F(u)= {u’(t) - f(tu)),

eg: F:CY0, T)NnC[0,1] — C(0,T) x R.
o (fully) implicit ODEs:

e semi-explicit DAEs:

1-7



