
Lecture Notes for the Course

Numerical Methods for Partial Differential Equations

Walter Zulehner
Institute for Computational Mathematics

Johannes Kepler University Linz

Winter Semester 2005/06



Contents

1 Elliptic Differential Equations 1

1.1 Boundary Value Problems for Second-order Ordinary Differential Equations 1

1.2 The Lax-Milgram Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Boundary Value Problems for Second-order Partial Differential Equation . 12

1.4 Conforming Finite Element Methods . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Finite Element Methods for Boundary Value Problems of Second-
order Ordinary Differential Equations . . . . . . . . . . . . . . . . . 15

1.4.2 Properties of the stiffness matrix Kh . . . . . . . . . . . . . . . . . 21

1.4.3 The Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.4 Finite Element Methods for Boundary Value Problems of Partial
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Iterative Methods for Linear Systems of Equations . . . . . . . . . . . . . . 30

1.5.1 The preconditioned Richardson method . . . . . . . . . . . . . . . . 30

1.5.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.3 Krylov Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 Boundary Value Problems for Nonlinear Elliptic Differential Equations . . 47

1.6.1 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.7 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.8 Finite Volume Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Parabolic Differential Equations 63

2.1 Initial-Boundary Value Problems for Parabolic Differential Equations . . . 63

2.2 Semi-discretization: the vertical method of lines . . . . . . . . . . . . . . . 68

2.2.1 The Discretization Error . . . . . . . . . . . . . . . . . . . . . . . . 70

2.3 Runge-Kutta Methods for Initial Value Problems for Ordinary Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.3.1 Euler’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.2 The classical convergence analysis . . . . . . . . . . . . . . . . . . . 74

2.3.3 Explicit Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . 77

2.3.4 Stiff Differential Equations and A-Stability . . . . . . . . . . . . . . 80

2.3.5 Implicit Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . 85

i



3 Hyperbolic Differential Equations 95
3.1 Initial-Boundary Value Problems for Hyperbolic Differential Equations . . 95
3.2 Runge-Kutta Methods for Initial Value Problems of Second-Order Ordinary

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3 Partitioned Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . 102

References 107

ii



Chapter 1

Elliptic Differential Equations

1.1 Boundary Value Problems for Second-order Or-

dinary Differential Equations

Classical Formulation (an example):

Find a function u : [0, 1] −→ R such that the differential equation

−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f(x) x ∈ (0, 1)

or, in short,

Lu(x) = f(x) x ∈ (0, 1)

with the linear differential operator L, given by

Lu(x) = −(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x),

and the boundary conditions

u(0) = g0, (1.1)

a(1)u′(1) = g1 (1.2)

are satisfied, for given data a, b, c, f , g0 and g1.

The boundary condition (1.1) is called Dirichlet boundary condition (or boundary con-
dition of the first kind), the boundary condition (1.2) is called Neumann boundary condi-
tion (or boundary condition of the second kind).

All expression are well-defined, for example, for solutions u ∈ C2(0, 1)∩C1(0, 1]∩C[0, 1)
and data

a ∈ C1(0, 1) ∩ C(0, 1], b, c, f ∈ C(0, 1), g0, g1 ∈ R.

The function u is called a classical solution.
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Special case (model problem):

For a(x) ≡ 1, b(x) ≡ 0, c(x) ≡ 0 one obtains:

−u′′(x) = f(x) x ∈ (0, 1),

u(0) = g0,

u′(1) = g1.

Variational formulation:

Let v : [0, 1] −→ R be a so-called test function. Under appropriate differentiability and
integrability conditions the following steps can be performed:

• Multiplication with a test function v and integration over the interval:

∫ 1

0

[−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x)] v(x) dx =

∫ 1

0

f(x)v(x) dx

• Integration by parts for the principal part:

−a(x)u′(x)v(x)
∣∣∣
1

0
+

∫ 1

0

a(x)u′(x)v′(x) dx

+

∫ 1

0

[b(x)u′(x)v(x) + c(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx

• Incorporating the boundary conditions for the unknown function u and using the
boundary condition v(0) = 0 for the test function v :

−g1v(1) +

∫ 1

0

a(x)u′(x)v′(x) dx

+

∫ 1

0

[b(x)u′(x)v(x) + c(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx

General strategy for incorporating the boundary conditions: Two types of boundary
conditions are distinguished: Essential and natural boundary conditions.

Essential boundary conditions for the solution u are explicitly prescribed, they cause
a corresponding homogeneous boundary condition for the test functions v. Here:
Dirichlet boundary conditions are essential boundary conditions: u(0) = g0 and
v(0) = 0 are explicitly prescribed.

Natural boundary conditions for the solution u are incorporated in the variational
equation. The test functions v inherit no boundary condition on such points. Here:
Neumann boundary conditions are natural boundary conditions: a(1)u′(1) = g1 is
incorporated in the variational equation.
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So we obtain the following variational problem: Find a function u : [0, 1] −→ R with
u(0) = g0, such that

∫ 1

0

[a(x)u′(x)v′(x) + b(x)u′(x)v(x) + c(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx+ g1v(1)

for all test functions v : [0, 1] −→ R with v(0) = 0.

Function spaces

Derivatives occur only behind an integral sign: Weak derivative
∫ 1

0

u′(x)ϕ(x) dx = −
∫ 1

0

u(x)ϕ′(x) dx for all ϕ ∈ C∞
0 (0, 1).

The existence of the integral expressions (for bounded measurable coefficients a, b, c ∈
L∞(0, 1) and square integrable right hand sides f ∈ L2(0, 1)) are guaranteed if

u, u′, v, v′ ∈ L2(0, 1).

This suggests to use the Sobolev space H1(0, 1) as working space:

H1(0, 1) = {v ∈ L2(0, 1) : v′ ∈ L2(0, 1)}.
Formulation of the essential boundary conditions:

Trace operator:

Lemma 1.1. There is a constant C > 0 with

|v(0)| ≤ C ‖v‖1 for all v ∈ C1[0, 1].

Proof. By integrating the identity

v(0) = v(x) −
∫ x

0

v′(y) dy

one obtains

v(0) =

∫ 1

0

v(x) dx−
∫ 1

0

∫ x

0

v′(y) dydx =

∫ 1

0

v(x) dx−
∫ 1

0

(1 − y)v′(y) dy.

Cauchy’s inequality implies

|v(0)| ≤
(∫ 1

0

v(x)2 dx

)1/2

+

(∫ 1

0

(1 − y)2 dy

)1/2 (∫ 1

0

v′(y)2 dy

)1/2

= ‖v‖0 +
1√
3
|v|1 ≤

2√
3
‖v‖1.

Hence the so-called trace operator γ0 : C1[0, 1] −→ R with γ0v = v(0) is linear and
continuous (bounded) with respect to the H1-norm. Since C1[0, 1] is dense in H1(0, 1),
there is a unique continuous extension of γ0 on H1(0, 1). In this sense the expression
v(0)(= γ0v) is well-defined for all v ∈ H1(0, 1).
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With
V = H1(0, 1), V0 = {v ∈ V |v(0) = 0}, Vg = {v ∈ V |v(0) = g0}

we obtain the final formulation of the variational problem: Find u ∈ Vg, such that

a(u, v) = 〈F, v〉 for all v ∈ V0

where

a(w, v) =

∫ 1

0

[a(x)u′(x)v′(x) + b(x)u′(x)v(x) + c(x)u(x)v(x)] dx,

〈F, v〉 =

∫ 1

0

f(x)v(x) dx+ g1v(1).

All expressions are well-defined for data

a, b, c ∈ L∞(0, 1), f ∈ L2(0, 1), g0, g1 ∈ R.

Solutions u of this variational problem are called weak solutions.
Warning:

classical solution
i. A.

6⇒ weak solution

A classical (smooth) solution is also a weak solution only if the correct integrability con-
ditions are satisfied.

Next we discuss the opposite question: Is a weak solution also a classical solution?
Let u ∈ Vg be a (weak) solution of the variational problem

∫ 1

0

[a(x)u′(x)v′(x) + b(x)u′(x)v(x) + c(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx+ g1v(1)

for all v ∈ V0. Under the assumption that b, c, f are continuous, a is continuously differen-
tiable and u is twice continuously differentiable, one obtains by integration by parts:

a(x)u′(x)v(x)
∣∣∣
1

0
−
∫ 1

0

(a(x)u′(x))′v(x) dx

+

∫ 1

0

[b(x)u′(x)v(x) + c(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx + g1v(1).

So

a(1)u′(1)v(1) +

∫ 1

0

[−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x)]v(x) dx (1.3)

=

∫ 1

0

f(x)v(x) dx + g1v(1).
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If we choose test functions v ∈ C∞
0 (0, 1) (i.e.: v(0) = v(1) = 0), then it follows

∫ 1

0

[−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x)]v(x) dx =

∫ 1

0

f(x)v(x) dx.

Since C∞
0 (0, 1) is dense in C[0, 1], it easily follows

−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f(x) for all x ∈ (0, 1).

Then (1.3) implies
a(1)u′(1)v(1) = g1v(1) for all v ∈ V0.

Since v(1) can be chosen arbitrarily, we obtain the (natural) boundary condition:

a(1)u′(1) = g1.

Warning:

weak solution
i. A.

6⇒ classical solution

A weak solution is a classical solution, only if the correct differentiability conditions are
satisfied.

Example: Let x̄ ∈ (0, 1). Assume that a is continuously differentiable on [0, x̄] and on
[x̄, 1] and u is twice continuously differentiable on [0, x̄] and on [x̄, 1]. Then one obtains by
integration by parts on each of the two sub-intervals:

∫ 1

0

a(x)u′(x)v′(x) dx =

∫ x̄

0

a(x)u′(x)v′(x) dx +

∫ 1

x̄

a(x)u′(x)v′(x) dx

= a(x)u′(x)v(x)
∣∣∣
x̄

0
−
∫ x̄

0

(a(x)u′(x))
′
v(x) dx

+ a(x)u′(x)v(x)
∣∣∣
1

x̄
−
∫ 1

x̄

(a(x)u′(x))
′
v(x) dx

= a(1)u′(1)v(1) + [a(x̄+)u′(x̄+) − a(x̄−)u′(x̄−)]v(x̄)

−
∫ x̄

0

(a(x)u′(x))
′
v(x) dx−

∫ 1

x̄

(a(x)u′(x))
′
v(x) dx

Then, from the variational equation it easily follows that u satisfies the differential equation
on the sub-intervals (0, x̄) and (x̄, 1), and one obtains the additional interface condition:

a(x̄+)u′(x̄+) = a(x̄−)u′(x̄−).

In order to have u ∈ H1(0, 1) it is necessary that:

u(x̄+) = u(x̄−).

So an additional condition follows from the variational formulation, which shows that, in
general, the solution is not necessarily continuously differentiable at the point x̄.
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1.2 The Lax-Milgram Theorem

Properties of the variational problem:

• Linearity: 〈F, .〉 is linear, a(., .) is bilinear.

• V -boundedness (continuity) of F :

|〈F, v〉| =

∣∣∣∣
∫ 1

0

f(x)v(x) dx+ g1 v(1)

∣∣∣∣ ≤ ‖f‖0‖v‖0 + g1C‖v‖1 ≤ (‖f‖0 + g1C) ‖v‖1.

Observe, that Lemma 1.1 is also valid in in H1(0, 1) (Proof by a closure argument).

• V -boundedness (continuity) of a:

|a(w, v)| = |
∫ 1

0

[a(x)w′(x)v′(x) + b(x)w′(x)v(x) + c(x)w(x)v(x)] dx|

≤ ‖a‖L∞‖w′‖0‖v′‖0 + ‖b‖L∞‖w′‖0‖v‖0 + ‖c‖L∞‖w‖0‖v‖0

≤ (‖a‖L∞ + ‖b‖L∞ + ‖c‖L∞) ‖w‖1‖v‖1

= µ2 ‖w‖1‖v‖1.

• V0-ellipticity of a:

Assumptions:

1. a(x) ≥ a0 > 0 for almost all x ∈ (0, 1),

2. b(x) ≡ 0,

3. c(x) ≥ 0 for almost all x ∈ (0, 1).

We have:

Lemma 1.2 (Friedrichs inequality). There is a constant C > 0 with

∫ 1

0

v(x)2 dx ≤ c2F

∫ 1

0

v′(x)2 dx for all v ∈ V0 = {v ∈ H1(0, 1) : v(0) = 0}

Proof. Let v ∈ C1[0, 1] with v(0) = 0. From

v(x) =

∫ x

0

v′(y) dy

one obtains

|v(x)|2 ≤ x

∫ x

0

|v′(y)|2 dy ≤
∫ 1

0

|v′(y)|2.

by using the Cauchy inequality. By integrating it follows that
∫ 1

0

|v(x)|2 ≤
∫ 1

0

|v′(y)|2 dy.
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C1[0, 1] ∩ V0 is dense in V0, all involved (semi-) norms are continuous on V0. Hence
the inequality also holds on the closure of C1[0, 1] ∩ V0, which is V0.

Remark: Friedrichs inequality is not satisfied in V = H1(0, 1).

Hence
‖v‖0 ≤ cF |v|1,

and, therefore,
|v|21 ≤ ‖v‖2

1 = ‖v‖2
0 + |v|21 ≤ (1 + c2F )|v|21.

So |v|1 and ‖v‖1 are equivalent norms on V0. It follows:

a(v, v) ≥ a0 |v|21 ≥
a0

1 + c2F
‖v‖2

1 = µ1 ‖v‖2
1.

Homogenization:

Find g ∈ V = H1(0, 1) with γ0g = g0. For example: g(x) ≡ g0. Then we have

Vg = g + V0 with g ∈ V.

Using the ansatz u = g+w we obtain a variational problem for w ∈ V0: Find w ∈ V0, such
that

a(w, v) = 〈F, v〉 − a(g, v) ≡ 〈F̂ , v〉 for all v ∈ V0. (1.4)

F̂ is linear and bounded:

|〈F̂ , v〉| ≤ |〈F, v〉|+ |a(g, v)| ≤ (‖F‖ + µ2‖g‖) ‖v‖

We assume that V0 is always a closed subspace of the Hilbert space V . This guarantees
that V0 is also a Hilbert space.

This discussion shows that it suffices to consider the homogenized variational problem.
Therefore, we will often discuss in the following only the case

g = 0, V = Vg = V0

without loss of generality.

Formulation of operator equation

Because of the continuity of the bilinear form a the linear operator A : V −→ V ∗, given by

〈Aw, v〉 = a(w, v) for all w, v ∈ V,

is well-defined. Then the variational problem (1.4) can be written as linear operator equa-
tion

Au = F.
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Riesz Representation Theorem

Let F be a linear continuous functional on the Hilbert space V . Consider the following
variational problem:

Find u ∈ V with
(u, v) = 〈F, v〉 for all v ∈ V. (1.5)

This problem is equivalent to the optimization problem:

Find u ∈ V with
J(u) = min

v∈V
J(v)

where

J(v) =
1

2
(v, v) − 〈F, v〉.

Proof.

J(u) = min
v∈V

J(v)

⇐⇒ J(u) ≤ J(u+ tw) for all w ∈ V, t ∈ [0, 1]

⇐⇒ J(u) ≤ J(u) + t [(u, w)− 〈F,w)] +
t2

2
(w,w) for all w ∈ V, t ∈ [0, 1]

⇐⇒ (u, w)− 〈F,w) +
t

2
(w,w) ≥ 0 for all w ∈ V, t ∈ [0, 1]

⇐⇒ (u, w)− 〈F,w) ≥ 0 for all w ∈ V

Choose w = v and w = −v for arbitrary v ∈ V .

Theorem 1.1 (Riesz Representation Theorem). There is a unique solution of the
variational problem (1.5) and we have ‖u‖ = ‖F‖.

Proof. The functional J is bounded from below:

J(v) ≥ 1

2
‖v‖2 − ‖F‖‖v‖ ≥ −1

2
‖F‖2.

Therefore, there is a sequence (un) in V with

J(un) → inf
v∈V

J(v) > −∞

The sequence (un) satisfies the Cauchy criterion:

‖un − um‖2 = 2‖un‖2 + 2‖um‖2 − ‖un + um‖2

= 4J(un) + 4J(um) − 8J

(
un + um

2

)

≤ 4J(un) + 4J(um) − 8 inf
v∈K

J(v) → 0
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So (un) converge towards a limit value u ∈ V . Because of the continuity of J(v) it follows:

J(u) = lim
n→∞

J(un) = inf
v∈V

J(v).

We have

‖u‖ = sup
v∈V

(u, v)

‖v‖ = sup
v∈V

〈F, v〉
‖v‖ = ‖F‖.

Hence the mapping J : V ∗ −→ V , given by JF = u, is a isometric isomorphism (Riesz
isomorphism).

By using the Riesz Representation Theorem we can reformulate the variational problem
Find u ∈ V , such that

a(u, v) = 〈F, v〉 for all v ∈ V

as a operator equation in the Hilbert space V :
Let Ã : V −→ V be given by

(Ãw, v) = a(w, v) for all w, v ∈ V

and f̃ ∈ V be given by
(f̃ , v) = 〈F, v〉 for all v ∈ V.

Then the variational problem (1.4) can be written as operator equation

Ãu = f̃ .

It is easy to see that Ã = JA and f̃ = JF .

Theorem 1.2 (Lax-Milgram Theorem). Let V be a Hilbert space, F : V −→ R a
(V -)bounded linear functional (F ∈ V ∗) and a : V × V −→ R be a bilinear form with the
following properties:

1. a is V -elliptic, i.e.: there is a constant µ1 > 0 with

µ1 ‖v‖2 ≤ a(v, v) for all v ∈ V,

2. a is V -bounded, i.e.: there is a constant µ2 > 0 with

|a(w, v)| ≤ µ2 ‖w‖‖v‖ for all w, v ∈ V.

Then there exists a unique solution u of the variational problem and we have:

1

µ2
‖F‖ ≤ ‖u‖ ≤ 1

µ1
‖F‖.
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Proof. The linear problem
Ãu = f̃

can be written in fixed point form

u = u− τ (Ãu− f̃) ≡ Kτu+ gτ .

In the following it will be shown that Kτ is contractive for an appropriate choice of the
parameter τ :

‖Kτv‖2 = (Kτv,Kτv) = ([I − τ Ã]v, [I − τ Ã]v)

= (v, v) − 2τ (Ãv, v) + τ 2 (Ãv, Ãv)

= (v, v) − 2τ a(v, v) + τ 2 ‖Av‖2

≤ (1 − 2µ1τ + µ2
2τ

2)‖v‖2

So

‖Kτv‖ ≤ q(τ) ‖v‖ with q(τ) =
√

1 − 2µ1τ + µ2
2τ

2.

We have

q(τ) < 1 ⇔ 0 < τ <
2µ1

µ2
2

.

q(τ) has a minimum for τopt = µ1/µ
2
2 and it follows:

qopt = q(τopt) =

√

1 −
(
µ1

µ2

)2

The existence and uniqueness follow from the Banach fixed point theorem.
The estimates follow from:

µ1 ‖u‖2 ≤ a(u, u) = 〈F, u〉 ≤ ‖F‖‖u‖

and

‖F‖ = sup
v 6=0

〈F, v〉
‖v‖ = sup

v 6=0

a(u, v)

‖v‖ ≤ sup
v 6=0

µ2 ‖u‖‖v‖
‖v‖ = µ2‖u‖.

Consequences:

The Banach Fixed Point Theorem does not only yield the existence of a unique solution
but also the construction of a sequence of approximations (un), given by

un+1 = un − τ(Ãun − f̃),

which converges towards the solution. Because of

(un+1, v) = (un, v) − τ [(Ãun, v) − (f̃ , v)] = (un, v) − τ [a(un, v) − 〈F, v〉]
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for all v ∈ V , one obtains a sequence of variational problems

(un+1, v) = (un, v) + τ [〈F, v〉 − a(un, v)] for all v ∈ V

for determining the approximations un+1 ∈ V . From the Banach Fixed Point Theorem the
following error estimates can be derived:

• q-linear convergence:
‖un+1 − u‖ ≤ q ‖un − u‖.

• r-linear convergence:
‖un − u‖ ≤ qn ‖u0 − u‖

• constructive a priori estimate:

‖un − u‖ ≤ qn

1 − q
‖u1 − u0‖

• constructive a posteriori estimate:

‖un − u‖ ≤ q

1 − q
‖un − un−1‖

with q = q(τ).

The Lax-Milgram Theorem does not need the symmetry of the bilinear form a. If a is
symmetric, the following theorem holds:

Theorem 1.3. Assume that

1. a is symmetric, i.e.
a(w, v) = a(v, w) for all w, v ∈ V,

2. a is non-negative, i.e.
a(v, v) ≥ 0 for all v ∈ V.

Then u ∈ Vg is a solution of the variational problem if and only if u ∈ Vg minimizes the
so-called Ritz energy functional J , given by

J(v) =
1

2
a(v, v) − 〈F, v〉,

with respect to the set Vg:
J(u) = min

w∈Vg

J(w).

