MATHEMATIK IV ÜBUNGEN ZUR NUMERIK FÜR MECHATRONIKER

WS 2008/2009

AUSGABETERMIN: Mittwoch, 12.11.2008

ABGABETERMIN: Dienstag, 9.12.2008, 12:00 Uhr

NAME (A-M):

MATRIKELNUMMER:

Die Übungen sind grundsätzlich alleine zu machen! Gruppenarbeit ist nicht erlaubt! Die Ausarbeitung muss sorgfältig abgefasst werden. Wichtig ist, dass nicht nur die Lösung, sondern auch die Lösungsidee (der Weg zur Lösung) beschrieben wird. Programme sind in Form von gut dokumentierten Programmlisten beizulegen. Testresultate sind durch Beilage übersichtlich gestalteter Original-inputs und Original-outputs zu belegen. Das Abgabeformat ist DIN A4. Heften Sie alle Unterlagen zu einem Übungsblatt zusammen! Die Tutoren Christian Irrgeher (ungerade KW: A-M) und Markus Kollmann (gerade KW: N-Z) stehen Ihnen am Donnerstag von 12:00 Uhr – 12:45 Uhr und am Freitag von

KW: N-Z) stehen Ihnen am Donnerstag von 12:00 Uhr – 12:45 Uhr und am Freitag von 10:00 Uhr – 10:45 Uhr ab der KW 43 im Raum KG 519 (Kopfgebäude, 5. Stock) für eventuell auftretende Fragen zur Verfügung.

2 Auflösung tridiagonaler Gleichungssysteme

2.1 Programmierbeispiel

Implementieren Sie das in der Vorlesung vorgestellte Verfahren zur Auflösung tridiagonaler Gleichungssysteme (GS) $K\underline{u} = f$,

$$\begin{bmatrix} c_1 & b_1 & & & & \\ a_2 & c_2 & b_2 & & \mathbf{O} \\ & \ddots & \ddots & \ddots & \\ \mathbf{O} & a_{n-1} & c_{n-1} & b_{n-1} \\ & & & a_n & c_n \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{n-1} \\ f_n \end{bmatrix}, \tag{1}$$

in einer von Ihnen gewählten Programmiersprache. Eingangsdaten (INPUT) sind die Dimension n und die Koeffizienten der Systemmatrix K und der rechten Seite \underline{f} . Ausgangsdaten (OUTPUT) sind die Komponenten des Lösungsvektors \underline{u} !

2.2 Testbeispiel

Analog zur Vorlesung (Punkt 2.2) betrachten wir nun das stationäre, eindimensionale Wärmeleitproblem

$$-u''(x) = f(x) := \sin(\ell \pi x) \quad \forall \ x \in (a,b) := (0,1)$$
 RB: $u'(0) = \alpha_a (u(0) - g_a)$ und $-u'(1) = \alpha_b (u(1) - g_b)$ mit $g_a = 1$, $g_b = 4$ und noch frei wählbaren Wärmeübergangszahlen α_a und α_b .

Die FE-Diskretisierung mit linearen Elementen auf gleichmäßigem Gitter mit der Schrittweite h = 1/n führt auf das GS (überprüfen Sie das !)

$$\frac{1}{h} \begin{bmatrix}
1 + \alpha_{a}h & -1 & & & \\
-1 & 2 & -1 & \mathbf{O} \\
& \ddots & \ddots & \ddots & \\
\mathbf{O} & -1 & 2 & -1 & \\
& & -1 & 1 + \alpha_{b}h
\end{bmatrix}
\begin{bmatrix}
u_{0} \\ u_{1} \\ \vdots \\ u_{n-1} \\ u_{n}
\end{bmatrix} = \begin{bmatrix}
\tilde{f}_{0} + \alpha_{a}g_{a} \\ \tilde{f}_{1} \\ \vdots \\ \tilde{f}_{n-1} \\ \tilde{f}_{n} + \alpha_{b}g_{b}
\end{bmatrix} (2)$$

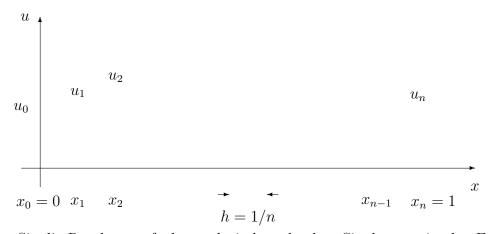
mit

$$\alpha_a = \alpha_b = 10^{\ell},$$

wobei $\ell =$ letzte Ziffer der Matrikelnummer $\in \{0, 1, \dots, 9\}$. Berechnen Sie die noch fehlenden Komponenten \tilde{f}_i , $i = 0, 1, \dots, n$, analytisch oder mit Hilfe der Mittelpunktsregel (Gauß 1)!