For the proof, see the discussion of the Riesz Representation Theorem.
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Remark: The proof of the last theorem clarifies the role of the test functions v as admis-
sible directions: For u ∈ Vg, we need v = u+ tw to stay in the linear manifold Vg = g+ V0

for all t > 0. So w ∈ V0.

For symmetric bilinear forms the estimates can be improved: Es gilt:

Theorem 1.4. Under the assumptions of Theorem 1.2 and the additional condition that
the bilinear form a is symmetric we have:

‖Kτ‖ ≤ q(τ) = max(|1 − µ1 τ |, |1 − µ2 τ |)

and

q(τ) < 1 ⇔ 0 < τ <
2

µ2
.

q(τ) has its minimum at τopt = 2/(µ1 + µ2) and we have:

qopt = q(τopt) =
µ2 − µ1

µ2 + µ1
.

Proof. Since Kτ is symmetric, we have:

‖Kτ‖ = sup
06=v∈V

|(Kτv, v)|
(v, v)

The estimates easily follow from:

(1 − τ µ2) (v, v) ≤ (Kτv, v) = (v, v) − τ (Ãv, v) ≤ (1 − τ µ1) (v, v)

1.3 Boundary Value Problems for Second-order Par-

tial Differential Equation

Classical formulation:

Let Ω ⊂ Rd and Γ = ∂Ω = ΓD ∪ ΓN . Find u : Ω −→ R, such that the differential equation

−
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)

)
+

d∑

i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x) = f(x) x ∈ Ω

and the boundary conditions

u(x) = gD(x) x ∈ ΓD

d∑

i=1

aij(x)ni(x)
∂u

∂xj
(x) = gN(x) x ∈ ΓN

12



are satisfied. In short:

− div(A(x) gradu(x)) + b(x) · gradu(x) + c(x)u(x) = f(x) x ∈ Ω,

u(x) = gD(x) x ∈ ΓD,

A(x) grad u(x) · n(x) = gN(x) x ∈ ΓN .

with
A(x) = (aij(x))i,j=1,...,d, b(x) = (bi(x))i=1,...,d.

Special case Poisson equation:

A(x) = I, b(x) ≡ 0, c(x) ≡ 0 (Laplace equation: f(x) ≡ 0):

−∆u(x) = f(x) x ∈ Ω,

u(x) = gD(x) x ∈ ΓD,

∂u

∂n
(x) = gN(x) x ∈ ΓN .

Variational formulation:

Gauss Theorem: ∫

Ω

divw dx =

∫

Γ

w · n ds

in the form ∫

Ω

∂w

∂xi
dx =

∫

Γ

wni ds

yields the identity ∫

Ω

∂u

∂xi
v dx =

∫

Γ

uvni ds−
∫

Ω

u
∂v

∂xi
dx

(integration by parts).
Analogous to the one-dimensional problem one obtains the following variational prob-

lem: Find u ∈ Vg, such that
a(u, v) = 〈F, v〉 v ∈ V0

with

V = H1(Ω), V0 = H1
0,D(Ω) = {v ∈ V : v = 0 on ΓD}, Vg = {v ∈ V : v = gD on ΓD}

and

a(w, v) =

∫

Ω

[
d∑

i,j=1

aij
∂w

∂xj

∂v

∂xi

dx+
d∑

i=1

bi
∂w

∂xi

v + cwv

]
dx

=

∫

Ω

[A gradw · grad v + b · gradw v + c wv] dx,

〈F, v〉 =

∫

Ω

fv dx+

∫

ΓN

gNv ds.

13



Trace Operator:

γ : C1(Ω) −→ C(Γ), ‖v‖L2(Γ) ≤ c ‖v‖1

Extension:
γ : H1(Ω) −→ L2(Γ) γD : H1(Ω) −→ L2(ΓD)

But: The existence of g ∈ V = H1(Ω) with

Vg = g + V0

i.e.: γD g = gN is non-trivial:

γ(H1(Ω)) = H1/2(Γ) $ L2(Γ).

V0-ellipticity:

For the case

d∑

i,j=1

aij(x)ξiξj ≥ a0

d∑

i=1

ξ2
i for all ξ ∈ R, for almost all x ∈ Ω

with a0 > 0 and
b(x) ≡ 0, c(x) ≥ 0 for almost all x ∈ Ω

it follows
a(v, v) ≥ a0 |v|21.

For |ΓD| > 0 the ellipticity follows from the Friedrichs inequality:

‖v‖2
0 ≤ c2F |v|21 for all v ∈ V0.

Example: Pure Dirichlet boundary value problem: ΓD = Γ, ΓN = ∅, V0 = H1
0 (Ω).

For the pure Neumann boundary value problem (ΓD = ∅, ΓN = Γ) with c(x) ≡ 0 the
ellipticity follows from the Poincaré inequality:

‖v‖2
0 ≤ c2P

[(∫

Ω

v dx

)2

+ |v|21

]
for all v ∈ H1(Ω)

in the Hilbert space:

V0 = {v ∈ H1(Ω) :

∫

Ω

v dx = 0}.

The condition
〈F, 1〉 = 0

is necessary and sufficient for the existence of a solution.

14



1.4 Conforming Finite Element Methods

Let Vh ⊂ V be finite dimensional, V0h ⊂ Vh with V0h ⊂ V0 and Vgh = gh + V0h ⊂ Vg.

Galerkin method:

Construction of an approximation uh ∈ Vgh, given by the following variational problem:
Find uh ∈ Vgh, such that

a(uh, vh) = 〈F, vh〉 for all vh ∈ V0h.

Let a symmetric and non-negative:

Ritz method:

Construction of an approximation uh ∈ Vgh, given by the following optimization problem:

J(uh) = min
wh∈Vgh

J(wh).

Finite Element Methods: Special construction of Vh.

1.4.1 Finite Element Methods for Boundary Value Problems of

Second-order Ordinary Differential Equations

model problem:

Find u ∈ Vg = {v ∈ V = H1(Ω) : v(0) = g0} with

∫ 1

0

u′v′ dx =

∫ 1

0

fv dx+ g1v(1) for all v ∈ V0 = {v ∈ V = H1(Ω) : v(0) = g0}

The Courant Element:

By introducing nodes xi, i = 0, 1, . . . , Nh, with

0 = x0 < x1 < . . . < xNh
= 1

one obtains a subdivision Th of the interval Ω = (0, 1) as a set of subintervals (elements)
Tk = (xk−1, xk) for k = 1, 2, . . . , Nh. The mesh size h of the subdivision is given by

h = max
k=1,...,Nh

hk with hk = |xk − xk−1|.

Let Pk be the set of all polynomials of degree ≤ k. Vh is the set of all continuous and
piecewise linear functions on Ω:

Vh = {v ∈ C(Ω) : v|T ∈ P1 for all T ∈ Th}.

15



We have (conforming FE space):

Vh ⊂ V = H1(Ω).

Basis (nodal basis) for Vh: Let xi, i = 0, 1, . . . , Nh be a node. ϕi ∈ Vh is given by the
condition

ϕi(xj) = δij i, j = 0, 1, . . . , Nh.

One immediately sees that {ϕi : i = 0, 1, . . . , Nh} is a basis of Vh: The functions are linear
independent and each function vh ∈ Vh can be written in the form

vh(x) =

Nh∑

i=0

viϕi(x)

with vi = vh(xi).
Important: basis functions have a local support.
Test functions: vh(0) = 0:

V0h = {vh ∈ Vh : vh(0) = 0} = {vh ∈ Vh : vh =

Nh∑

i=1

viϕi}.

Linear manifold for the solution: vh(0) = g0:

Vgh = {vh ∈ Vh : vh(0) = g0} = {vh ∈ Vh : vh = g0ϕ0 +
N∑

i=1

viϕi}.

Obviously:
V0h ⊂ V0, Vgh = gh + V0h ⊂ Vg with gh = g0ϕ0.

Determination of the approximate solution: ansatz

uh = gh +

Nh∑

j=1

ujϕj

with

a(gh +

Nh∑

j=1

ujϕj,

Nh∑

i=1

viϕi) = 〈F,
Nh∑

i=1

viϕi〉

for all vi ∈ R, i = 1, 2, . . . , Nh.
Because of the linearity with respect to v it suffices to test only with the basis functions

ϕi, i = 1, 2, . . . , Nh:

a(gh +

N∑

j=1

ujϕj, ϕi) = 〈F, ϕi〉 for all i = 1, 2, . . . , Nh.
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Because of the linearity with respect to u one obtains

N∑

j=1

a(ϕj, ϕi)uj = 〈F, ϕi〉 − a(gh, ϕi) for all i = 1, 2, . . . , Nh.

Hence
Khuh = f

h

with
Kh = (Kij)i,j=1,2...,Nh

, Kij = a(ϕj, ϕi)

uh = (ui)i=1,2...,Nh
, f

h
= (fi)i=1,2...,Nh

fi = 〈F, ϕi〉 − a(gh, ϕi).

Kh is usually called the stiffness matrix, fh is called the load vector.
Obviously we have the following relation between the bilinear form on V0,h and the

stiffness matrix:
a(wh, vh) = (Khwh, vh)`2 for all wh, vh ∈ V0h.

Here (., .)`2 denotes the Euclidean scalar product. The Euclidean norm is denoted by ‖.‖`2.

Remark:

1. Sparse stiffness matrix: Most of the entries of the stiffness matrix are 0 due to the
local support of the basis functions:

a(ϕj, ϕi) =

∫

Ω

ϕ′
jϕ

′
i dx = 0 for |i− j| > 1

Here in our example we obtain a tridiagonal matrix because of the special numbering
of the unknowns.

2. Element stiffness matrices:

(Khwh, vh)`2 = a(wh, vh) =
∑

T∈Th

∫

T

w′
hv

′
h dx =

∑

T∈Th

∑

i,j

viwj

∫

T

ϕ′
jϕ

′
i dx

= K
(1)
h w1v1 +

Nh∑

k=2

(
K

(k)
h

(
wk−1

wk

)
,

(
vk−1

vk

))

`2

with the element stiffness matrices:

K
(1)
h =

∫

T1

ϕ′
1(x)

2 dx, K
(k)
h =




∫

Tk

ϕ′
k−1(x)

2 dx

∫

Tk

ϕ′
k−1(x)ϕ

′
k(x) dx

∫

Tk

ϕ′
k(x)ϕ

′
k−1(x) dx

∫

Tk

ϕ′
k(x)

2 dx




ϕi|T are called shape functions.
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3. Transformation to a reference element: For the Courant Element (but not necessarily
for all finite elements) the computation can be performed with the help of a so-called
reference element T̂ = (0, 1), whose nodes are denoted by ξ0 = 0 and ξ1 = 1. Let

Fk : T̂ −→ Tk be a simple bijective map of the reference element T̂ onto the element
Tk, here we choose the affine map Fk(ξ) = xk−1 + (xk − xk−1) ξ.

Transformation of basis functions to the reference element:

ϕk−1(Fk(ξ)) = 1 − ξ ≡ ϕ̂0(ξ), ϕk(Fk(ξ)) = ξ ≡ ϕ̂1(ξ).

Transformation of integrals to the reference element (substitution rule):

K
(1)
h =

∫

T1

ϕ′
1(x)

2 dx =

∫

T̂

ϕ′
1(Fk(ξ))

2|F ′
1(ξ)| dξ =

∫

T̂

ϕ̂′
1(ξ)

2 1

|F ′
1(ξ)|

dξ =
1

h1

and analogously

K
(k)
h =




∫

Tk

ϕ′
k−1(x)

2 dx

∫

Tk

ϕ′
k−1(x)ϕ

′
k(x) dx

∫

Tk

ϕ′
k(x)ϕ

′
k−1(x) dx

∫

Tk

ϕ′
k(x)

2 dx




=




∫

Tk

ϕ̂′
0(ξ)

2 1

|F ′
k(ξ)|

dξ

∫

Tk

ϕ̂′
0(ξ)ϕ̂

′
1(ξ)

1

|F ′
k(ξ)|

dξ
∫

Tk

ϕ̂′
1(ξ)ϕ̂

′
0(ξ)

1

|F ′
k(ξ)|

dξ

∫

Tk

ϕ̂′
1(ξ)

2 1

|F ′
k(ξ)|

dξ


 =

1

hk
K̂

with

K̂ =




∫

T̂

ϕ̂′
0(ξ)

2

∫

T̂

ϕ̂′
0(ξ)ϕ̂

′
1(ξ) dξ

∫

T̂

ϕ̂′
1(ξ)ϕ̂

′
0(ξ) dξ

∫

T̂

ϕ̂′
1(ξ)

2 dξ


 =

(
1 −1
−1 1

)

4. Element-wise assembling: From the entries of the element (or local) stiffness matrices,
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here K
(k)
h , one easily obtains the (global) stiffness matrix, here:

Kh

=




K
(1)
11 + K

(2)
00 K

(2)
01 0 · · · · · · 0

K
(2)
10 K

(2)
11 + K

(3)
00 K

(3)
01

. . .
...

0 K
(3)
10 K

(3)
11 + K

(4)
00

. . .
. . .

...

...
. . .

. . .
. . . K

(Nh−1)
01 0

...
. . . K

(Nh−1)
10 K

(Nh−1)
11 + K

(Nh)
00 K

(Nh)
01

0 · · · · · · 0 K
(Nh)
10 K

(Nh)
11




=




1
h1

+
1
h2

− 1
h2

0 · · · · · · 0

− 1
h2

1
h2

+
1
h3

− 1
h3

. . .
...

0 − 1
h3

1
h3

+
1
h4

. . .
. . .

...

...
. . .

. . .
. . . − 1

hNh−1
0

...
. . . − 1

hNh−1

1
hNh−1

+
1

hNh

− 1
hNh

0 · · · · · · 0 − 1
hNh

1
hNh




.

For the special case of an equidistant subdivision on obtains:

Kh =
1

h




2 −1 0 · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . . −1 0

...
. . . −1 2 −1

0 · · · · · · 0 −1 1




.

5. In order to compute the element stiffness matrices and the resulting assembled matrix
Kh two lists are needed: For a given numbering of the nodes and the elements, the
first list contains the information from which nodes each individual element is built
of:

element index
1 0 1
2 1 2
...

...
...

Nh Nh − 1 Nh
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The second list contains the coordinates of the nodes:

node index
0 x0

1 x1

2 x2
...

...
Nh xNh

In an analogous way the computation of the right hand side (usually called the load
vector):

f
h

=




〈F, ϕ1〉
〈F, ϕ2〉

...
〈F, ϕNh

〉


+




g0/h
0
...
0


 .

We have ∫

Ω

fϕi dx =
∑

T∈Th

∫

T

fϕi dx

and ∫

T

f(x)ϕi(x) dx =

∫

T̂

f(Fk(ξ))ϕi(Fk(ξ))|F ′
k(ξ)| dξ

These integrals are typically not computed exactly but only approximatively with the help
of a so-called quadrature rule, e.g.: the trapezoidal rule:

∫ 1

0

h(x)dx ≈ 1

2
[h(0) + h(1)]

Hence

f
h

= h




f(x1)
f(x2)

...
f(xNh−1)
f(xNh

)/2




+




g0/h
0
...
0
g1



.

Remark: The FEM (finite element method) can be interpreted as a FDM (finite difference
method) for the classical formulation using a central difference quotient

u′′(xi) ≈
1

h2
[−ui−1 + 2ui − ui+1]

for i = 1, 2, . . . , Nh − 1 and a one-sided difference quotient

u′′(xi) ≈
2

h

[
u′i −

ui − ui−1

h

]

for i = Nh.
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1.4.2 Properties of the stiffness matrix Kh

The stiffness matrix is typically a large scale and sparse matrix. For an appropriate num-
bering of the unknowns it becomes a banded matrix with a small band width compared to
the number of unknowns.

Because of the relation
a(wh, vh) = (Khwh, vh)`2

properties of the bilinear form a carry over to the stiffness matrix Kh, for example:

• a symmetric =⇒ Kh symmetric.

• a elliptic (coercive) =⇒ Kh positive definite.

Eigenvalue estimates:

Let A be symmetric with respect to the inner product (., .):

(Ax, y) = (x,Ay) for all x, y ∈ Rn.

For (., .) = (., .)`2 A is symmetric iff AT = A.
For symmetric matrices it follows that:

σ(A) ⊂ R

with σ(A) denoting the spectrum of A, i.e., the set of all eigenvalues of A.
For symmetric matrices the following notations are introduced:

1. A is positive semi-definite, in short A ≥ 0, iff

(Ax, x) ≥ 0 for all x ∈ Rn.

2. A is positive definite, in short A > 0, iff

(Ax, x) > 0 for all x ∈ Rn with x 6= 0.

3. A ≥ B iff A− B ≥ 0.

4. A > B iff A−B > 0.

Analogously, A ≤ 0, A < 0, A ≤ B and A < B are defined.
We have:

A ≥ 0 ⇐⇒ λ ≥ 0 for all λ ∈ σ(A) ⇐⇒ λmin(A) ≥ 0.

and
A > 0 ⇐⇒ λ > 0 for all λ ∈ σ(A) ⇐⇒ λmin(A) < 0.
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We have

A ≥ α I ⇐⇒ (Ax, x) ≥ α (x, x) for all x ∈ Rn

⇐⇒ (Ax, x)

(x, x)
≥ α for all x ∈ Rn with x 6= 0

⇐⇒ inf
06=x∈Rn

(Ax, x)

(x, x)
≥ α

and

A ≥ α I ⇐⇒ λ− α ≥ 0 for all λ ∈ σ(A)

⇐⇒ λmin(A) ≥ α

for arbitrary α ∈ R and, therefore,

λmin(A) = inf
06=x∈Rn

(Ax, x)

(x, x)

The expression (Ax, x)/(x, x) is called the Rayleigh quotient. Analogously it follows:

λmax(A) = sup
06=x∈Rn

(Ax, x)

(x, x)

Let A and C be symmetric matrices with respect to the inner product (., .) and C > 0.
Then C−1A is symmetric with respect to the inner product (., .)C , given by

(x, y)C = (Cx, y) for all x, y ∈ Rn,

since

(C−1Ax, y)C = (CC−1Ax, y) = (Ax, y) = (x,Ay) = (C−1Cx,Ay) = (Cx,C−1Ay).

So it follows

λmin(C
−1A) = inf

06=x∈Rn

(C−1Ax, x)C

(x, x)C

= inf
06=x∈Rn

(Ax, x)

(Cx, x)
.

and

λmax(C
−1A) = sup

06=x∈Rn

(C−1Ax, x)C

(x, x)C
= sup

06=x∈Rn

(Ax, x)

(Cx, x)
.

Eigenvalue estimates for the stiffness matrix Kh:

(
K

(k)
h

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

=
1

hk

(
K̂

(
vk−1

vk

)
,

(
vk−1

vk

))

≤ 1

hk
λmax(K̂)

[
v2

k−1 + v2
k

]
=

2

hk

[
v2

k−1 + v2
k

]
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and, therefore,

(Khvh, vh)`2 = a(vh, vh) ≤ 1

h1

v2
1 +

Nh∑

k=2

2

hk

[
v2

k−1 + v2
k

]

≤ 4

mink hk

Nh∑

k=1

v2
k =

4

mink hk
‖vh‖2

`2.

i.e.:

λmax(Kh) = sup
vh 6=0

(Khvh, vh)`2

(vh, vh)`2

≤ 4

mink hk
.

On the other hand we have (Friedrichs inequality):

a(vh, vh) ≥
1

c2F
‖vh‖2

0.

So

(Khvh, vh)`2 = a(vh, vh) ≥
1

c2F
‖vh‖2

0 =
1

c2F
(Mhvh, vh)`2

with Mh = (Mij), given by

Mij =

∫

Ω

ϕjϕi dx,

the so-called mass matrix. We have

(Mhwh, vh)`2 =
∑

T∈Th

∫

T

whvh dx =
∑

T∈Th

∑

i,j

viwj

∫

T

ϕjϕi dx

= M
(1)
h w1v1 +

∑

k=2,Nh

(
M

(k)
h

(
wk−1

wk

)
,

(
vk−1

vk

))

`2

with the element (or local) mass matrices

M
(1)
h =

∫

T1

ϕ1(x)ϕ1(x) dx, M
(k)
h =




∫

Tk

ϕk−1(x)
2 dx

∫

Tk

ϕk−1(x)ϕk(x) dx
∫

Tk

ϕk(x)ϕk−1(x) dx

∫

Tk

ϕk(x)
2 dx




Transformation to a reference element:

M
(1)
h =

∫

T1

ϕ1(x)ϕ1(x) dx =

∫

T̂

ϕ̂1(ξ)ϕ̂1(ξ)|F ′
1(ξ)| dξ =

h1

3
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and, analogously,

M
(k)
h =




∫

Tk

ϕk−1(x)
2 dx

∫

Tk

ϕk−1(x)ϕk(x) dx
∫

Tk

ϕk(x)ϕk−1(x) dx

∫

Tk

ϕk(x)
2 dx




=




∫

Tk

ϕ̂0(ξ)
2|F ′

k(ξ)| dξ
∫

Tk

ϕ̂0(ξ)ϕ̂1(ξ)|F ′
k(ξ)| dξ

∫

Tk

ϕ̂1(ξ)ϕ̂0(ξ)|F ′
k(ξ)| dξ

∫

Tk

ϕ̂1(ξ)
2|F ′

k(ξ)| dξ


 = hk M̂

with

M̂ =




∫

T̂

ϕ̂0(ξ)
2 dξ

∫

T̂

ϕ̂0(ξ)ϕ̂1(ξ) dξ
∫

T̂

ϕ̂1(ξ)ϕ̂0(ξ) dξ

∫

T̂

ϕ̂1(ξ)
2 dxξ


 =

1

6

(
2 1
1 2

)
.

Hence it follows:
(
M

(k)
h

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

= hk

(
M̂

(
vk−1

vk

)
,

(
vk−1

vk

))

≥ hk λmin(M̂)
[
v2

k−1 + v2
k

]
=
hk

6

[
v2

k−1 + v2
k

]

and, therefore,

(Mhvh, vh)`2 = ‖vh‖2
0 ≥ h1

3
v2
1 +

Nh∑

k=1

hk

6

[
v2

k−1 + v2
k

]

≥ mink hk

6

Nh∑

k=1

v2
k =

mink hk

6
‖vh‖2

`2

So we have:

(Khvh, vh)`2 ≥
mink hk

6c2F
‖vh‖2

`2,

i.e.:

λmin(Kh) = inf
vh 6=0

(Khvh, vh)`2

(vh, vh)`2

≥ mink hk

6c2F
.

For the condition number of Kh one obtains:

κ(Kh) ≤ 24c2F
1

mink h2
k

Special case equidistant subdivision:

κ(Kh) ≤ 24c2F
1

h2
= O(

1

h2
).

The exponent 2, which corresponds to the order of the differential equation, is sharp.
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Remark: In a similar way one can easily show that

κ(Mh) = O(1)

for equidistant subdivisions.

1.4.3 The Discretization Error

Homogenization

Under the assumptions Vh ⊂ V , V0h ⊂ V0 and Vgh = gh + V0h ⊂ Vg the variational
problem in V as well as the corresponding finite dimensional variational problem can be
simultaneously homogenized with the help of gh. Therefore, without loss of generality, it
suffices to consider variational problems with:

gh = g = 0, V = Vg = V0, Vh = Vgh = V0h.

The existence and uniqueness of the approximation uh directly follows under the as-
sumptions of the Lax-Milgram Theorem:

Theorem 1.5. Let V be a Hilbert space, F ∈ V ∗ and a : V × V −→ R be a bilinear form
with the following properties:

1. a is coercive on V : There is a constant µ1 > 0 with

µ1 ‖v‖2 ≤ a(v, v) for all v ∈ V,

2. a is bounded on V : There is a constant µ2 > 0 with

|a(w, v)| ≤ µ2 ‖w‖‖v‖ for all w, v ∈ V.

Moreover, let Vh be a finite dimensional subspace of V . Then there exists a unique solution
uh ∈ Vh with

a(uh, vh) = 〈F, vh〉 for all vh ∈ Vh.

The following theorem (Cea’s Theorem) is of fundamental importance for the estimation
of the discretization error:

Theorem 1.6 (Cea). Let V be a Hilbert space, F ∈ V ∗ and a : V × V −→ R a bilinear
form with the following properties:

1. a is coercive on V : There is a constant µ1 > 0 with

µ1 ‖v‖2 ≤ a(v, v) for all v ∈ V,

2. a is bounded on V : There is a constant µ2 > 0 with

|a(w, v)| ≤ µ2 ‖w‖‖v‖ for all w, v ∈ V.

25



Furthermore, let Vh be a finite-dimensional subspace of V . Then we have:

‖u− uh‖ ≤ µ2

µ1
inf

wh∈Vh

‖u− wh‖.

Proof. By subtracting

a(u, vh) = 〈F, vh〉 for all vh ∈ Vh

a(uh, vh) = 〈F, vh〉 for all vh ∈ Vh

we obtain the so-called Galerkin orthogonality:

a(u− uh, vh) = 0 for all vh ∈ Vh

With vh = (u− uh) − (u− wh) it follows that

µ1‖u− uh‖2 ≤ a(u− uh, u− uh) = a(u− uh, u− wh) ≤ µ2‖u− uh‖‖u− wh‖.

Remark: Let a be additionally symmetric. Then a is a (further) scalar product on V
with corresponding norm, given by

‖v‖2
A = a(v, v),

which is equivalent to the original norm ‖‖:
µ1‖v‖2 ≤ ‖v‖2

A ≤ µ2‖v‖2.

The Galerkin orthogonality then becomes the A-orthogonality:

u− uh ⊥A Vh

and we have:

‖u− uh‖2
A = a(u− uh, u− uh) = a(u− uh, u− wh) ≤ ‖u− uh‖A‖u− wh‖A.

Hence
‖u− uh‖A = inf

wh∈Vh

‖u− wh‖A

and, therefore,

‖u− uh‖ ≤
√
µ2

µ1
inf

wh∈Vh

‖u− wh‖

Because of

J(wh) =
1

2
a(wh, wh) − 〈F,wh〉 =

1

2
a(wh, wh) − a(u, wh)

=
1

2
a(wh − u, wh − u) − 1

2
a(u, u) =

1

2
‖wh − u‖2

A − 1

2
‖u‖2

A

it follows
J(uh) = inf

wh∈Vh

J(wh).

This property is also a direct consequence of Theorem 1.3.

Cea’s Theorem states that the discretization error can be estimated by the approxima-
tion error.
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Estimation of the approximation error

Let v ∈ H1(0, 1). Since H1(0, 1) ⊂ C[0, 1] (see the trace operator) the interpolation
operator Ih is well-defined: vh = Ihv ∈ Vh is that continuous and piecewise linear function,
which coincides with v at the nodes:

vh(xi) = v(xi) for all i = 0, 1, . . . , Nh.

The approximation error can be estimated by the interpolation error:

inf
vh∈Vh

‖u− vh‖1 ≤ ‖u− Ihu‖1

Lemma 1.3. For u ∈ H2(0, 1) it follows: There are constants C0, C1 > 0 such that

‖v − Ihv‖0 ≤ C0

(
∑

k

h4
k |v|22,Tk

)1/2

≤ C0 h
2 |v|2

and

|v − Ihv|1 ≤ C1

(
∑

k

h2
k |v|22,Tk

)1/2

≤ C1 h |v|2

Proof. Transformation onto the reference element:

∫

Ω

|v(x) − Ihv(x)|2 dx =

Nh∑

k=1

∫

Tk

|v(x) − Ihv(x)|2 dx

=

Nh∑

k=1

hk

∫

T̂

|(v ◦ Fk)(ξ) − Ihv ◦ Fk(ξ)|2 dξ

=

Nh∑

k=1

hk

∫

T̂

|(v ◦ Fk)(ξ) − Î(v ◦ Fk)(ξ)|2 dξ.

On the reference element it follows for v̂(ξ) = (v ◦ Fk)(ξ):

v̂(ξ) − Î v̂(ξ) = v̂(ξ) − [v̂(0) + (v(1) − v(0))ξ]

= ξ

∫ 1

0

[v̂′(ξy)− v̂′(y)] dy

= ξ

∫ 1

0

∫ ξy

y

v̂′′(z) dzdy.

So

|v̂(ξ) − Î v̂(ξ)| ≤ C ‖v̂′′‖0
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and, therefore,
∫

T̂

|v̂(ξ) − Î v̂(ξ)|2 dξ ≤ C2

∫

T̂

|v̂′′(ξ)|2 dξ.

By transforming back onto Tk we obtain:
∫

Tk

|v(x) − Ihv(x)|2 dx ≤ C2 h4
k

∫

Tk

|v′′(x)|2 dx.

Analogously, the second estimate follows using:

v̂′(ξ) − (Î v̂)′(ξ) = v̂′(ξ) − (v(1) − v(0))

=

∫ 1

0

[v̂′(ξ) − v̂′(y)] dy

=

∫ 1

0

∫ ξ

y

v̂′′(z) dzdy

Summarizing, we obtain:

Theorem 1.7. Let u ∈ V ∩H2(Ω) be the exact solution of the variational problem and let
uh ∈ Vh be the approximate solution of the FEM with the Courant element. Then we have:

‖u− uh‖1 ≤ C1

(
∑

k

h2
k |u|22,Tk

)1/2

≤ C1 h |u|2.

Remark: Convergence for u ∈ H1(Ω): H2(Ω) is dense in H1(Ω). Hence

lim
h→0

‖u− uh‖1 ≤
µ2

µ1

lim
h→0

inf
vh∈Vh

‖u− vh‖1 → 0.

Remark: Estimation in other norms: Example L2-Norm:

‖u− uh‖0 ≤ C0 h
2 |u|2.

by the so-called Aubin-Nitsche duality argument.

a-posteriori error estimators:

For the discretization error we have:

a(u− uh, v) = 〈F, v〉 − a(uh, v) for all v ∈ V.

So, by the Lax-Milgram Theorem:

1

µ2
sup
v∈V

〈F, v〉 − a(uh, v)

‖v‖ ≤ ‖u− uh‖ ≤ 1

µ1
sup
v∈V

〈F, v〉 − a(uh, v)

‖v‖
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So, the discretization error can be estimated from above and from below by the norm of
the residual. Furthermore, we have:

〈F, v〉 − a(uh, v) = 〈F, v − vh〉 − a(uh, v − vh)

for all vh ∈ Vh.
Estimation of the residual for the model problem with w = v − vh:

〈F,w〉 − a(uh, w) =

Nh∑

k=1

[∫

Tk

fw dx−
∫

Tk

u′hw
′ dx

]
− g1w(1)

=

Nh∑

k=1

[∫

Tk

fw dx− u′hw
∣∣∣
xk

xk−1

+

∫

Tk

u′′hw dx

]
− g1w(1)

=

Nh∑

k=1

∫

Tk

(f + u′′h)w dx +

Nh−1∑

l=1

[u′h](xl)w(xl) + (g1 − u′h(xNh
))w(1)

with
[u′h](xl) = u′h(xl+) − u′h(xl−).

Hence

〈F,w〉 − a(uh, w)

≤
Nh∑

k=1

‖f + u′′h‖0,Tk
‖w‖0,Tk

+

Nh−1∑

l=1

|[u′h](xl)||w(xl)| + |g1 + u′h(xNh
)||w(1)|

For vh = Ihv, the jump terms vanish (only in 1D). Using the estimation of the interpolation
error

‖v − vh‖2
0,Tk

=

∫

Tk

|v − Ihv|2 dx ≤ C2
I h

2
k

∫

Tk

|v′|2 dx = C2
I h

2
k|v|21,Tk

it follows:

〈F,w〉 − a(uh, w)

≤ CI

Nh∑

k=1

hk ‖f + u′′h‖0,Tk
|v|1,Tk

≤ CI

(
Nh∑

k=1

h2
k ‖f + u′′h‖2

0,Tk

)1/2( Nh∑

k=1

|v|21,Tk

)1/2

= CI η |v|1 ≤ CI η ‖v‖1

In summary, we obtain

‖u− uh‖1 ≤
CI

µ1

η

with

η2 =

Nh∑

k=1

η2
k, η2

k = h2
k ‖f + u′′h‖2

0,Tk
.

In 1D this coincides with the a-priori estimation.
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1.4.4 Finite Element Methods for Boundary Value Problems of

Partial Differential Equations

• Subdivisions

in 2D: triangles, quadrilaterals

in 3D: tetrahedra, hexahedra, . . .

• Basis functions, shape functions:

Pk = {∑|ν|≤k cν x
ν}, Qk = {∑νi≤k cν x

ν}
in 2D: k = 1, P1 for triangles, basis functions: pyramid functions

in 2D: k = 1, Q1 (bilinear functions) for quadrilaterals, bilinear transformations onto
the reference element = unit square.

• element-by-element assembling: analogous

here: important in order to efficiently work with unstructured meshes.

• Properties of Kh:

analogous properties

BUT: band width grows.

• Discretization error: analogously

Rule of thumb O(hk) for Pk, Qk.

higher dimensional elements: acute, obtuse angles, regular, quasi-uniform meshes.

Bramble-Hilbert lemma.

1.5 Iterative Methods for Linear Systems of Equa-

tions

1.5.1 The preconditioned Richardson method

Theorem 1.5 also yields an iterative method for determining uh ∈ Vh:

(u
(n+1)
h , vh) = (u

(n)
h , vh) + τ [〈F, vh〉 − a(u

(n)
h , vh)] for all vh ∈ Vh.

Here (., .) denotes the scalar product in V . This scalar product (as any other bilinear form)
can be represented by a matrix, say Bh:

(wh, vh) = (Bhwh, vh)`2.
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The matrix Bh is symmetric and positive definite. Therefore, we obtain the following
iterative method in matrix-vector notation:

Bhu
(n+1)
h = Bhu

(n)
h + τ (f

h
−Khu

(n)
h ),

which is a preconditioned Richardson method:

u
(n+1)
h = u

(n)
h + τ B−1

h (f
h
−Khu

(n)
h ).

Algorithm:

1. Compute rh = f
h
−Khu

(n)
h

2. Solve Bhwh = rh

3. Compute u
(n+1)
h = u

(n)
h + τ wh

Convergence analysis:

The Vh-coercivity of a is equivalent to:

µ1 (Bhvh, vh)`2 ≤ (Khvh, vh)`2

The Vh-boundedness of a is equivalent to:

(Khwh, vh)`2 ≤ µ2 (Bhwh, wh)
1/2
`2

(Bhvh, vh)
1/2
`2

for all vh, wh ∈ RNh

From Theorem 1.5 and its consequences it follows immediately that the method is q-linear
convergent with respect to the Bh-norm with a convergence factor

q =

√

1 −
(
µ1

µ2

)2

with optimal choice of the parameter

τ =
2µ1

µ2
2

.

Hence, the convergence rate is independent of h!

BUT: The step 2 is too expensive.

Remedy: Bh is replaced by a (symmetric and positive definite) matrix Ch, hence:

u
(n+1)
h = u

(n)
h + τ C−1

h (f
h
−Khu

(n)
h ) (1.6)
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Algorithm:

1. Compute rh = f
h
−Khu

(n)
h

2. Solve Chwh = rh

3. Compute u
(n+1)
h = u

(n)
h + τ wh

It is assumed that the linear system Chwh = rh is easy to solve.
One immediately obtains the following convergence result:

Theorem 1.8. Let Ch be a symmetric and positive definite matrix. Assume that constants
ν1 and ν2 exist with

ν1 (Chvh, vh)`2 ≤ (Khvh, vh)`2 for all vh ∈ RNh

and
(Khwh, vh)`2 ≤ ν2 (Chwh, wh)

1/2
`2

(Chvh, vh)
1/2
`2

for all vh, wh ∈ RNh

Then we have for the iterative method (1.6):

‖uh − u
(n+1)
h ‖Ch

≤ q ‖uh − u
(n)
h ‖Ch

with

q =

√

1 −
(
ν1

ν2

)2

for the choice

τ =
ν1

ν2
2

.

Discussion of the assumptions:

Vh-ellipticity:

ν1 (Chvh, vh)`2 ≤ (Khvh, vh)`2 = (Ksym
h vh, vh)`2 for all vh ∈ RNh (1.7)

i.e.:

ν1 Ch ≤ Ksym
h =

1

2
(Kh +KT

h ) or ν1 ≤ λmin(C
−1
h Ksym

h )

Vh-boundedness:

sup
06=vh∈R

Nh

(Khwh, vh)`2

(Chvh, vh)
1/2
`2

≤ ν2 (Chwh, wh)
1/2
`2

for all wh ∈ RNh

or, equivalently:

(C−1
h Khwh, Khwh)`2 ≤ ν2

2 (Chwh, wh)`2 for all wh ∈ RNh (1.8)

32



Proof.

sup
06=vh∈RNh

(Khwh, vh)`2

(Chvh, vh)
1/2
`2

= sup
06=vh∈RNh

(ChC
−1
h Khwh, vh)`2

(Chvh, vh)
1/2
`2

= sup
06=vh∈RNh

(C−1
h Khwh, vh)Ch

(vh, vh)
1/2
Ch

= ‖C−1
h Khwh‖Ch

= (ChC
−1
h Khwh, C

−1
h Khwh)

1/2
`2

= (C−1
h Khwh, Khwh)

1/2
`2

i.e.:
KT

h C
−1
h Kh ≤ ν2

2 Ch or λmax(C
−1
h KT

h C
−1
h Kh) ≤ ν2

2

If, in addition, a is symmetric, then Kh is symmetric and the conditions (1.7) and (1.8)
simplify to

ν1 Ch ≤ Kh ≤ ν2 Ch

and one obtains sharper bounds for the convergence rate:

Theorem 1.9. Let Ch be a symmetric and positive definite matrix. Assume that constants
ν1 > 0 and ν2 exist with

ν1 Ch ≤ Kh ≤ ν2 Ch.

Then we have for the iterative method (1.6):

‖uh − u
(n+1)
h ‖Ch

≤ q ‖uh − u
(n)
h ‖Ch

with

q =
ν2/ν1 − 1

ν2/ν1 + 1
= 1 − 2

ν2/ν1 + 1

for the parameter

τ =
2

ν1 + ν2

.

Remark: For ν1 = λmin(C
−1
h Kh) and ν2 = λmax(C

−1
h Kh) one obtains

q =
κ(C−1

h Kh) − 1

κ(C−1
h Kh) + 1

Hence: preconditioning!

Example: For the one-dimensional model problem, it was shown that

c1 h I ≤ Kh ≤ c2 h
−1 I,

so ν2/ν1 = O(h−2).
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Remark: From the error estimates of the Theorems 1.8 and 1.9 it immediately follows
that:

‖u(n)
h − uh‖Ch

≤ qn ‖u(0)
h − uh‖Ch

Therefore, the initial error is reduced by a prescribed factor ε > 0, if qn ≤ ε, hence, about

n =
− ln ε

− ln q

iterations are necessary. If ν2/ν1 � 1 it follows under the assumptions of Theorem 1.8:

n =
− ln ε

− ln q
=

− ln ε

− ln
√

1 − (ν1/ν2)2
≈ (−2 ln ε)

(
ν2

ν1

)2

,

under the assumptions of Theorem 1.9:

n =
− ln ε

− ln q
=

− ln ε

− ln(1 − 2/(ν2/ν1 + 1))
≈ 1

2
(− ln ε)

(
ν2

ν1
+ 1

)
.

1.5.2 Preconditioning

Let u
(n)
h be an approximation of the solution of the variational problem

a(uh, vh) = 〈F, vh〉 for all vh ∈ Vh.

Then the exact solution is given by

uh = u
(n)
h + wh,

if the correction wh is the solution of the residual equation

a(wh, vh) = 〈F, vh〉 − a(u
(n)
h , vh) for all vh ∈ Vh

Problem: Too expensive
Remedy: Approximate solution of the residual equation on a subspace or on several

subspaces:

subspace correction:

Let Wh ⊂ Vh. Consider the following variational problem: Find wh ∈ Wh such that

a(wh, vh) = 〈F, vh〉 − a(u
(n)
h , vh) for all vh ∈ Wh.

Typically corrections are calculated not only with respect to one subspace but with respect
to several subspaces Vh,s ⊂ Vh, s = 1, . . . , p with

∑

s

Vh,s = Vh.
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Example: Let {ϕi : i = 1, 2, . . . , Nh} be a basis of Vh. For the choice Vh,i = span(ϕi), one
obtains the following subspace correction equations for the corrections wh,i = wiϕi:

a(ϕi, ϕi)wi = 〈F, ϕi〉 − a(u
(n)
h , ϕi)

hence

Kiiwi = ri.

with

rh = (ri) = f
h
−Khu

(n).

In the following two possibilities are described how to construct a new approximate
solution from these corrections:

Additive Schwarz methods

One computes the corrections wh,s ∈ Vh,s for all subspaces always starting with the old

approximate solution u
(n)
h and sum up these corrections:

u
(n+1)
h = u

(n)
h + τ

∑

s

wh,s.

Example:

u
(n+1)
h = u

(n)
h + τ

∑

i

wiϕi

or in matrix-vector notation:

u
(n+1)
h = u

(n)
h + τ wh

with

Chwh = f
h
−Khu

(n)
h ,

where Ch = Dh = diag(Kh). This corresponds to one step of the Jacobi method, i.e.: the
preconditioned Richardson method with preconditioner Ch = Dh = diag(Kh).