Lösen Sie das GS (2) für n=100 und n=1000, d.h. für $h=(b-a)/n=1/n=10^{-2}$ und $h=10^{-3}$. Stellen Sie die FE-Näherungslösung $u_h(x)=u_0\varphi_0(x)+u_1\varphi_1(x)+\ldots+u_n\varphi_n(x)$

mit $\varphi_i(x) = \underbrace{\qquad \qquad }_{x_{i-1}} x_i \quad \text{(stückweise lineare Ansatzfunktionen) grafisch dar, d.h.}$



Lösen Sie die Randwertaufgabe analytisch und geben Sie den maximalen Fehler

$$\max_{i=0,1,\dots,n} |u(x_i) - u_h(x_i)|$$

in den Gitterpunkten für $h = 10^{-2}$ und $h = 10^{-3}$ an !

2.3 Uberprüfung der Durchführbarkeits- und Stabilitätsbedingungen entsprechend Satz 2.12

Überprüfen Sie die Durchführbarkeits- und Stabilitätsbedingungen entsprechend Satz 2.12 für die folgenden beiden Matrizen:

- a) Systemmatrix des GS (2);
- b) Parameterabhängige (a, σ, τ, h) -Matrix

$$K = \begin{bmatrix} c & -b & & & \\ -b & c & -b & \mathbf{O} \\ & \ddots & \ddots & \ddots \\ \mathbf{O} & -b & c & -b \\ & & -b & c \end{bmatrix}_{(n-1)\times(n-1)}$$

mit $c = 1 + 2 \sigma a \tau / h^2$ und $b = \sigma a \tau / h^2$, sowie $\tau \equiv \Delta t$, $h \equiv \Delta x$, a > 0, $\sigma \in [0, 1]$.

Fakultative Zusatzaufgabe: Implizite Zeitintegrationsschema-2.4 ta (25 Zusatzpunkte)

Man löse das instationäre Wärmeleitproblem aus der Übung 1 mit den folgenden impliziten Zeitintegrationsverfahren:

a) Rein implizites Schema (impliziter Euler: $\sigma = 1$)

m implizites Schema (impliziter Euler:
$$\sigma = 1$$
)
$$\begin{cases}
\frac{T_i^{j+1} - T_i^j}{\Delta t} = \frac{a}{\Delta x^2} \left(T_{i-1}^{j+1} - 2T_i^{j+1} + T_{i+1}^{j+1} \right), & i = \overline{1, n-1}, j = \overline{0, m-1} \\
\underline{RB:} T_0^j = T_a(t_j), & T_n^j = T_b(t_j), j = 1, \dots, m \\
\underline{AB:} T_i^0 = T_A(x_i), & i = 0, 1, \dots, n
\end{cases}$$
(3)

Zeitschritt: $\Delta t = 36'' = 10^{-2} [h]$

b) Crank-Nicolson–Schema ($\sigma=1/2,$ vgl. Pkt. 2.3. b):

$$\begin{cases}
\frac{T_i^{j+1} - T_i^j}{\Delta t} = \frac{a}{2\Delta x^2} \left(T_{i-1}^{j+1} - 2T_i^{j+1} + T_{i+1}^{j+1} \right) + \frac{a}{2\Delta x^2} \left(T_{i-1}^j - 2T_i^j + T_{i+1}^j \right), \\
i = \overline{1, n-1}; \ j = \overline{0, m-1} \\
\underline{RB:} \ T_0^j = T_a(t_j), \ T_n^j = T_b(t_j), \ j = 1, \dots, m \\
\underline{AB:} \ T_i^0 = T_A(x_i), \ i = 0, 1, \dots, n
\end{cases} \tag{4}$$

Zeitschritt: $\Delta t = 36'' = 10^{-2} [h]$

Sowohl in (3) als auch in (4) ist auf jedem Zeitschritt zur Bestimmung der $[T_i^{j+1}]_{i=\overline{1,n-1}}$ ein tridiagonales lineares GS zu lösen. Benutzen Sie dazu das von Ihnen unter Punkt 2.1 programmierte Verfahren.