Multiplicative Schwarz methods

After each correction one immediately updates the approximate solution, which is then
considered as old approximate solution for the next subspace correction:

u
(n+s/p)
h = u

(n+(s−1)/p)
h + wh,s

with

a(wh,s, vh) = 〈F, vh〉 − a(u
(n+(s−1)/p)
h , vh) for all vh ∈ Vh,s

for s = 1, 2, . . . , p.
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Example:

u
(n+i/Nh)
h = u

(n+(i−1)/Nh)
h + wiϕi

with

a(ϕi, ϕi)wi = 〈F, ϕi〉 − a(u
(n+(i−1)/Nh)
h , ϕi)

Hence

u(n+1) = u(n) +

Nh∑

i=1

wiϕi

with

a(ϕi, ϕi)wi = 〈F, ϕi〉 − a(u
(n+(i−1)/Nh)
h , ϕi) = 〈F, ϕi〉 − a(u

(n)
h +

i−1∑

j=1

wjϕj, ϕi)

= 〈F, ϕi〉 − a(u
(n)
h , ϕi) −

i−1∑

j=1

a(ϕj, ϕi)wj,

i.e.

u
(n+1)
h = u

(n)
h + wh,

where wh = (wi) is the solution of the linear system

i∑

j=1

Kijwj = ri for all i = 1, 2, . . . , Nh.

Hence

Chwh = f
h
−Khu

(n)
h

with

Ch =




K11 0 · · · 0

K21 K22
. . .

...
...

. . .
. . . 0

KNh,1 · · · · · · KNh,Nh




This corresponds to one step of the Gauß-Seidel method.

Remark: For the model problem it can be shown that

c1 h
2Dh ≤ Kh ≤ c2Dh

This implies for the Jacobi method: ν2/ν1 = O(h−2), which is no essential improvement
compared to the choice Ch = I. The same is true for the Gauß-Seidel method.
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Example: Multilevel preconditioner: Starting with an initial mesh of mesh size h1 a se-
quence of subdivisions Tl, l = 1, 2, . . . , L with mesh sizes hl = hl−1/2 is constructed by
successively subdividing each sub-interval in two sub-intervals of equal length. The corre-
sponding continuous piecewise linear basis functions are denoted by ϕl,i, i = 1, 2, . . . , Nl,
l = 1, 2, . . . , L. This induces a subdivision of Vh into one-dimensional subspaces

Vh =
L∑

l=1

Nl∑

i=1

Vl,i

with

Vl,i = span(ϕl,i).

The corresponding additive Schwarz method is called MDS method (multilevel diagonal
scaling). This methods corresponds to the Jacobi method, however, not only applied on
the finest mesh, but on the whole hierarchy of subdivisions.

Performing one step of the method requires the solution of N1 + N2 + · · ·NL = (2 −
2−(L−1))NL = O(NL) one-dimensional problems:

a(ϕl,i, ϕl,i)wl,i = 〈F, ϕl,i〉 − a(u
(n)
L , ϕl,i).

This can be done in O(NL) operations. For this one uses the fact that basis functions on
a mesh can be easily represented by the basis functions of the next finer grid:

ϕl−1,i =
1

2
ϕl,2i−1 + ϕl,2i +

1

2
ϕl,2i+1.

In summary, only O(NL) are required for one step of the iteration.

One step of the MDS method can formally be represented as one step of a preconditioned
Richardson method with some preconditioner Ch. For the model problem it can be shown
that constants ν1 > 0 and ν2 > 0 independent of L exist such that

ν1 Ch ≤ Kh ≤ ν2 Ch.

So the number of iterations in order to reduce the initial error by a prescribed factor ε is
independent of L.

Altogether one obtains a method of optimal complexity O(NL).

1.5.3 Krylov Subspace Methods

The preconditioned Richardson method can be accelerated by a so-called Krylov subspace
method.

First one the case Ch = I is considered. For simplicity we omit the subscript h and the
underlining of vectors.
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Krylov subspaces:

For the residuals of the Richardson method we have:

r(m) = f −Ku(m) = r(m−1) − τ Kr(m−1)

Hence
r(n−1) ∈ span(r(0), Kr(0), . . . , Kn−1r(0)) = Kn(K, r(0))

and, therefore,
u(n) ∈ u(0) + Kn(K, r(0)).

The space Kn(K, r(0)) is called the Krylov subspace.
Obviously, we also have

u(j) ∈ u(0) + Kn(K, r
(0)) for all j = 0, 1, . . . , n.

and
n∑

j=0

ωnju
(j) ∈ u(0) + Kn(K, r(0))

for all coefficients ωn0, ωn1, . . . , ωnn with
∑n

j=0 ωnj = 1.

Basic idea of an acceleration technique:

Starting from a sequence (u(n)) (here produced by the Richardson method) a one tries to
construct a new sequence (v(n)) with

v(n) =

n∑

j=0

ωnju
(j)

and proper coefficients ωn0, ωn1, . . . , ωnn with
∑n

j=0 ωnj = 1, which converges faster.

The discussion from above shows that we are looking for a sequence (v(n)) with

v(n) ∈ u(0) + Kn(K, r
(0))

Instead of determining coefficients ωnj we could directly search for iterates v(n) with

v(n) ∈ u(0) + Kn(K, r
(0))

which satisfy some selection rule like:

‖f −Kv(n)‖`2 = min
v∈u(0)+Kn(K,r(0))

‖f −Kv‖`2

Another selection rule is

(f −Kv(n), v)`2 = 0 for all v ∈ Kn(K, r(0)).
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For a symmetric and positive definite matrix K this can also be described as the following
selection rule:

J(v(n)) = min
v∈u(0)+Kn(K,r(0))

J(v).

The main task now is to find an efficient way to compute this sequence (v(n)).

Since in this discussion the original sequence (u(n)) completely disappeared, we will
from now on use (u(n)) to denote the new (accelerated) sequence of iterates instead of
(v(n)).

The CG method

Let K be symmetric and positive definite. Hence, u solves the system

Ku = f,

if and only if

J(u) = min
v
J(v) with J(v) =

1

2
(Kv, v)`2 − (f, v)`2.

The direction of the steepest descent with respect to the functional J is given by the
negative gradient of J . Here we have:

− grad J(v) = f −Kv

This motivates the so-called gradient method:

Initial settings r(0) = f −Ku(0). For n = 0, 1, 2, . . .:

p(n) = r(n),

u(n+1) = u(n) + α(n)p(n) with α(n) =
(r(n), p(n))`2

(Kp(n), p(n))`2

,

r(n+1) = r(n) − α(n)Kp(n).

The choice of α(n) guarantees (for each search direction p(n) not only for p(n) = r(n)) that

(r(n+1), p(n))`2 = 0. (1.9)

Hence it follows:

J(u(n+1)) = min
v∈u(n)+span(p(n))

J(v).

The search direction of the gradient method are the residuals. Successive search directions
(residuals) are (`2-)orthogonal.

The CG method uses this search direction only in the first step:
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initial settings r(0) = f −Ku(0). For n = 0, 1, 2, . . .:

p(n) =






r(0) for n = 0,

r(n) + β(n−1)p(n−1) with β(n−1) = − (r(n), Kp(n−1))`2

(Kp(n−1), p(n−1))`2

for n ≥ 1,

u(n+1) = u(n) + α(n)p(n) with α(n) =
(r(n), p(n))`2

(Kp(n), p(n))`2

,

r(n+1) = r(n) − α(n)Kp(n).

The choice of β(n−1) guarantees that successive search directions are conjugate, i.e. K-
orthogonal:

(Kp(n−1), p(n))`2 = (Kp(n−1), r(n) + β(n−1)p(n−1))`2

= (Kp(n−1), r(n))`2 + β(n−1) (Kp(n−1), p(n−1))`2 = 0, (1.10)

and that successive residuals are (`2-)orthogonal:

(r(n+1), r(n))`2 = (r(n+1), p(n) − β(n−1)p(n−1))`2

= −β(n−1)(r(n+1), p(n−1))`2 = −β(n−1)(r(n) − α(n)Kp(n), p(n−1))`2

= 0. (1.11)

The conditions (1.9), (1.10) and (1.11) are not only valid for successive indices, but we
have more generally:

Lemma 1.4. If r(n−1) 6= 0 then:

1. p(n−1) 6= 0

2. Kn(K, r(0)) = span(r(0), r(1), . . . , r(n−1)) = span(p(0), p(1), . . . , p(n−1)).

3. (Kp(n), p(j))`2 = 0 for all j = 0, 1, . . . , n− 1.

4. (r(n), p(j))`2 = 0 for all j = 0, 1, . . . , n− 1.

5. (r(n), r(j))`2 = 0 for all j = 0, 1, . . . , n− 1.

6. u(n) ∈ u(0) + Kn(K, r(0)) and

J(u(n)) = min
v∈u(0)+Kn(K,r(0))

J(v)

Proof. Induction with respect to to n.

n = 1 trivial.

n→ n + 1:
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Assume r(n) 6= 0.

r(n) = r(n−1) − α(n−1)Kp(n−1) ∈ Kn+1(K, r
(0)), hence

span(r(0), r(1), . . . , r(n)) ⊂ Kn+1(K, r
(0)).

Because of (r(n), p(j))`2 = 0 for all j = 0, 1, . . . , n− 1 it follows that r(n)⊥ Kn(K, r(0)) and,
therefore,

span(r(0), r(1), . . . , r(n)) = Kn+1(K, r
(0)).

Because of p(n) = r(n) − β(n−1)p(n−1) it immediately follows

span(p(0), p(1), . . . , p(n)) = Kn+1(K, r
(0))

and, therefore, p(n) 6= 0. This implies statements 1 and 2.

For j = n it was already shown that (r(n+1), p(j))`2 = 0. For j = 0, 1, . . . , n − 1 it follows
that

(r(n+1), p(j))`2 = (r(n) − α(n)Kp(n), p(j))`2 = (r(n), p(j))`2 − α(n)(Kp(n), p(j))`2 = 0.

So: r(n+1)⊥ Kn+1(K, r
(0)). This implies the statements 4, 5 and 6.

For j = n it was already shown that (Kp(n+1), p(j)) = 0. For j = 0, 1, . . . , n − 1 it follows
that

(Kp(n+1), p(j))`2 = (p(n+1), Kp(j))`2 = (r(n+1), Kp(j))`2 + β(n)(p(n), Kp(j))`2 = 0.

This implies statement 3.

Convergence analysis

From

J(v) =
1

2
‖v − u‖2

K − 1

2
‖u‖2

K

it follows that

‖u(n) − u‖K = min
v∈u(0)+Kn(K,r(0))

‖v − u‖K

We have:

v − u = u(0) + c1r
(0) + c2Kr

(0) + . . .+ cnK
n−1r(0) − u

= (u(0) − u) + c1K(u− u(0)) + c2K
2(u− u(0)) + . . .+ cnK

n(u− u(0))

= [I − c1K
1 − c2K

2 − . . .− cnK
n](u(0) − u)

= p(K)(u(0) − u)
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where p is a polynomial of degree ≤ n with p(0) = 1.
Let ei, i = 1, 2, . . . , n, be a complete system of eigenvectors of K with eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn. With
u(0) − u =

∑

i

αiei

it follows that
p(K)(u(0) − u) =

∑

i

αip(λi)ei

and, therefore,

‖p(K)(u(0) − u)‖2
K = (p(K)(u(0) − u), p(K)(u(0) − u))K =

∑

i

α2
iλip(λi)

2

≤ max
i
p(λi)

2
∑

i

λiα
2
i =

[
max

i
|p(λi)|

]2
‖u(0) − u‖2

K.

Hence

‖u(n) − u‖K ≤


 min

p polynomial
deg p≤n, p(0)=1

max
i

|p(λi)|


 ‖u(0) − u‖K.

Theorem 1.10. We have:

‖u(n) − u‖K ≤ 2qn

1 + q2n
‖u(0) − u‖K ≤ 2qn ‖u(0) − u‖K

with

q =

√
κ(K) − 1√
κ(K) + 1

.

Proof.
min

p polynomial
deg p≤n, p(0)=1

max
i

|p(λi)| ≤ min
p polynomial

deg p≤n, p(0)=1

max
λ∈[λ1,λn]

|p(λ)|

Let Tn be the n-th Chebychev polynomial:

Tn(x) =
1

2
[(x +

√
x2 − 1)n + (x−

√
x2 − 1)n]

For

p(λ) =
Tn((λn + λ1 − 2λ)/(λn − λ1))

Tn((λn + λ1)/(λn − λ1))

it follows that

max
λ∈[a,b]

|(p(λ)| =
1

Tn((λn + λ1)/(λn − λ1))
=

1

Tn((κ+ 1)/(κ− 1))
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with κ = λn/λ1.

κ+ 1

κ− 1
+

√(
κ+ 1

κ− 1

)2

− 1 =
κ+ 1 + 2

√
κ

κ− 1
=

√
κ+ 1√
κ− 1

and

κ+ 1

κ− 1
−
√(

κ+ 1

κ− 1

)2

− 1 =
κ + 1 − 2

√
κ

κ− 1
=

√
κ− 1√
κ+ 1

.

Hence
1

Tn((κ+ 1)/(κ− 1))
=

2

qn + q−n
=

2qn

1 + q2n
≤ 2qn

with

q =

√
κ− 1√
κ+ 1

.

Remark:

1. Because of

(r(n), p(n))`2 = (r(n), r(n) + β(n−1p(n−1))`2 = (r(n), r(n))`2

we also have the representation

α(n) =
(r(n), r(n))`2

(Kp(n), p(n))`2

.

2. Because of

(r(n), Kp(n−1))`2 = − 1

α(n−1)
(r(n), r(n) − r(n−1))`2 = − 1

α(n−1)
(r(n), r(n))`2

we also have the representation

β(n−1) =
(r(n), r(n))`2

(r(n−1), r(n−1))`2

.

PCG-method

By the substitutions (w, v)`2 → (w, v)C, K → C−1K and f → C−1f one obtains:

Initial settings s(0) = C−1(f −Ku(0)). For n = 0, 1, 2, . . .:

p(n) =






s(0) for n = 0,

s(n) + β(n−1)p(n−1) with β(n−1) =
(s(n), s(n))C

(s(n−1), s(n−1))C
for n ≥ 1,

u(n+1) = u(n) + α(n)p(n) with α(n) =
(s(n), s(n))C

(C−1Kp(n), p(n))C
,

s(n+1) = s(n) − α(n)C−1Kp(n).
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Hence:

Initial settings r(0) = f −Ku(0). For n = 0, 1, 2, . . .:

s(n) = C−1r(n)

p(n) =





s(0) for n = 0,

s(n) + β(n−1)p(n−1) with β(n−1) =
(r(n), s(n))`2

(r(n−1), s(n−1))`2

for n ≥ 1,

q(n) = Kp(n)

u(n+1) = u(n) + α(n)p(n) with α(n) =
(r(n), s(n))`2

(q(n), p(n))`2

,

r(n+1) = r(n) − α(n)q(n).

Symmetry:

(C−1Kv,w)C = (Kv,w)`2 = (v,Kw)`2 = (Cv, C−1Kw)`2 = (v, C−1Kw)C.

Energy functional:

1

2
(C−1Kv, v)C − (C−1f, v)C =

1

2
(CC−1Kv, v)`2 − (CC−1f, v)`2 =

1

2
(Kv, v)`2 − (f, v)`2.

Therefore, one immediately obtains the analogous convergence properties with the replace-
ment κ(K) → κ(C−1K).

GMRES

If K is symmetric and positive definite, the CG method produces a `2-orthogonal basis of
the Krylov subspace Kn(K, r(0)), namely the residuals: r(0), r(1), . . . , r(n−1).

A general method for constructing a `2-orthogonal basis of the Krylov subspaces
Kn(K, r(0)) is the so-called Arnoldi method:

v(1) = r(0)/‖r(0)‖`2,

w(i) = Kv(i),

w
(i)
⊥ = w(i) −

i∑

j=1

hji v
(j) with hji = (w(i), v(j)),

v(i+1) = w
(i)
⊥ /hi+1,i with hi+1,i = ‖w(i)

⊥ ‖`2.

Consider now the problem of finding an approximate solution

u(n) = u(0) +

n∑

i=1

yiv
(i) ∈ u(0) + Kn(K, r

(0))
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which minimizes the `2-norm of the residual:

‖f −Ku(n)‖`2 = min
v∈u(0)+Kn(K,r(0))

‖f −Kv‖`2.

We have:

hi+1,i v
(i+1) = Kv(i) −

i∑

j=1

hjiv
(j),

so

Kv(i) =
i+1∑

j=1

hji v
(j).

Hence

f −Ku(n) = r(0) −
n∑

i=1

yi

i+1∑

j=1

hji v
(j) = ‖r(0)‖`2 v

(1) −
n∑

i=1

yi

i+1∑

j=1

hji v
(j)

=

[
‖r(0)‖`2 −

n∑

i=1

h1iyi

]
v(1) −

n+1∑

j=2

[
n∑

i=j−1

hjiyi

]
v(j).

Therefore
‖f −Ku(n)‖ = ‖‖r(0)‖e1 −Hny

(n)‖
with

Hn =




h11 h12 · · · · · · h1n

h21 h22
. . .

...

0 h22
. . .

. . .
...

...
. . .

. . .
. . . hn−1,n

0 · · · 0 hn,n−1 hnn

0 · · · · · · 0 hn+1,n




e1 =




1
0
...
...
0
0




y(n) =




y1

y2
...
...
yn



.

By a sequence of simple orthogonal matrices (Givens rotations) H (n) can be transformed
to a triangular matrix:

Jn · · ·J2J1Hn =

(
Rn

0

)
.

This implies

∥∥‖r(0)‖`2 e1 −Hny
(n)
∥∥

`2
=

∥∥∥∥‖r(0)‖`2 Jn · · ·J2J1e1 −
(
Rny

(n)

0

)∥∥∥∥
`2

.

With the notation

s(n) = ‖r(0)‖`2 Jn · · ·J2J1e1 =

(
s̃(n)

s̃n+1

)
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one finally obtains:

min
v∈Kn(K,r(0))

‖f −Kv‖2
`2 = min

y∈Rn

∥∥‖r(0)‖`2 e1 −Hny
(n)
∥∥2

`2

= min
y∈Rn

∥∥∥∥‖r(0)‖`2 Jn · · ·J2J1e1 −
(
Rny

(n)

0

)∥∥∥∥
2

`2

= min
y

‖s̃(n) −Rny
(n)‖2

`2
+ |s̃n+1|2

= |s̃n+1|2

So, the minimal value of ‖f −Kv‖2
`2

can be computed by using Hn, the Givens rotations

J1, J2, . . . , Jn and s(n).

These quantities can be efficiently computed from the previous iteration step: First one
calculates the n-th column of Hn:

(h1n, h2n, . . . , hnn, hn+1,n)
T

The already constructed Givens rotations J1, J2, . . . , Jn−1 are applied to this column:

Jn−1 · · ·J2J1(h1n, h2n, . . . , hnn, hn+1,n)T

Subsequently, the Givens rotation Jn is constructed such that the (n+1)-th component of
this vector vanishes. Therefore, one obtains the n-th column of Rn:

(r1n, r2n, . . . , rnn, 0)T = JnJn−1 · · ·J2J1(h1n, h2n, . . . , hnn, hn+1,n)T

and

s(n) = Jns
(n−1).

If the minimal value falls below a prescribed bound, the solution of

Rny
(n) = s̃(n)

and the approximate solution

u(n) = u(0) +

n∑

i=1

y
(n)
i v(i).

are calculated.

Remark: Because of the large amount of storage for GMRES the method is usually
restarted after a fixed number m of steps: GMRES(m)
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1.6 Boundary Value Problems for Nonlinear Elliptic

Differential Equations

Classical formulation:

One-dimensional problems:

−
(
q1(x, u(x), u

′(x))
)′

+ q0(x, u(x), u
′(x)) = f(x) x ∈ (0, 1).

Special case linear problems:

q1(x, ξ0, ξ1) = a(x)ξ1, q0(x, ξ0, ξ1) = b(x)ξ1 + c(x)ξ0.

Higher dimensional problems:

−
d∑

i=1

∂

∂xi

(
qi(x, u(x), gradu(x))

)
+ q0(x, u(x), gradu(x)) = f(x) x ∈ Ω.

Special case linear problems:

qi(x, ξ0, ξ) =
d∑

j=1

aij(x)ξj, i = 1, . . . , n, q0(x, ξ0, ξ) =
d∑

j=1

bj(x)ξj + c(x)ξ0

with ξ = (ξ1, ξ2, . . . , ξd)
T .

With
q(x, ξ0, ξ) = (qi(x, ξ0, ξ))i=1,...,d

a compact representation of the differential equation is obtained:

− div
(
q(x, u(x), gradu(x))

)
+ q0(x, u(x), gradu(x)) = f(x).

For the linear case one obtains

q(x, ξ0, ξ) = A(x)ξ, q0(x, ξ0, ξ) = b(x) · ξ + c(x)ξ0.

Boundary conditions:

1. Dirichlet boundary conditions (boundary condition of the first kind):

u(x) = gD(x) x ∈ ΓD.

2. Neumann boundary conditions (boundary condition of the second kind):

q(x, u(x), gradu(x)) · n(x) = gN(x) x ∈ ΓN .
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Variational formulation

Let v be a test function with v(x) = 0 for x ∈ ΓD. Then one obtains from the classical
formulation:

Find u with u(x) = gD(x) for x ∈ ΓD such that

∫

Ω

[
q(x, u(x), gradu(x)) · grad v(x) + q0(x, u(x), gradu(x))v(x)

]
dx

=

∫

Ω

f(x)v(x) dx +

∫

ΓN

gN(x)v(x) ds

for all v with v(x) = 0 for x ∈ ΓD. Or, in short:

a(u, v) = 〈F, v〉.

IMPORTANT: a(w, v) is linear in v, but not necessarily linear in w. By

〈A(w), v〉 = a(w, v)

a nonlinear operator is defined. Then the problem can be written as an operator equation:

A(u) = F.

Function spaces

Problem: It is not trivial to show the operator is well-defined. Hilbert spaces are not
always appropriate, one needs proper Banach spaces, like, e.g., the Sobolev spaces

V = W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) |α| ≤ k}.

Under appropriate assumptions on a(x, ξ0, ξ) and a0(x, ξ0, ξ) it can be shown that a :
V × V −→ R and accordingly the nonlinear operators A : V −→ V ∗ are well-defined
(Nemyzki operators).

Properties of a and A:

As a possible generalization of the ellipticity (coerciveness) of bilinear forms and the cor-
responding linear operators the following concept is introduced:

Definition 1.1. Let V be a normed space and V ∗ its dual space. An operator A : V −→ V ∗

is called strongly monotone, if and only if there is a constant µ1 > 0 such that

〈A(w) − A(v), w − v〉 ≥ µ1 ‖w − v‖2 for all w, v ∈ V.

As a possible generalization of the boundedness (continuity) of bilinear forms and the
corresponding linear operators the following concept is introduced:
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Definition 1.2. Let V be a normed space and V ∗ its dual space. An operator A : V −→ V ∗

is called Lipschitz continuous, if and only if there is a constant µ2 > 0 such that

‖A(w) − A(v)‖ ≤ µ2 ‖w − v‖ for all w, v ∈ V.

Examples of strongly monotone and Lipschitz continuous operators: Let

q(x, ξ0, ξ) = α(‖ξ‖`2) ξ, q0(x, ξ0, ξ) ≡ 0.

For simplicity only the case of homogenous Dirichlet boundary conditions are discussed:
So we consider boundary value problems of the following form

− div
(
α(‖ gradu(x)‖`2) gradu(x)

)
= f(x) x ∈ Ω,

u(x) = 0 x ∈ Γ.

Special case (one-dimensional model problem):

−
(
α(|u′(x)|)u′(x)

)′
= f(x) x ∈ Ω,

u(x) = 0 x ∈ Γ.

We have:

Theorem 1.11. Let Ω ⊂ Rd be a bounded domain. Assume that the following properties
are satisfied for the function α : [0,∞) −→ R:

1. α is continuous.

2. There is a constant M > 0 with

|α(t)| ≤M for all t ≥ 0.

Then the operator A : V −→ V ∗ is well-defined for V = H1(Ω). Additionally, we have

1. If there is a constant M with

|α(t)t− α(s)s| ≤M |t− s| for all s, t ≥ 0,

then A is Lipschitz continuous in H1(Ω).

2. If there is a constants m > 0 with

α(t)t− α(s)s ≥ m(t− s) for all t ≥ s,

then A is strongly monotone in H1
0 (Ω).
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Proof. α(‖ gradu(.)‖`2) is measurable. Since α is bounded we have

‖α(‖ gradu(.)‖`2) gradu(.)‖2
0 =

∫

Ω

|α(‖ gradu(x)‖`2)|2‖ gradu(x)‖2
`2
dx

≤ M2

∫

Ω

‖ gradu(x)‖2
`2
dx <∞.

So: α(‖ gradu(.)‖`2) gradu(.) ∈ [L2(Ω)]d, which implies that
∫

Ω

α(‖ gradu(x)‖`2) gradu(x) · grad v(x) dx

is well-defined.
We have

|〈A(w) − A(v), u〉|

= |
∫

Ω

(
α(‖ gradw(x)‖`2) gradw(x) − α(‖ grad v(x)‖`2) grad v(x)

)
· gradu(x) dx|

= |
∫

Ω

(
α(‖ gradw(x)‖`2)

(
gradw(x) − grad v(x)

))
· gradu(x) dx

+

∫

Ω

(
α(‖ gradw(x)‖`2) − α(‖ grad v(x)‖`2)

)
grad v(x) · gradu(x) dx|

≤ M ‖ gradw − grad v‖0 ‖ gradu‖0

+

∫

Ω

∣∣∣α(‖ gradw(x)‖`2) − α(‖ grad v(x)‖`2)
∣∣∣‖ grad v(x)‖`2 ‖ gradu(x)‖`2 dx

= M ‖ gradw − grad v‖0 ‖ gradu‖0

+

∫

Ω

∣∣∣α(‖ gradw(x)‖`2)‖ grad v(x)‖`2 − α(‖ grad v(x)‖`2)‖ grad v(x)‖`2

∣∣∣

‖ gradu(x)‖`2 dx

= M ‖ gradw − grad v‖0 ‖ gradu‖0

+

∫

Ω

∣∣∣α(‖ gradw(x)‖`2)‖ gradw(x)‖`2 − α(‖ grad v(x)‖`2)‖ grad v(x)‖`2

+ α(‖ gradw(x)‖`2)
(
‖ grad v(x)‖`2 − ‖ gradw(x)‖`2

)∣∣∣ ‖ gradu(x)‖`2 dx

≤ M ‖ gradw − grad v‖0 ‖ gradu‖0

+ 2M

∫

Ω

∣∣∣‖ grad v(x)‖`2 − ‖ gradw(x)‖`2

∣∣∣ ‖ gradu(x)‖`2 dx

≤ M ‖ gradw − grad v‖0 ‖ gradu‖0

+ 2M

∫

Ω

‖ grad v(x) − gradw(x)‖`2 ‖ gradu(x)‖`2 dx

≤ 3M ‖ gradw − grad v‖0 ‖ gradu‖0 = 3M |w − v|1 |u|1 ≤ 3M ‖w − v‖1 ‖u‖1.

Hence

‖A(w) − A(v)‖ = sup
u6=0

|〈A(w) − A(v), u〉|
‖u‖1

≤ 3M ‖w − v‖1.
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With
α(t) = m+ α2(t)

it follows that
α2(t)t− α2(s)s ≥ 0 for all s, t ≥ 0.

So

〈A(w) − A(v), w − v〉

=

∫

Ω

(
α(‖ gradw(x)‖`2) gradw(x) − α(‖ grad v(x)‖`2) grad v(x)

)

·
(
gradw(x) − grad v(x)

)
dx

= m

∫

Ω

‖ gradw(x) − grad v(x)‖2
`2 dx

+

∫

Ω

(
α2(‖ gradw(x)‖`2) gradw(x) − α2(‖ grad v(x)‖`2) grad v(x)

)

·
(
gradw(x) − grad v(x)

)
dx

≥ m

∫

Ω

‖ grad(w(x) − v(x))‖2
`2
dx

+

∫

Ω

(
α2(‖ gradw(x)‖`2)

(
‖ gradw(x)‖2

`2 − ‖ gradw(x)‖`2‖ grad v(x)‖`2

)

+ α2(‖ grad v(x)‖`2)
(
‖ grad v(x)‖2

`2
− ‖ gradw(x)‖`2‖ grad v(x)‖`2

))
dx

= m

∫

Ω

‖ grad(w(x) − v(x))‖2
`2
dx

+

∫

Ω

(
α2(‖ gradw(x)‖`2)‖ gradw(x)‖`2 − α(‖ grad v(x)‖`2)‖ grad v(x)‖`2

)

(
‖ gradw(x)‖`2 − ‖ grad v(x)‖`2

)
dx

≥ m

∫

Ω

‖ grad(w(x) − v(x))‖2
`2
dx = m |w − v|21 ≥

m

c2F + 1
‖w − v‖2

1.

The Lax-Milgram Theorem

Theorem 1.12 (Lax-Milgram). Let V be a Hilbert space, F ∈ V ∗ and A : V −→ V ∗ a
strongly monotone and Lipschitz continuous operator. Then there exists a unique solution
u ∈ V of the equation A(u) = F .

Proof. Let J : V ∗ −→ V denote the Riesz isomorphism. With Ã(u) = JA(u) and f̃ = JF
one obtains the equivalent problem:

Ã(u) = f̃ ,
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which can also be written in fixed point form

u = u− τ (Ã(u) − f̃) ≡ Kτ (u) + gτ .

In the following it will be shown that Kτ is contractive for a proper choice of τ :

‖Kτ (w) −Kτ (v)‖2 = (Kτ (w) −Kτ (v), Kτ(w) −Kτ (v))

= ((w − v) − τ (Ã(w) − Ã(v)), (w − v) − τ (Ã(w) − Ã(v)))

= (w − v, w − v) − 2τ (Ã(w) − Ã(v), w − v)

+ τ 2 (Ã(w) − Ã(v), Ã(w) − Ã(v))

= ‖w − v‖2 − 2τ 〈A(w) − A(v), w − v〉 + τ 2 ‖A(w) − A(v)‖2

≤ (1 − 2µ1τ + µ2
2τ

2)‖w − v‖2.

The rest follows like in the linear case.

Discretization:

Same construction:

a(gh +

Nh∑

j=1

ujϕj, ϕi) = 〈F, ϕi〉 for all i = 1, 2, . . . , Nh.

Hence
Kh(uh) = f

h

with the nonlinear map Kh : RNh −→ RNh, given by

Kh(wh) = (Ki(wh))i=1,2,...,Nh
with Ki(wh) = a(gh +

Nh∑

j=1

wjϕj, ϕi)

Remark: In the linear (homogenous) case we have:

Kh(wh) = Khwh.

Iterative methods:

From the constructive proof of the Lax-Milgram Theorem we obtain the following fixed
point iteration:

u
(n+1)
h = u

(n)
h + τ B−1

h (f
h
−Kh(u

(n)
h )),

which converges q-linear with convergence rate q =
√

1 − (µ1/µ2)2.
More generally, we consider iterative methods of the form:

u
(n+1)
h = u

(n)
h + τ C−1

h (f
h
−Kh(u

(n)
h )).
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In the following, we use the simplified notation:

u(n+1) = u(n) + τ C−1(f −K(u(n))).

The conditions

(K(w) −K(v), w − v)`2 ≥ ν1(C[w − v], w − v)`2

and
(C−1[K(w) −K(v)], K(w) −K(v))

1/2
`2

≤ ν2 (C[w − v], w − v)
1/2
`2

guarantee the q-linear convergence with convergence rate q =
√

1 − (ν1/ν2)2 by the Lax-
Milgram Theorem.

In the neighborhood of the exact solution u we have:

K(w) −K(v) ≈ K ′(u)[(w − u) − (v − u)] = K ′(u)[w − v].

This motivates the choice C = K ′(u), which guarantees that ν1 ≈ 1 and ν2 ≈ 1 and,
consequently, q ≈ 0 (super-linear convergence).

However, the exact solution u is not available.
Remedy: Preconditioner C or, more generally, a variable preconditioner Cn, which

approximates K ′(u) well:

u(n+1) = u(n) + τ C−1
n (f −K(u(n))).

Important examples:
C = K ′(u(0)), τ = 1: simplified Newton method:

u(n+1) = u(n) +K ′(u(0))−1(f −K(u(n))).

Cn = K ′(u(n)), τ = 1: Newton’s method.

u(n+1) = u(n) +K ′(u(n))−1(f −K(u(n))).

With F (u) = K(u) − f the equation reads F (u) = 0 and Newton’s method has the form:

u(n+1) = u(n) − F ′(u(n))−1F (u(n)).

1.6.1 Newton’s method

Algorithm:

1. Compute r = f −K(u(n)) and the Jacobian matrix Cn = K ′(u(n)).

2. Solve Cnw = r.

3. Compute u(n+1) = u(n) + w.
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In order to apply the Lax-Milgram Theorem (in the case of a fixed preconditioner), the
preconditioner would have to be symmetric and positive definite, a condition, which is too
restrictive in many cases. Convergence analysis can also be done without this restriction:

Theorem 1.13 (Local convergence of Newton’s method). Let F : D −→ V , D ⊂ V
open, be differentiable in D and let u ∈ D be a zero of F with non-singular Jacobian F ′(u).
Then we have:

1. If F ′ is continuous at u, then Newton’s method

u(n+1) = u(n) − F ′(u(n))−1F (u(n))

converges locally and q-super-linearly.

2. If there is a constant ω with

‖F ′(u)−1
(
F ′(v) − F ′(u)

)
‖ ≤ ω ‖v − u‖ for all v ∈ D, (1.12)

then Newton’s method converges q-quadratically.

Proof. For
G(v) = v − F ′(v)−1F (v)

we have

G(v) − u = v − F ′(v)−1F (v) − u

= F ′(v)−1
[
F (u) − F (v) − F ′(v)(u− v)

]

=

∫ 1

0

F ′(v)−1
[
F ′(v + t(u− v)) − F ′(v)

]
(u− v) dt.

Since F ′ is continuous at the point u, the q-super-linear convergence follows.
From

F ′(v)−1F ′(u) =
[
I −

(
I − F ′(u)−1F ′(v)

)]−1

it follows

‖F ′(v)−1F ′(u)‖ ≤ 1

1 − ω ‖v − u‖ .

From

F ′(u)−1
[
F ′(v + t(u− v)) − F ′(v)

]

= F ′(u)−1
[
F ′(v + t(u− v)) − F ′(u)

]
− F ′(u)−1

[
F ′(v) − F ′(u)

]

it follows
‖F ′(u)−1

[
F ′(v + t(u− v)) − F ′(v)

]
‖ ≤ ω(2 − t)‖v − u‖.

Therefore

‖G(v) − u‖ ≤ 3ω ‖v − u‖2

2(1 − ω ‖v − u‖) ,

which immediately implies the q-quadratic convergence.
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Computation of the Jacobian matrix

Starting point:

K ′(u)w = lim
t→0

1

t

(
K(u+ tw) −K(u)

)

So

[K ′(u)w]i = lim
t→0

1

t

(
[K(u+ tw)]i − [K(u)]i

)

= lim
t→0

1

t

(
a(u+ tw, ϕi) − a(u, ϕi)

)

= lim
t→0

1

t
〈A(u+ tw) − A(u), ϕi〉 = 〈A′(u)w, ϕi〉 = a′(u)(w, ϕi)

=
∑

j

a′(u)(ϕj, ϕi)wj

with w(x) =
∑

i wiϕi(x).
Here, A′(u) is the (Gâteaux-)derivative of the nonlinear operators A : V −→ V ∗ at the

point u: A′(u) : V −→ V ∗ with corresponding bilinear form a′(u).
So: The Jacobian matrix K ′(u) of the nonlinear function K : RN −→ RN is obtained

as stiffness matrix associated to that bilinear form a′(u), which is obtained by linearizing
a at the point u:

K ′(u)ij = a′(u)(ϕj, ϕi).

Example: For the one-dimensional model problem we obtain

a(u, w) =

∫

Ω

α(|u′(x)|)u′(x)w′(x) dx.

Hence

lim
t→0

1

t

(
a(u+ tw, ϕ) − a(u, ϕ)

)

= lim
t→0

1

t

∫

Ω

[
α(±u′(x) ± tw′(x))

(
u(x) + tw(x)

)′ − α(±u′(x))u′(x)
]
ϕ′(x) dx

= lim
t→0

1

t

∫

Ω

[(
α(±u′(x)) ± tα′(±u′(x))w′(x)

)(
u′(x) + tw′(x)

)
− α(±u′(x))u′(x)

]
ϕ′(x) dx

=

∫

Ω

(
α(|u′(x)|) + α′(|u′(x)|)|u′(x)|

)
w′(x)ϕ′(x) dx = 〈A′(u)w, ϕ〉 = a′(u)(w, ϕ).

If, for an arbitrary u, the ã(u) : V × V −→ R is defined by

ã(u)(w, ϕ) =

∫

Ω

α(|u′(x)|)w′(x)ϕ′(x) dx,

then, of course,
a(u, ϕ) = ã(u)(u, ϕ).
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Therefore
Kh(uh) = K̃h(uh)uh,

where K̃h(uh) denotes the stiffness matrix with respect tot the bilinear form ã(uh):

K̃i,j = ã(uh)(ϕj, ϕi).

This type of representation is called a quasi-linear form.

Remark: In the quasi-linear case the following alternative to Newton’s method is available:

Cn = K̃h(u
(n)
h ).

The computation of the next iterate reduces to solving the linear system

K̃h(u
(n)
h )u(n+1) = f

h

by using Kh(u
(n)
h ) = K̃h(u

(n)
h )u

(n)
h . This technique is called linearization by freezing the

coefficients. In comparison with Newton’s method one omits that term, which contains
the derivative α′.

Concluding remarks to FEM:

h-FEM, p-FEM, hp-FEM.

1.7 Finite Difference Methods

Starting point of the Finite Difference Method (FDM) is the classical formulation. The
method will be explained for the example of a two-dimensional linear boundary value
problem

− div(A(x) gradu(x)) + b(x) · gradu(x) + c(x)u(x) = f(x) x ∈ Ω,

u(x) = gD(x) x ∈ ΓD,

A(x) grad u(x) · n(x) = gN(x) x ∈ ΓN .

Firstly, we select two families of straight lines, which are parallel to the x-axis and the
y-axis, respectively. By intersection we obtain grid points in the interior of Ω (Ωh) and
boundary grid points (Γh = ΓDh ∪ ΓNh).

In each grid point x ∈ Ωh the derivatives appearing in the differential equations are
replaced by finite difference approximations. Analogously, in each boundary grid point
x ∈ Γh the derivatives involved in the Neumann boundary condition are discretized. We
obtain a system of difference equations, which defines the approximation uh(x) of the exact
solution in the grid points x ∈ Ωh ∪ Γh. Hence the approximation uh is considered as a
function defined on Ωh ∪ Γh (grid function). If the differential equation and the Neumann

56



boundary conditions are discretized in some grid point x, only x and a few neighboring
grid points appear in the difference equations. The set of these few involved grid points
are collected in some set Sh(x) (stencil). In the linear case the difference equations are of
the following form:

∑

ξ∈Sh(x)

kh(x, ξ)uh(ξ) = fh(x) x ∈ Ωh ∪ ΓNh,

uh(x) = gD(x) x ∈ ΓDh.

After elimination of the unknowns which are given by Dirichlet boundary conditions a
system of linear equations results

Khuh = f
h

for the vector uh of the approximations in the remaining grid points.

Advantages (compared to FEM):

• Simple generation of the grid (except for boundary grid points in the case of complex
geometries)

• Simple assembling of and simple access to the discretization matrix

• Under appropriate conditions on the difference approximations (which are relatively
easy to satisfy) ) stability and convergence with respect to the supremum norm can
be guaranteed.

Disadvantages (compared to FEM):

• Geometrically less flexible.

• Local refinements have global impact (additional grid points appear far away).

• Properties of the continuous problem (like e.g. symmetry or coerciveness) do not
always carry over to the discretized problem.

The notion of monotonicity is of essential importance for FDM, if analyzing the methods
in the supremum norm:

Definition 1.3. A finite difference method is called monotone, if

1. kh(x, x) > 0 for all x ∈ Ωh ∪ ΓNh and

2. kh(x, ξ) < 0 for all x ∈ Ωh ∪ ΓNh and all ξ ∈ Sh(x) with ξ 6= x and

3.
∑

ξ∈Sh(x) kh(x, ξ) ≥ 0 for all x ∈ Ωh ∪ ΓNh.
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Example: Consider the differential equation

−u′′(x) + b(x)u′(x) = f(x).

On an equidistant grid central difference approximations can be used:

1

h2
(−ui−1 + 2ui − ui+1) + b(xi)

1

2h
(ui+1 − ui−1) = f(xi).

so

−
[

1

h2
+ b(xi)

1

2h

]
ui−1 +

[
1

h2

]
ui −

[
1

h2
− b(xi)

1

2h

]
ui+1 = f(xi)

This FDM is monotone only if h is small enough:

|b(xi)|h < 2

However, if upwind differencing is used for the first order term, i.e.:

b(xi)u
′(xi) ≈





b(xi)
1

h
(ui − ui−1) for b(xi) > 0

b(xi)
1

h
(ui+1 − ui) for b(xi) ≤ 0

=
1

h

[
−b(xi)

+ui−1 + |b(xi)|ui + b(xi)
−ui+1

]

the resulting FDM is always monotone:

−
[

1

h2
+ b(xi)

+ 1

h

]
ui−1 +

[
1

h2
+ |b(xi)|

1

h

]
ui −

[
1

h2
− b(xi)

− 1

h

]
ui+1 = f(xi).

(Notation: b+ = max(b, 0), b− = min(b, 0), observe b = b+ + b− and |b| = b+ − b+.)

A comment on the convergence analysis:

A difference equation for the error eh(x) = uh(x) − u(x) can easily be derived:

∑

ξ∈Sh(x)

kh(x, ξ)eh(ξ) = fh(x) −
∑

ξ∈Sh(x)

kh(x, ξ)u(ξ) x ∈ Ωh ∪ ΓNh

eh(x) = 0 x ∈ ΓDh.

In short in matrix-vector notation:

Kheh = ψ
h
.

Hence
‖eh‖∞ ≤ CS‖ψh

‖∞ with ‖K−1
h ‖∞ ≤ CS.
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So, on the one hand the so-called consistency error

ψh(x) = fh(x) −
∑

ξ∈Sh(x)

kh(x, ξ)u(ξ)

has to be analyzed (e.g., by Taylor expansion for sufficiently smooth solutions).
On the other hand, it has to be shown that

max
x∈Ωh∪ΓNh

|eh(x)| ≤ CS max
x∈Ωh∪ΓNh

|ψh(x)|.

(Ch–Ch stability). For monotone FDMs a stability constant CS can be determined rela-
tively easily.

Consistency and stability then imply convergence.

Remark: Background: discrete maximum principle, monotone FDMs imply the following
properties of the discretization matrices Kh = K under weak conditions:

1. Kii > 0.

2. Kij ≤ 0 for i 6= j.

3. K−1 ≥ 0 (element-wise).

(M -matrices).

1.8 Finite Volume Methods

Starting point for a finite volume method (FVM) is a balance law derived from the differ-
ential equation. For a differential equation

− div
(
q(x, u(x), gradu(x))

)
= f(x) x ∈ Ω

the associated balance law is obtained by first integrating over some domain ω ⊂ Ω and
then using Gauss’ Theorem:

−
∫

∂ω

q(x, u(x), gradu(x)) · n(x) ds =

∫

ω

f(x) dx for all ω ⊂ Ω.

The vector-valued function q is called the flux and right hand side f is called the source
term.

Let Oh = {Ωk : k = 1, 2, . . .} be a subdivision of the domain Ω in polygonal sub-domains
(cells, control volumes, finite volumes). We have

−
∫

∂Ωk

q(x, u(x), gradu(x)) · nk(x) ds =

∫

Ωk

f(x) dx for all k = 1, 2, . . .
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or

−
∑

j∈N(k)

∫

Γkj

q(x, u(x), gradu(x)) · nkj(x) ds =

∫

Ωk

f(x) dx for all k = 1, 2, . . .

where Γkj denotes the common edge, shared by Ωk and a neighboring sub-domain Ωj,
j ∈ N(k).

For a finite volume method the integrals on the left hand side, which can be interpreted
as the total flux through an edge of the control volume, are approximated by a so-called
numerical flux (in dependence of the chosen degrees of freedom):

gkj ≈ − 1

|Γkj|

∫

Γkj

q(x, u(x), gradu(x)) · nkj ds.

It is reasonable to assume that

gkj = −gjk.

For edges on the boundary of the domain approximations of the fluxes follow from the
boundary conditions. The integral over the source term is also approximated (e.g. by some
quadrature rule):

fk ≈ 1

|Ωk|

∫

Ωk

f(x) dx.

Then the following typical form of a discretized balance law is obtained:

∑

j∈N(k)

gkj |Γkj| = fk |Ωk| for k = 1, 2, . . . ,

construction of the subdivision Oh:

Starting from a (primary) grid Th = {T1, T2, . . .} in triangles two different methods of
construction the (secondary) grid Oh = {Ω1,Ω2, . . .} will be discussed:

• Voronoi diagrams (for the case of non-obtuse triangles):

In each node xi a polygonal control volume Ωi is constructed by perpendicular bisec-
tion of each edge containing the node xi.

• Donald diagrams:

In each node xi a polygonal control volume Ωi is constructed by connecting the
midpoints of all edges containing the node xi and the center of gravity of all triangles
Tk containing the node xi.

FVMs are usually constructed either in the spirit of FDMs or in the spirits of FEMs.
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An example of a FVM: approximation by quadrature rule and finite differencing

Special case q = gradu:

Secondary grid: Voronoi diagram

Degrees of freedom in the nodes of the triangles of the primary grid (cell-centered).

− 1

|Γkj|

∫

Γkj

∂u(x)

∂nkj
ds ≈ −∂u(x)

∂nkj

∣∣∣
mkj

≈ 1

‖xk − xj‖
(uk − uj) = gkj

Sign condition of an M -matrix is fulfilled.

An example of a FVM: the box method

Let Th be a subdivision of the domain Ω in triangles, the construction of the subdivision
in control volumes are done either by Voronoi diagrams or Donald diagrams. Let Ωi by
the control volume associated with the node xi. For the approximation uh piecewise linear
and continuous functions are used (Courant element):

uh ∈ Vh = span(ϕi : i = 1, 2, . . . , Nh)

Requirement

−
∫

∂Ωi

q(x, uh(x), graduh(x)) · ni(x) ds =

∫

Ωi

f(x) dx for i = 1, 2, . . . , Nh.

Let χi = χΩi
be the characteristic function of the set Ωi for i = 1, 2, . . . , Nh. For

vh ∈ Wh = {
Nh∑

i=1

viχi : vi ∈ R}

it follows:

−
Nh∑

i=1

∫

∂Ωi

(
q(x, uh(x), graduh(x)) · ni(x)

)
vh(x) ds =

∫

Ω

f(x)vh(x) dx.

Hence: Find uh ∈ Vh such that

ah(uh, vh) = 〈F, vh〉 for all vh ∈ Wh

with

ah(w, v) = −
Nh∑

i=1

∫

∂Ωi

(
q(x, w(x), gradw(x)) · ni(x)

)
v(x) ds.
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Remark: Let v be a test function. Then the following variational problem can be derived:

−
∫

Ω

div
(
q(x, u(x), gradu(x))

)
v(x) dx

= −
Nh∑

i=1

∫

Ωi

div
(
q(x, u(x), gradu(x))

)
v(x) dx

= −
Nh∑

i=1

∫

∂Ωi

q(x, u(x), gradu(x)) · ni(x)v(x) ds

+

Nh∑

i=1

∫

Ωi

q(x, u(x), gradu(x)) · grad v(x) dx =

∫

Ω

f(x)v(x) dx,

i.e.:
ah(u, v) = 〈F, v〉

with

ah(w, u) = = −
Nh∑

i=1

∫

∂Ωi

q(x, u(x), gradu(x)) · ni(x)v(x) ds

+

Nh∑

i=1

∫

Ωi

q(x, u(x), gradu(x)) · grad v(x) dx,

〈F, v〉 =

∫

Ω

f(x)v(x) dx

The box method discussed above is obtained from this variational setting by choosing
piecewise linear and continuous trial functions uh and piecewise constant (and, therefore,
discontinuous test functions vh. This is an example of a so-called Petrov-Galerkin method,
for which the trial space Vh and the test space Wh are different.

Another approach based on this variational setting is to use also discontinuous trial
functions. This leads to the so-called discontinuous Galerkin methods.
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Chapter 2

Parabolic Differential Equations

2.1 Initial-Boundary Value Problems for Parabolic Dif-

ferential Equations

Classical formulation:

Let QT = Ω × (0, T ) (space-time cylinder). We consider the following problem:

Find u : QT −→ R such that the differential equation

∂u

∂t
(x, t) + Lu(x, t) = f(x, t) (x, t) ∈ QT

where

Lv(x) = − div(A(x) grad v(x)) + b(x) · grad v(x) + c(x)v(x)

and the boundary conditions

u(x, t) = gD(x, t) (x, t) ∈ ΓD × (0, T ),

A(x) grad u(x, t) · n(x) = gN(x, t) (x, t) ∈ ΓN × (0, T )

and the initial condition

u(x, 0) = u0(x) x ∈ Ω

are satisfied.

Special case heat equation:

∂u

∂t
(x, t) − ∆u(x, t) = f(x, t).
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Model problem:

ut(x, t) − uxx(x, t) = f(x, t) x ∈ (0, 1),

u(0, t) = 0,

u(1, t) = 0,

u(x, 0) = u0(x) x ∈ [0, 1]

Variational formulation:

For the model problem one obtains analogously to th elliptic case:
Find u : [0, 1] −→ H1

0 (0, 1) such that

∫ 1

0

ut(x, t)v(x) dx+

∫ 1

0

ux(x, t)vx(x) dx =

∫ 1

0

f(x, t)v(x) dx

for all v ∈ V = H1
0 (0, 1).

Generally: Find u : [0, T ] −→ V such that

(u′(t), v)H + a(u(t), v) = 〈F (t), v〉 for all v ∈ V

and the initial condition
u(0) = u0.

Notation: u(t)(x) = u(x, t) and u′(t)(x) = ut(x, t), ordinary differential equation in Banach
space. In addition to the Hilbert space V = H1

0 (Ω) also the Hilbert space H = L2(Ω) (scalar
product (., .)H = (., .)0) is involved.

Function spaces:

X = L2((0, T ), V ), X∗ = (L2((0, T ), V ))
∗

= L2((0, T ), V ∗).

‖v‖X =

(∫ T

0

‖v(t)‖2
V dt

)1/2

, ‖w‖X∗ =

(∫ T

0

‖w(t)‖2
V ∗ dt

)1/2

.

Generalized derivative u′: Motivation: For ϕ ∈ C∞
0 (0, T ) it follows for classical derivatives:

∫ T

0

ϕ(t)

∫

Ω

ut(x, t)v(x) dx dt =

∫ T

0

ϕ(t)
d

dt

[∫

Ω

u(x, t)v(x) dx

]
dt

= −
∫ T

0

ϕ′(t)

∫

Ω

u(x, t)v(x) dx dt.

For the function u′(t) : v 7→
∫

Ω

ut(x, t)v(x) dx, hence u′(t) ∈ V ∗, we have:

∫ T

0

ϕ(t)〈u′(t), v〉 dt = −
∫ T

0

ϕ′(t)(u(t), v)H dt for all v ∈ V, ϕ ∈ C∞
0 (0, T ).
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Definition 2.1. Let u ∈ L2((0, T ), V ). A function w ∈ L2((0, T ), V ∗) is called generalized
derivative if and only if

∫ T

0

ϕ(t)w(t) dt = −
∫ T

0

ϕ′(t)u(t) dt for all ϕ ∈ C∞
0 (0, T ).

Here, u(t) is to be interpreted as the functional v 7→ (u(t), v)H. Herewith H = L2(Ω)
is identified with H∗. Integral: Bochner integral: generalization of the Lebesgue integral.

Notation w = u′ (uniqueness).
Assumptions on V and H:

V ⊂ H, V dense in H, ‖v‖H ≤ c ‖v‖V .

Then we have:
V ⊂ H ≡ H∗ ⊂ V ∗.

Definition 2.2. H1((0, T ), V ;H) = {v ∈ L2((0, T ), V ) : v′ ∈ L2((0, T ), V ∗)}. ‖v‖2
1 =

‖v‖2
X + ‖v′‖2

X∗.

Theorem 2.1. H1((0, T ), V ;H) ⊂ C([0, T ], H). There is a constant c with

max
t∈[0,T ]

‖v(t)‖H ≤ c ‖v‖1.

This justifies the notation u(t), in particular u(0).

Final formulation:

Find u ∈ X = L2((0, T ), V ) with

u′ ∈ X∗ = L2((0, T ), V ∗),

such that

〈u′(t), v〉 + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0.

So:

u′(t) + Au(t) = F (t),

u(0) = u0.

We have:
∫ T

0

ϕ(t)〈u′(t), v〉 dt = −
∫ T

0

ϕ′(t)(u(t), v)H dt

=

∫ T

0

ϕ(t)
d

dt
(u(t), v)H dt for all v ∈ V, ϕ ∈ C∞

0 (0, T )
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and, therefore:

〈u′(t), v〉 =
d

dt
(u(t), v)H.

Hence:

d

dt
(u(t), v)H + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0.

It is easy to show that the solution is unique:

Lemma 2.1. Assume that there is a constant µ1 ≥ 0 with

a(v, v) ≥ µ1 ‖v‖2
V for all v ∈ V.

Then there exists at most one solution of the initial value problem

〈u′(t), v〉 + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0.

Proof. Assume that u1(t) and u2(t) are solutions of the initial value problem. Then u(t) =
u2(t) − u1(t) is a solution of the initial value problem

〈u′(t), v〉 + a(u(t), v) = 0 for all v ∈ V,

u(0) = 0.

Now we have

d

dt

[
1

2
‖u(t)‖2

H

]
= 〈u′(t), u(t)〉 = −a(u(t), u(t))

≤ −µ1 ‖u(t)‖2
V ≤ −µ1c

−2 ‖u(t)‖2
H.

Hence
d

dt
‖u(t)‖H + µ1c

−2 ‖u(t)‖H ≤ 0.

Therefore,
d

dt

(
eµ1 t/c2‖u(t)‖H

)
≤ 0.

It follows by integrating:

‖u(t)‖H ≤ e−µ1 t/c2‖u(0)‖H = 0.

So: u(t) = 0.

Remark: Observe that uniqueness follows also for µ1 = 0.

66



The following so-called a-priori estimates are an important part of the existence proof:

Lemma 2.2. Assume that there exist constants µ2 ≥ µ1 > 0 with

a(v, v) ≥ µ1 ‖v‖2
V for all v ∈ V

and
|a(w, v)| ≤ µ2 ‖w‖V ‖v‖V for all v, w ∈ V.

Let u ∈ X be a solution of the initial value problem

〈u′(t), v〉 + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0.

Then there are constants C1, C2 and C3, only depending on µ1, µ2, ‖u0‖H and ‖F‖X∗,
such that:

‖u‖X ≤ C1, ‖Au‖X∗ ≤ C2, ‖u(t)‖H ≤ C3.

Proof. We have

1

2
‖u(t)‖2

H =
1

2
‖u0‖2

H +

∫ t

0

[〈F (s), u(s)〉 − a(u(s), u(s))] ds

≤ 1

2
‖u0‖2

H +

∫ t

0

[
‖F (s)‖V ∗‖u(s)‖V − µ1 ‖u(s)‖2

V

]
ds.

For t = T it follows:

0 ≤ 1

2
‖u0‖2

H +

∫ T

0

[
‖F (s)‖V ∗‖u(s)‖V − µ1 ‖u(s)‖2

V

]
ds

≤ 1

2
‖u0‖2

H + ‖F‖X∗‖u‖X − µ1 ‖u‖2
X .

This implies

‖u‖X ≤ 1

2µ1

(‖F‖X∗ +
√
‖F‖2

X∗ + 2µ1 ‖u0‖H) ≡ C1.

From the boundedness of A it immediately follows that

‖Au‖X∗ ≤ µ2 ‖u‖X ≤ µ2 C1 ≡ C2.

From the first equation it follows:

‖u(t)‖2
H ≤ ‖u0‖2

H + 2 ‖F‖X∗‖u‖X ≤ ‖u0‖2
H + 2µ2C1 ‖F‖X∗ ≡ C2

3 .

Next: Semi-discretization, then existence theory:
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2.2 Semi-discretization: the vertical method of lines

V is replaced by a finite-dimensional subspace Vh:
Find: uh : [0, T ] −→ Vh such that

d

dt
(uh(t), vh)H + a(uh(t), vh) = 〈F (t), vh〉 for all vh ∈ Vh,

(uh(0), vh)H = (u0, vh)H for all vh ∈ Vh.

Let {ϕi : i = 1, 2, . . . , Nh} be a basis of Vh. With

uh(t)(x) =

Nh∑

j=1

uj(t)ϕj(x)

one obtains

Nh∑

j=1

(ϕj, ϕi)H u
′
j(t) +

Nh∑

j=1

a(ϕj, ϕi) uj(t) = 〈F (t), ϕi〉 for all i = 1, 2, . . . , Nh,

Nh∑

j=1

(ϕj, ϕi)H uh(0) = (u0, ϕi)H for all i = 1, 2, . . . , Nh.

So

Mhu
′
h(t) +Khuh(t) = f

h
(t),

Mhuh(0) = g
h

with the mass matrix
Mh = (Mij), Mij = (ϕj, ϕi)H ,

the stiffness matrix
Kh = (Kij), Kij = a(ϕj, ϕi)

and the vectors

uh(t) = (ui(t)), f
h
(t) = (fi), fi = 〈F (t), ϕi〉, g

h
= (gi), gi = (u0, ϕi)H .

So we obtain an initial value problem. Standard form:

u′(t) = f(t, u(t)),

u(0) = u0.

here with u(t) = uh(t), f(t, u(t)) = M−1
h (f

h
(t) −Khuh(t)) and u0 = M−1

h gh.
The existence and uniqueness of a solution easily follows by the Picard-Lindelöf Theo-

rem.
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For the initial value we have:

‖uh(0)‖2
H = (uh(0), uh(0))H = (u0, uh(0))H ≤ ‖u0‖H‖uh(0)‖H ,

so
‖uh(0)‖H ≤ ‖u0‖H .

Therefore, the a-priori estimates are also valid for the approximations with the same
bounds:

‖uh‖X ≤ C1, ‖Auh‖X∗ ≤ C2, ‖uh(t)‖H ≤ C3.

The existence of approximate solutions and their a-priori bounds guarantee the existence
of a solution of the continuous problem:

Theorem 2.2. Let V and H be separable Hilbert spaces with V ⊂ H, V dense in H and
‖v‖ ≤ c ‖v‖V . Assume that there are constants µ2 ≥ µ1 > 0 with

a(v, v) ≥ µ1 ‖v‖2
V for all v ∈ V

and
|a(w, v)| ≤ µ2 ‖w‖V ‖v‖V for all v, w ∈ V.

Then there exists a unique solution u ∈ X of the initial value problem

〈u′(t), v〉 + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0.

Proof. (sketch) There is a sequence (ϕi)i∈N in V such that
⋃

n∈N
Vn is dense in V , where

Vn = span(ϕ1, ϕ2, . . . , ϕn). The corresponding approximate solutions are denoted by un :
[0, T ] −→ Vn:

〈u′n(t), vn〉 + a(un(t), vn) = 〈F (t), vn〉 for all vn ∈ Vn,

(un(0), vn)H = (u0, vn)H for all vn ∈ Vn.

Because of the a-priori bounds

‖un‖X ≤ C1, ‖Aun‖X∗ ≤ C2, ‖un(t)‖H ≤ C3

it follows by a compactness argument (for a sub-sequence):

〈f, un〉 −→ 〈f, u〉 for all f ∈ X∗,

〈Aun, v〉 −→ 〈w, v〉 for all v ∈ X,

(un(0), v)H −→ (u0, v)H for all v ∈ H,

(un(T ), v)H −→ (z, v)H for all v ∈ H.

It can be shown that
u′ = F − w, u(0) = u0, u(T ) = z

and that:
Au = w.
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Remark: The spaces V ⊂ H ≡ H∗ ⊂ V ∗ with

1. V a separable and reflexive Banach space

2. H a separable Hilbert space

3. V is dense in H with ‖v‖H ≤ c ‖v‖H for all v ∈ V

are called an evolution triple (Gelfand triple).

2.2.1 The Discretization Error

Definition 2.3. Let a be a bounded and coercive bilinear form on V . The Ritz projection
Rh : V −→ Vh is given by

a(Rhw, vh) = a(w, vh) for all vh ∈ Vh, w ∈ V.

The Ritz projection is a linear and continuous operator describing the approximate
solution uh of a variational problem

a(u, v) = 〈F, v〉 for all v ∈ V

by the Galerkin method in the form

uh = Rhu.

Then Cea’s lemma reads:

‖w −Rhw‖V ≤ µ2

µ1
inf

wh∈Vh

‖w − wh‖V .

Definition 2.4. The projection Ph : H −→ Vh is given by

(Phw, vh)H = (w, vh)H for all vh ∈ Vh, w ∈ H.

For H = L2(Ω) the operator Ph is called the L2-projection on Vh.
For the initial condition we obtain:

(uh(0), vh)H = (u0, vh)H = (Phu0, vh)H ,

hence
uh(0) = Phu0 ≡ u0h.

The discretization error is divided into two parts:

uh(t) − u(t) = uh(t) − Rhu(t) +Rhu(t) − u(t) = θh(t) + ρh(t).

The second part ρh(t) can be estimated by the approximation error using Cea’s lemma.
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For the first part θh(t) it follows from

〈u′(t), vh〉 + a(u(t), vh) = 〈u′(t), vh〉 + a(Rhu(t), vh) = 〈F (t), vh〉

and
〈u′h(t), vh〉 + a(uh(t), vh) = 〈F (t), vh〉

by substraction
〈u′h(t) − u′(t), vh〉 + a(θh(t), vh) = 0.

Hence
〈θ′h(t), vh〉 + a(θh(t), vh) = −〈ρ′h(t), vh〉.

It follows

Theorem 2.3. Assume that a is bounded and there is a constant µ1 > 0 with

a(v, v) ≥ µ1 ‖v‖2
V for all v ∈ V.

Then we have:

‖uh(t) − u(t)‖H ≤ ‖u0h −Rhu0‖H e
−µ1 t/c2 + ‖(I −Rh)u(t)‖H

+

∫ t

0

‖
[
(I − Rh)u(s)

]′‖H e−µ1 (t−s)/c2 ds.

Proof.

‖θh(t)‖H
d

dt
‖θh(t)‖H =

1

2

d

dt
‖θh(t)‖2

H = 〈θ′h(t), θh(t)〉
= −a(θh(t), θh(t)) − 〈ρ′h(t), θh(t)〉
≤ −µ1 ‖θh(t)‖2

V + ‖ρ′h(t)‖H ‖θh(t)‖H

≤ −µ1c
−2 ‖θh(t)‖2

H + ‖ρ′h(t)‖H ‖θh(t)‖H .

So
d

dt
‖θh(t)‖H + µ1c

−2 ‖θh(t)‖H ≤ ‖ρ′h(t)‖H .

By multiplication with eµ1 t/c2 it follows:

d

dt

(
‖θh(t)‖He

µ1 t/c2
)
≤ ‖ρ′h(t)‖H eµ1 t/c2 .

By integration one obtains:

‖θh(t)‖He
µ1 t/c2 ≤ ‖θh(0)‖H +

∫ t

0

‖ρ′h(s)‖H e
µ1 s/c2 ds

= ‖u0h − Rhu0‖H +

∫ t

0

‖ρ′h(s)‖H e
µ1 s/c2 ds.
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For the initial error we have:

‖u0h −Rhu0‖H ≤ ‖u0h − u0‖H + ‖(I − Rh)u0‖H . = ‖(I − Ph)u0‖H + ‖(I − Rh)u0‖H .

For sufficiently smooth functions it follows: (Rhu(t))
′ = Rhu

′(t). Hence:

‖uh(t) − u(t)‖H ≤ [‖(I − Ph)u0‖H + ‖(I − Rh)u0‖H ] e−µ1 t/c2 + ‖(I −Rh)u(t)‖H

+

∫ t

0

‖(I −Rh)u
′(s)‖H e−µ1 (t−s)/c2 ds

This shows that the analysis of the discretization error for the parabolic problem can be
reduced to the error analysis of the corresponding elliptic problem.

Example: For the Courant element we have (under appropriate assumptions):

‖(I − Rh)v‖0 ≤ c0 h
2 ‖v‖2 and ‖(I − Ph)v‖0 ≤ c0 h

2 ‖v‖2.

Therefore, (under appropriate conditions):

‖uh(t) − u(t)‖0 ≤ C h2

[
‖u0‖2 e

−µ1 t/c2 + ‖u(t)‖2 +

∫ t

0

‖u′(s)‖2 e
−µ1 (t−s)/c2 ds

]

2.3 Runge-Kutta Methods for Initial Value Problems

for Ordinary Differential Equations

In this chapter initial value problems for ordinary differential equations are discussed. In
particular, the consequences for semi-discretized parabolic initial-boundary value problems
will be studied.

We have the following general form of an initial value problem:
Find a function u : [0, T ] −→ RN such that:

u′(t) = f(t, u(t)) t ∈ (0, T ), (2.1)

u(0) = u0.

In the following the symbols ‖.‖ and (., .) are used to denote a norm and a scalar product
on RN , respectively.

Special case: Assume that the right hand side of the differential equation does not
explicitly depend on u:

u′(t) = f(t) t ∈ [0, T ],

u(0) = u0.

Then the solution can be represented in the following way:

u(t) = u0 +

∫ t

0

f(s) ds.

So, the computation of the solution of the initial value problem reduces to the integration
of the right hand side f(t) in this case.
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2.3.1 Euler’s method

Other names: Euler polygon method, forward Euler method, explicit Euler method.
Assume that the interval [0, T ] is discretized by a sequence of grid points

0 = t0 < t1 < . . . < tm = T

e.g.: tj = j · τ for j = 0, 1, . . . , m and a given step size τ = T/m.

Motivation by Taylor expansion:

By Taylor expansion at the point t0 = 0 one obtains

u(t) ≈ u(t0) + u′(t1)(t− t0) = u0 + f(t0, u0)(t− t0) ≡ uτ (t) for t ∈ [t0, t1].

Therefore, we obtain the following approximation at the point t1:

u1 = u0 + τ f(t0, u0).

By Taylor expansion at the point t0 = 0 one obtains

u(t) ≈ u(t1) + u′(t1)(t− t1)

= u(t1) + f(t1, u(t1))(t− t1) ≈ u1 + f(t1, u1)(t− t1) ≡ uτ (t) for t ∈ [t1, t2].

Therefore, we obtain the following approximation at the point t2:

u2 = u1 + τ f(t1, u1).

If this process is continued analogously, one obtains a polygonal approximation uτ (t) for
the exact solution by connecting the approximations, given by

uj+1 = uj + τ f(tj, uj) j = 0, 1, . . . , m− 1

linearly.

Motivation as FDM:

If the derivative at the point tj is replaced by a forward difference quotient

u′(tj) ≈
1

τ
(u(tj+1) − u(tj)),

one obtains Euler’s method as a finite difference method:

1

τ
(uj+1 − uj) = f(tj, uj) j = 0, 1, . . . , m− 1.
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Motivation by quadrature rule:

By integrating the differential equation

u′(t) = f(t, u(t))

over the interval [t, t+ τ ] one obtains the relation

u(t+ τ) = u(t) +

∫ t+τ

t

f(s, u(s)) ds.

If the integral is approximated by the left rectangular rule, i.e.:

∫ t+τ

t

f(s, u(s)) ds ≈ τ f(t, u(t)),

one obtains
u(t+ τ) ≈ u(t) + τ f(t, u(t)). (2.2)

This motivates the formula

uj+1 = uj + τ f(tj, uj), j = 0, 1, . . . , m− 1 (2.3)

for the successive computation of approximations uj = uτ(tj) of the exact values u(tj).

2.3.2 The classical convergence analysis

The hope is, of course, to obtain only small deviations from the exact solution by choosing
sufficiently small step sizes. That is, we expect the following property:

eτ (t) → 0 für τ → 0 (2.4)

for all t ∈ [0, T ], where eτ (t) is called the global (discretization) error:

eτ (t) = u(t) − uτ(t).

Usually the global error is considered only at the grid points. The method is called con-
vergent, if condition (2.4) is satisfied in some suitable norm.

The global error consists of contributions which can be interpreted as propagations of
local errors dτ (tj), j = 0, 1, . . ., by the method.

The local error at the point tj+1 for Euler’s method is given by

dτ (tj+1) = u(tj+1) − uτ(tj+1) = u(tj+1) −
(
u(tj) + τ f(tj, u(tj))

)
,

that is the difference between the exact solution of the differential equation and the ap-
proximate solution after one step of the method starting from the initial values (tj, u(tj)).
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A possible error for the initial value defines the value of dτ(t0):

dτ(t0) = u(0) − uτ (0).

The so-called consistency error of Euler’s method interpreted as FDM is given by

ψτ (tj+1) =
u(tj+1) − u(tj)

τ
− f(tj, u(tj))

which leads to the following simple relation with the local error:

ψτ (tj+1) =
1

τ
dτ(tj+1).

The investigation of the magnitude of the local errors is called consistency analysis. A
method is called consistent, if the consistency error vanishes for τ → 0, i.e.: if

dτ = o(τ).

in some suitable norm.
In order to estimate the propagation of local errors, one has to study the behavior of

the difference wj − vj in dependence of the initial difference wj0 − vj0 for j ≥ j0, where the
sequences vj and wj are generated by the numerical method, here Euler’s method:

vj+1 = vj + τ f(tj, vj),

wj+1 = wj + τ f(tj, wj),

starting from the initial values vj0 and wj0 at the point tj0 . This investigation is called
stability analysis.

If an estimation of the form

‖wj − vj‖ ≤ C‖wj0 − vj0‖

can be shown in some suitable norm with a constant C independent of the step size τ , then
the method is called stable and C is called the stability constant of the method.

So, in order to analyze the convergence of a method, its consistency and its stability
have to be analyzed.

For Euler’s method the consistency analysis and the stability analysis are quite simple:

Consistency analysis:

By Taylor series expansion one obtains

dτ (t+ τ) = u(t+ τ) − u(t) − τ f(t, u(t))

= u(t) + u′(t)τ +R2(t, τ) − u(t) − τ f(t, u(t))

=
[
u′(t) − f(t, u(t))

]
τ +R2(t, τ) = R2(t, τ) = O(τ 2)
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Or, more precisely for u′′ ∈ L∞(0, T ):

‖dτ(t + τ)‖ = ‖R2(t, τ)‖ =

∥∥∥∥
∫ t+τ

t

(t+ τ − s)u′′(s) ds

∥∥∥∥ ≤ τ 2

2
sup

s∈[t,t+τ ]

‖u′′(s)‖

Therefore, there is a constant K = ‖u′′‖L∞(0,T )/2 such that

‖dτ‖L∞(0,T ) ≤ K τ 2

or, in short:
dτ = O(τ 2).

So, the local error converges to 0, as τ 2 converges to 0, if τ converges to 0.
If the local error of a numerical method converges to 0 like Kτ p+1 with some p > 0 for

τ → 0 approaching 0, or, in short

dτ = O(τ p+1),

then the numerical method is called consistent with consistency order p.
With these notations and considerations Euler’s method is consistent with consistency

order 1.

Stability analysis:

Assume that the following Lipschitz condition for the right hand side of the differential
equation: There is a constant L ≥ 0 such that

‖f(t, w) − f(t, v)‖ ≤ L ‖w − v‖ for all t, v, w. (2.5)

Then:

‖wj+1 − vj+1‖ = ‖ [wj + τ f(tj, wj)] − [vj + τ f(tj, vj)] ‖
≤ ‖wj − vj‖ + τ ‖f(tj, wj) − f(tj, vj)‖ ≤ (1 + τ L) ‖wj − vj‖
≤ eτ L ‖wj − vj‖.

By applying this estimate repeatedly one obtains the estimation:

‖wj − vj‖ ≤ eτ L · eτ L · · · eτ L
︸ ︷︷ ︸

(j−j0) times

‖wj0 − vj0‖ = e(j−j0)τ L ‖wj0 − vj0‖ ≤ e(tj−tj0 )L ‖wj0 − vj0‖.

Therefore, there is a constant C = e(tj−tj0 )L ≤ eTL independent of τ such that

‖wj − vj‖ ≤ C ‖wj0 − vj0‖.

So the condition (2.5) implies the stability of Euler’s method with a stability constant of
the form C = etL.

Based on these considerations the convergence of the method can easily be analyzed:
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Convergence analysis

The global error consists of the propagated local errors. For a consistent and stable method
of consistency order p > 0 we have:

‖eτ (tj)‖ = ‖u(tj) − uτ (tj)‖

≤
j∑

k=1

C‖dτ (tk)‖ ≤
j∑

k=1

C K τ p+1 = C K τ p

j∑

k=1

τ ≤ C K tj τ
p = C ′ τ p

with C ′ = C K tj ≤ C K T , hence:
eτ = O(τ p).

So the method is convergent. More precisely, the method is called convergent with con-
vergence order p.

Remark: In short:
consistency + stability = convergence

In particular, it follows that Euler’s method is convergent with convergence order 1:

Theorem 2.4. If u′′ ∈ L∞(0, T ) and if

‖f(t, w) − f(t, v)‖ ≤ L‖w − v‖ for all t, v, w,

then Euler’s method converges and we have

‖uj − u(tj)‖ ≤ etjL
[
‖u0 − u(t0)‖ +

τ

2
tj ‖u′′‖L∞((0,T ),H)

]
.

Remark: Under the weaker condition u′′ ∈ L1(0, T ) one obtains

‖dτ (t+ τ)‖ ≤ τ

∫ t+τ

t

‖u′′(s)‖ ds

and, therefore,

‖uj − u(tj)‖ ≤ etjL
[
‖u0 − u(t0)‖ + τ ‖u′′‖L1((0,T ),H)

]
.

2.3.3 Explicit Runge-Kutta Methods

If the integral in

u(t+ τ) = u(t) +

∫ t+τ

t

f(s, u(s)) ds (2.6)

is approximated by more accurate quadrature rules, more accurate methods are obtained.
For example, one could use the midpoint rule:

∫ t+τ

t

f(s, u(s)) ds ≈ τ f(t+
τ

2
, u(t+

τ

2
)).
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However, the value u(t+τ/2) is not available. But it can be approximated from the relation

u(t+
τ

2
) = u(t) +

∫ t+τ/2

t

f(s, u(s)) ds

be using another quadrature rule: the left rectangular rule:

u(t+
τ

2
) ≈ u(t) +

τ

2
f(t, u(t)).

In summary, one obtains the following method (Runge’s second order method):

uj+1 = uj + τ f(tj +
τ

2
, g2)

with

g1 = uj,

g2 = uj +
τ

2
f(tj, g1).

Consistency analysis:

dτ (t+ τ) = u(t+ τ) − uτ(t + τ)

= u(t+ τ) − u(t) − τ f(t+
τ

2
, u(t) +

τ

2
f(t, u(t)))

= u(t) + u′(t)τ +
1

2
u′′(t)τ 2 +O(τ 3) − u(t)

− τ
[
f(t, u(t)) + ft(t, u(t))

τ

2
+ fu(t, u(t))

τ

2
f(t, u(t)) +O(τ 2)

]

= [u′(t) − f(t, u(t))]τ + [u′′(t) − ft(t, u(t)) − fu(t, u(t))f(t, u(t))]
τ 2

2
+O(τ 3).

From
u′(t) = f(t, u(t))

we obtain by differentiation

u′′(t) = ft(t, u(t)) + fu(t, u(t))u
′(t) = ft(t, u(t)) + fu(t, u(t))f(t, u(t)).

Hence, it follows for the local error:

dτ (t+ τ) = O(τ 3),

i.e.: the consistency order of this method is 2.
The construction of numerical methods can be easily generalized. Starting point is a

quadrature rule of the form:
∫ t+τ

t

f(s, u(s)) ds

≈ τ
[
b1 f(t, u(t)) + b2 f(t+ c2 τ, u(t+ c2 τ)) + · · ·+ bs f(t+ cs τ, u(t+ cs τ))

]
.
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The values bi, i = 1, 2, . . . , s are called the weights, the values t+ ci τ , i = 1, 2, . . . , s with
c1 = 0 are called the nodes of the quadrature rule.

Instead of the unknown quantities u(t+ ci τ) approximations

gi ≈ u(t+ ci τ)

are recursively computed by using quadrature rules applied to

u(t+ ci τ) = u(t) +

∫ t+ci τ

t

f(s, u(s)) ds.

Then one obtains:

g1 = uj,

g2 = uj + τ a21 f(tj, g1),

g3 = uj + τ
[
a31 f(tj, g1) + a32 f(tj + c2 τ, g2)

]
, (2.7)

...

gs = uj + τ
[
as1 f(tj, g1) + as2 f(tj + c2 τ, g2) + · · ·+ as,s−1 f(tj + cs−1 τ, gs−1)

]
.

Then the next approximations has the form:

uj+1 = uj + τ
[
b1 f(tj, g1) + b2 f(tj + c2 τ, g2) + · · ·+ bs f(tj + cs τ, gs)

]
. (2.8)

The method (2.7), (2.8) is called an s-stage explicit Runge-Kutta method. For de-
scribing the method it is sufficient to specify the coefficients aij, bj and ci in form of the
following (Butcher) tableau:

0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

or in compact dorm:
c A

bT
.

Examples: Euler’s method is a 1-stage Runge-Kutta method with tableau

0
1

and consistency order 1.
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Runge’s second order method is a 2-stage Runge-Kutta method with tableau

0
1/2 1/2

0 1

and consistency order 2.

By an appropriate choice of the coefficients one obtains corresponding high consistency
orders. Let p(s) denote the maximally attainable consistency order of an s-stage Runge-
Kutta method. Then

s 1 2 3 4 5 6 7 8 9 s ≥ 10
p(s) 1 2 3 4 4 5 6 6 7 ≤ s− 3

where the symbols | denote the so-called Butcher barriers.
The best known representative of a 4-stage Runge-Kutta method of order 4 is the

”classical” Runge-Kutta method, given by the tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Under the condition (2.5) stability cam be shown for the whole class of explicit Runge-
Kutta methods.

2.3.4 Stiff Differential Equations and A-Stability

For a semi-discretized parabolic initial-boundary value problem one obtains the following
Lipschitz condition for the right hand side with respect to the norm ‖.‖ = ‖.‖Mh

:

‖f(t, w) − f(t, v)‖ = ‖M−1
h Kh(wh − vh)‖Mh

≤ L ‖wh − vh‖Mh

with the sharp bound
L = ‖M−1

h Kh‖Mh
.

It is easy to see that
‖M−1

h Kh‖Mh
≥ λmax(M

−1
h Kh).

In the symmetric case KT
h = Kh we have even equality:

‖M−1
h Kh‖Mh

= λmax(M
−1
h Kh).

Example: For the one-dimensional model problem one obtains:

3

maxk h
2
k

≤ λmax(M
−1
h Kh) ≤

12

mink h
2
k

. (2.9)
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Proof. We have

(Khvh, vh)`2 =
∑

k=1,Nh

(
K

(k)
h

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

=
∑

k=1,Nh

1

hk

(
K̂

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

≤ 12
∑

k=1,Nh

1

hk

(
M̂

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

≤ 12

mink h2
k

∑

k=1,Nh

hk

(
M̂

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

=
12

mink h2
k

∑

k=1,Nh

(
M

(k)
h

(
vk−1

vk

)
,

(
vk−1

vk

))

`2

=
12

mink h2
k

(Mhvh, vh)`2

and

(Khei, ei)`2 =
1

hi
+

1

hi+1
(Mhei, ei)`2 =

1

3
(hi + hi+1).

Hence

3

maxk h
2
k

≤ 3

hihi+1

=
(Khei, ei)`2

(Mhei, ei)`2

≤ λmax(M
−1
h Kh) = sup

vh 6=0

(Khvh, vh)`2

(Mhvh, vh)`2

≤ 12

mink h
2
k

This implies, e.g., for an equidistant subdivision

L = O

(
1

h2

)
� 1.

Therefore, a stability bound of the form C = etL is completely useless.

Stability estimates for initial value problems

Consider the initial value problem

u′(t) = f(t, u(t)) t ∈ (0, T ),

u(0) = u0.

Under the Lipschitz condition

‖f(t, w)− f(t, v)‖ ≤ L ‖w − v‖

it can be shown that
‖w(t) − v(t)‖ ≤ e(t−t0) L ‖w(t0) − v(t0)‖

for two solutions w(t) and v(t) of the differential equation and 0 ≤ t0 ≤ t ≤ T . Compare
with the analogous stability estimate of Euler’s method under the same Lipschitz condition
on f .
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Now assume that a so-called one-sided Lipschitz condition is available:

(f(t, w) − f(t, v), w − v) ≤ L ‖w − v‖2

Then, for two solutions w(t) and v(t) of the differential equation, we have

‖w(t) − v(t)‖ d

dt
‖w(t) − v(t)‖ =

d

dt

1

2
‖w(t) − v(t)‖2

=
d

dt

1

2
(w(t) − v(t), w(t) − v(t))

= (w′(t) − v′(t), w(t) − v(t))

= (f(t, w(t)) − f(t, v(t)), w(t)− v(t))

≤ L ‖w(t) − v(t)‖2

Hence
d

dt
‖w(t) − v(t)‖ ≤ L ‖w(t) − v(t)‖,

which easily implies

‖w(t) − v(t)‖ ≤ e(t−t0) L ‖w(t0) − v(t0)‖.
Of course, the Lipschitz condition implies the one-sided Lipschitz condition with the

same Lipschitz constant L. However, In some interesting cases the Lipschitz constant in
the one-sided condition is considerably smaller than in the original Lipschitz condition.

Of particular interest is the case of a vanishing one-sided Lipschitz constant:

(f(t, w) − f(t, v), w − v) ≤ 0

Differential equations with this property are (sometimes) called dissipative. Then, of
course, we have

‖w(t) − v(t)‖ ≤ ‖w(t0) − v(t0)‖.

Example: The discussed semi-discretized parabolic initial-boundary value problem leads
to a right hand side of the following form:

f(t, u) = M−1
h

[
f

h
(t) −Khuh

]

with u = uh. Hence:

(f(t, wh − f(t, wh), wh − vh)Mh
= −

(
MhM

−1
h Kh [wh − vh] , wh − vh

)
`2

= − (Kh [wh − vh] , wh − vh)`2
≤ 0

So, while the Lipschitz constant ‖M−1
h Kh‖Mh

is large, the one-sided Lipschitz constant is
0, i.e.: the system is dissipative.
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Stability estimates for Runge-Kutta methods

The stability estimates for dissipative systems suggest that an numerical method for com-
puting an approximate solution should satisfy a similar stability property:

‖wj+1 − vj+1‖ ≤ ‖wj − vj‖ for all j = 0, 1, . . . , m− 1.

Methods with this property are called contractive.
For contractive methods we have the stability constant C = 1 and the convergence

statements follow accordingly.
We start the analysis with a very simple class of differential equations: consider scalar

linear differential equations of the form

u′(t) = λ u(t). (2.10)

with λ ∈ C.

Remark: Such simple model problems result from more general linear systems of differ-
ential equations of the form

u′(t) = Ju(t),

where J is a constant matrix, if the initial value is an eigenvector v of J with eigenvalue
λ ∈ C.

For a Runge-Kutta method, applied to (2.10), one obtains:

g = uje+ τλAg,

uj+1 = uj + τλbT g

with g = (g1, g2, . . . , gs)
T and e = (1, 1, . . . , 1)T , hence

uj+1 = R(τλ) uj

with
R(z) = 1 + zbT (I − zA)−1e.

R(z) is called the stability function of the Runge-Kutta method.

Examples: Euler’s method:
R(z) = 1 + z

Runge’s second order method:

R(z) = 1 + z +
1

2
z2.

Classical fourth order Runge-Kutta method:

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4.
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Remark: For the exact solution of the differential equation (2.10) one obtains

u(t) = u0e
λt

and, therefore:
u(tj+1) = eλ τu(tj).

The accuracy of a Runge-Kutta method corresponds to the accuracy of the approximation
of the exponential function ez by the stability function R(z) in a neighborhood of z = 0.

The differential equation (2.10) is dissipative if and only if

Reλ ≤ 0.

The corresponding property of contractivity for the Runge-Kutta method leads to the
condition

|R(τλ)| ≤ 1.

With the help of the stability function the so-called stability domain of a Runge-Kutta
method is defined by:

S = {z ∈ C : |R(z)| ≤ 1}.
With this notation the above-mentioned condition on the step size τ (contractivity) reads:

τλ ∈ S.

Example: The one-dimensional model problem of a semi-discretized parabolic initial-
boundary-value problem leads to a linear system of the form

u′h(t) = Juh(t) +M−1
h f

h
(t) with J = −M−1

h Kh.

One immediately sees that, in the symmetric case KT
h = Kh, the matrix J has only real

and negative eigenvalues. For Euler’s method the stability domain is the interior and the
boundary of a circle with radius 1 and center -1:

S = {z ∈ C : |z − (−1)| ≤ 1}.

The step size must satisfy the condition

τ ≤ 2

λmax(M
−1
h Kh)

.

This condition is satisfied if

τ ≤ h2

6
,

see (2.9). This is a strong restriction on the time step size τ , in particular if the spatial
step size h is small.
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This initial-value problem is an example of a so-called stiff differential equation: The
existence of eigenvalues with a large negative real part is the cause, that Euler’s method
produces reasonable approximations only for very small step sizes τ .

It is desirable that, for all values of λ which lead to stable (bounded) solutions, the
numerical method also produces stable (bounded) approximations. This leads to the notion
of A-stability:

Definition 2.5. A Runge-Kutta method is called A-stable if and only if

|R(z)| ≤ 1 for all λ ∈ C with Reλ ≤ 0

or, in short:
C− ⊂ S

with C− = {z ∈ C : Reλ ≤ 0}.

The stability function of an explicit s-stage Runge-Kutta method is a polynomial of
degree ≤ s, therefore, the method can not be A-stable.

2.3.5 Implicit Runge-Kutta methods

Euler’s method (the explicit Euler method) was obtained by using the left rectangular rule
in (2.6). By using the right rectangular rule instead

∫ t+τ

t

f(s, u(s)) ds ≈ τ f(t+ τ, u(t+ τ))

the so-called implicit Euler method (backward Euler method) is obtained:

uj+1 = uj + τ f(tj + τ, uj+1).

In order to actually calculate uj+1 this equation (in general a nonlinear system of equations)
must be solved.

If one uses the midpoint rule

∫ t+τ

t

f(s, u(s)) ds ≈ τ f(t+
τ

2
, u(t+

τ

2
))

for improving the accuracy and if the needed solution u(t + τ/2) is replaced by an ap-
proximation g1 obtained by the implicit Euler method, one obtains the so-called implicit
midpoint rule:

g1 = uj +
τ

2
f(tj +

τ

2
, g1),

uj+1 = uj + τ f(tj +
τ

2
, g1).

These two methods are examples of the so-called implicit Runge-Kutta methods.

85



The general form of an s-stage Runge-Kutta method can by written in the following
way:

g1 = uj + τ [a11 f(t+ c1 τ, g1) + a12 f(t+ c2 τ, g2) + · · ·+ a1s f(t+ cs τ, gs)] ,

g2 = uj + τ [a21 f(t+ c1 τ, g1) + a22 f(t+ c2 τ, g2) + · · ·+ a2s f(t+ cs τ, gs)] , (2.11)
...

gs = uj + τ [as1 f(t+ c1 τ, g1) + as2 f(t+ c2 τ, g2) + · · ·+ ass f(t+ cs τ, gs)]

and

uj+1 = uj + τ [b1 f(t+ c1 τ, g1) + b2 f(t+ c2 τ, g2) + · · ·+ bs f(t+ cs τ, gs)] (2.12)

The method is uniquely determined by the following tableau of coefficients:

c1 a11 a12 . . . a1,s−1 a1s

c2 a21 a22 . . . a2,s−1 a2s
...
cs as1 as2 . . . as,s−1 ass

b1 b2 . . . bs−1 bs

or in compact form:
c A

bT
. (2.13)

Definition 2.6. A Runge-Kutta method given by the tableau (2.13) is called

1. explicit, if A is a strictly lower triangular matrix,

2. implicit, if it is not explicit.

This definition of an explicit method is slightly more general as before. So far is was
always assumed that c1 = 0 for an explicit method.

Examples:

1. The implicit Euler method is a 1-stage implicit Runge-Kutta method with tableau:

1 1
1
.

2. The implicit midpoint rule is a 1-stage implicit Runge-Kutta method with tableau:

1/2 1/2
1

.
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3. Another possible quadrature rule for (2.6) is given by

∫ t+τ

t

f(s, u(s)) ds ≈ τ
[
(1 − θ) f(t, u(t)) + θ f(t+ τ, u(t+ τ))

]
.

This leads to the method

uj+1 = uj + τ
[
(1 − θ) f(tj, uj) + θ f(tj + τ, uj+1)

]
,

so

g1 = uj,

g2 = uj + τ
[
(1 − θ) f(tj, g1) + θ f(tj + τ, g2)

]
,

uj+1 = uj + τ
[
(1 − θ) f(tj, g1) + θ f(tj + τ, g2)

]
.

This method is called the θ-method and it is (in general) a 2-stage Runge-Kutta
method with tableau

0 0 0
1 1 − θ θ

1 − θ θ
.

This class of methods contains important special cases: the explicit Euler method
(θ = 0), the implicit Euler method (θ = 1) and the implicit trapezoidal rule (θ = 1/2).

Implementation of implicit Runge-Kutta Methods:

In order to calculate the next approximation uj+1 by an implicit Runge-Kutta method from
(2.12), the values for g1, g2, . . . , gs must be determined firstly by approximately solving the
(in general non-linear) system of equations (2.11).

The equations are given in fixed point form. Therefore, one option would be to use
simple fixed point iteration. The convergence of such an iterative method can be shown
for initial values gi = u and sufficiently small step sizes τ . Better initial values can be
calculated by using an appropriate explicit Runge-Kutta method.

For stiff differential equations a simplified Newton method is better suited for calculat-
ing g1, g2, . . . , gs from (2.11). It is usually sufficient to evaluate the Jacobian matrix only
once at the initial value gi = u.

Example: The θ-method for the model problem of a semi-discretized parabolic differential
equation

u′h(t) = M−1
h [f

h
(t) −Khuh(t)],

uh(0) = u0,h

reads

uj+1
h = uj

h + τ
{

(1 − θ)M−1
h

[
f

h
(tj) −Khu

j
h

]
+ θM−1

h

[
f

h
(tj+1) −Khu

j+1
h

]}
.
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The approximation uj+1
h is obtained by solving the linear system of equations

[Mh + τ θ Kh]u
j+1
h = [Mh − τ(1 − θ)Kh] u

j
h + τ

[
(1 − θ) f

h
(tj) + θ f

h
(tj+1)

]
.

In the case θ = 1/2 (implicit trapezoidal rule) the method is also called Crank-Nicolson
method.

Remark: For θ = 0 one obtains the explicit Euler method. Nevertheless, it requires the
solution of a linear system of equations. One can avoid this by replacing the mass matrix
Mh by a diagonal matrix M̄h (mass lumping). Example for the Courant-element:

M̄h = (M̄ij), M̄ij = (ϕi, ϕj)h,

where instead of the L2-scalar product the following approximation based on the trape-
zoidal rule is used:

(v, w)L2(Ω) =
∑

k

∫

Tk

v(x)w(x) dx ≈
∑

k

hk

[1
2
v(xk−1)w(xk−1) +

1

2
v(xk)w(xk)

]
≡ (v, w)h.

Consistency order of implicit Runge-Kutta methods

As in the explicit case the global error, the local error and the consistency error can be
introduced.

The consistency order can be determined by Taylor series expansions as in the explicit
case.

Examples:

1. The θ-method has, in general, consistency order 1. For θ = 1/2 one obtains consis-
tency order 2.

2. For the 1-stage implicit midpoint rule one obtains consistency order 2.

These simple examples already show that a higher consistency order can be reached
with an s-stage implicit Runge-Kutta method than with an s-stage explicit method.

It can be shown that the maximally attainable consistency order for an s-stage Runge-
Kutta method is p = 2s. These methods with maximal consistency order are called s-stage
Gauss methods. They are based on the Gaussian quadrature rule which are of maximal
accuracy. The implicit midpoint rule the 1-stage Gauss method.

Stability of implicit Runge-Kutta methods

For analyzing the A-stability the stability function is needed:

Examples:
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1. For the implicit Euler method one obtains

R(z) =
1

1 − z
.

The stability domain is the exterior and the boundary of the circle with radius 1 and
center 1:

S = {z ∈ C : |z − 1| ≥ 1}.
Hence the method is A-stable.

2. For the θ-method one obtains

R(z) =
1 + (1 − θ)z

1 − θz
.

Hence the method is A-stable for θ ≥ 1/2 .

So far, stability was studied only for the very simple scalar model problem

u′(t) = λu(t).

Now we discuss the extension to linear systems of the form

u′(t) = Ju(t) + f(t)

for constant real matrices J . We can restrict the analysis to the case f(t) ≡ 0, i.e.:

u′(t) = Ju(t), (2.14)

because, the concepts of a dissipative system and a contractive method do not depend on
f(t).

A Runge-Kutta method with stability function R(z) applied to the system (2.14) can
be written in the form

uj+1 = R(τJ)uj. (2.15)

Then, of course, the system (2.14) is dissipative, if and only if

(Jv, v) ≤ 0 for all v ∈ RN ,

and the Runge-Kutta method is contractive if and only if

‖wj+1 − vj+1‖ = ‖R(τJ)(wj − vj)‖ ≤ ‖(wj − vj)‖,
i.e., if and only if

‖R(τJ)‖ ≤ 1.

At first, we consider the case that J is a normal matrix, i.e.:

J∗J = JJ∗.

(J∗ denotes the adjoint matrix of J with respect to the scalar product (., .), so, e.g., J ∗ = JT

if the Euclidean scalar product (., .) = (., .)`2 is used.)
For normal matrices J the system (2.14) is dissipative if and only if

Reλ ≤ 0 for all λ ∈ σ(J).
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Proof. The scalar product (., .) on Rn can be extended to a scalar product on Cn, denoted
again by (., .):

(z, z′) = (x, x′) + (y, y′) + i [(x′, y) − (x, y′)] .

For normal matrices it follows:

J = UDU∗ with D = diag(λ1, λ2, . . . , λn),

where U is a unitary matrix (U ∗U = UU∗ = I). Or, in other words, there exists an
orthonormal basis of eigenvectors. The system is dissipative if and only if

Re(Jv, v) = (J Re v,Re v) + (J Im v, Im v) ≤ 0 for all v ∈ Cn.

Now, for v ∈ Cn, we have

Re(Jv, v) = Re(UDU ∗v, v) = Re(DU ∗v, U∗v) = Re(Dw,w)

= ((ReD) Rew,Rew) + ((ReD) Imw, Imw)

=
∑

i

Reλi|wi|2

with w = U∗v. This immediately implies that the system is dissipative if and only in

∑

i

Reλi|wi|2 ≤ 0 for allw ∈ Cn.

i.e.:
Reλi ≤ 0 for all i.

For normal matrices J we have

‖R(τJ)‖ = max
λ∈σ(J)

|R(τλ)|.

Proof. First we have by definition

‖R(τJ‖ = sup
06=v∈Rn

‖R(τJ)v‖
‖v‖ .

Then, with v = v1 + iv2 it follows

sup
06=v∈Cn

‖R(τJ)v‖2

‖v‖2
= sup

06=v1,v2∈Rn

‖R(τJ)v1‖2 + ‖R(τJ)v2‖2

‖v1‖2 + ‖v2‖2
= ‖R(τJ‖.

Let ui denote the i-th column of U . Then a vector v can be written in the form

v =
∑

i

αiui and ‖v‖2 = (v, v) =
∑

i

|αi|2.
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Analogously, it follows that

R(τJ)v =
∑

i

αiR(τλi)ui and ‖R(τJ)v‖2 =
∑

i

|αi|2 |R(τλi)|2.

Therefore,

‖R(τJ)‖2 = sup
06=v

‖R(τJ)v‖2

‖v‖2
= sup

06=α

∑
i |αi|2 |R(τλi)|2∑

i |αi|2
= max

i
|R(τλi)|2.

Therefore, a Runge-Kutta method applied to (2.14) for a normal matrix J is contractive
if and only if

|R(τλ)| ≤ 1 for all λ ∈ σ(J). (2.16)

In general, this condition leads to restrictions for the step size τ .

Example: For the one-dimensional semi-discretized parabolic model problem in the sym-
metric case KT

h = KT the corresponding matrix J = −M−1
h Kh is symmetric and, therefore

normal in the scalar product (., .)Mh
and the eigenvalues λ(J) of J are of the form

λ(J) = −λ(M−1
h Kh) ≤ 0.

Therefore, the system is dissipative and the explicit Euler method is contractive if

τ ≤ 2

λmax(M
−1
h Kh)

.

From (2.9) we know that λmax(M
−1
h Kh) = O(1/h2). Consequently,

τ = O(h2).

More precisely, it follows from (2.9) that it is sufficient to satisfy

τ ≤ h2

6
.

However, for an A-stable Runge-Kutta method applied to a dissipative linear system
with a normal coefficient matrix, the condition (2.16) is always satisfied. Therefore, in this
case the method is contractive.

Example: The implicit Euler method for the one-dimensional semi-discretized parabolic
model problem in the symmetric case KT

h = KT is contractive for all step sizes τ .

Surprisingly, the last statement that A-stable Runge-Kutta methods applied to dissi-
pative linear systems with constant coefficient matrix are contractive for all step sizes τ is
also correct for non-normal matrices J . This follows from the following theorem:
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Theorem 2.5. Let (., .) be a scalar product in Cn, A ∈ Cn×n and R(z) a rational function,
which is bounded on C−. Assume that

Re(Av, v) ≤ 0 for all v ∈ Cn.

Then:
‖R(A)‖ ≤ sup

z∈C−

|R(z)|.

Proof. Let A∗ be the adjoint matrix of A

(A∗u, v) = (u,Av).

For

A(ω) =
ω

2
(A+ A∗) +

1

2
(A− A∗)

we have:

(A(ω)v, v) =
ω

2
[(Av, v) + (A∗v, v)] +

1

2
[(Av, v) − (A∗v, v)]

=
ω

2

[
(Av, v) + (Av, v)

]
+

1

2

[
(Av, v) − (Av, v)

]

= ω Re(Av, v) + i Im(Av, v)

= Reω Re(Av, v) + i (Imω Re(Av, v) + Im(Av, v)) .

Hence
Re(A(ω)v, v) ≤ 0 for all v ∈ Cn,

if Reω ≥ 0. Therefore, the rational function

ϕ(ω) = (R(A(ω))u, v)

has no poles in C+ = {z ∈ C : Reλ ≥ 0} for fixed vectors u and v . Then the maximum
principle implies:

(R(A)u, v) = ϕ(1) ≤ sup
y∈R

|ϕ(iy)| ≤ sup
y∈R

‖R(A(iy))‖‖u‖‖v‖.

For the matrix A(iy) we have:

A(iy) = i
y

2
(A+ A∗) +

1

2
(A− A∗),

hence

A(iy)∗ = −i y
2
(A∗ + A) +

1

2
(A∗ − A) = −A(iy).

Therefore, the matrix A(iy) is anti-symmetric and the eigenvalues are purely imaginary.
So the matrix is normal and:

‖R(A(iy))‖ = sup
z∈σ(A(iy))

|R(z)| ≤ sup
z∈C−

|R(z)|.
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In summary, we obtain:

(R(A)u, v) ≤ sup
z∈C−

|R(z)| ‖u‖‖v‖,

which immediately implies the statement

‖R(A)‖ ≤ sup
z∈C−

|R(z)|.

Example: For J = −M−1
h Kh we have

Re (−M−1
h Kh(vh + iwh), vh + iwh)Mh

= −Re(Kh(vh + iwh), vh + iwh)`2

= −(Khvh, vh)`2 − (Khwh, wh)`2 ≤ 0.

Consequently an A-stable Runge-Kutta method for the system

Mhu
′
h(t) = f

h
(t) −Khuh(t)

is contractive, if Mh is symmetric and positive definite and if

(Khvh, vh)`2 ≥ 0 for all vh ∈ Rn.

For more general (in particular non-linear) systems the concept of A-stability is not
sufficient.

Definition 2.7. A Runge-Kutta method is called B-stable, if for all initial-value problems
with

(f(t, w) − f(t, v), w − v) ≤ 0

the approximations satisfy:

‖wj+1 − vj+1‖ ≤ ‖wj − vj‖

for all step sizes τ > 0.

Obviously, an B-stable method applied to a dissipative system is contractive for all step
sizes τ > 0.

Remark: A good implementation of a Runge-Kutta method requires an efficient step size
control. In principle, one tries to choose the step size in each step such that the new local
error does not exceed a prescribed tolerance.
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If the derived estimates for the discretization error is applied to the fully discretized
parabolic problem

〈u′(t), v〉 + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0

by the θ-method under the assumptions of contractivity and coerciveness of a, then one
obtains the following estimate for the discretization error:

‖uj
h − u(tj)‖H ≤ ‖uj

h − uh(tj)‖H + ‖uh(tj) − u(tj)‖H

with

‖uh(tj) − u(tj)‖H ≤ ‖u0h − Rhu0‖H e
−µ1tj/c + ‖(I − Rh)u(tj)‖H

+

∫ tj

0

‖[(I −Rh)u(s)]
′‖H e

−µ1(tj−s)/c ds

‖uj
h − uh(tj)‖H ≤ ‖u0

h − u0h‖H + τ

∫ tj

0

‖u′′h(s)‖H ds = τ

∫ tj

0

‖u′′h(s)‖H ds.

If one wants to estimate the discretization error only in dependence of the exact so-
lution u(t) of the continuous problem, then a similar strategy can be used as for the
semi-discretized problem:

The error is split into to parts:

uj
h − u(tj) =

[
uj

h − Rhu(tj)
]
+ [Rhu(tj) − u(tj)] = θj

h + ρj
h,

which can be estimated separately. Then one obtains the following result:

‖uj
h − u(tj)‖H ≤ ‖u0h − Rhu0‖H + ‖(I −Rh)u(tj)‖H

+

∫ tj

0

‖
[
(I − Rh)u(s)

]′‖H ds+ τ

∫ tj

0

‖u′′(s)‖H ds.

Hence, e.g., for the θ-method with θ ≥ 1/2 and the Courant element:

‖uj
h − u(tj)‖H =

{
O(τ + h2) for θ ∈ (1/2, 1],
O(τ 2 + h2) for θ = 1/2.

For θ < 1/2 the estimates are valid only under the strong restriction on the step size τ ,
e.g.:

τ ≤ h2

6(1 − 2θ)

for the symmetric one-dimensional model problem.
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Chapter 3

Hyperbolic Differential Equations

3.1 Initial-Boundary Value Problems for Hyperbolic

Differential Equations

Classical Formulation:

Let QT = Ω × (0, T ). Find u : QT −→ R such that the differential equation

∂2u

∂t2
(x, t) + Lu(x, t) = f(x, t) (x, t) ∈ QT

with

Lv(x) = − div(A(x) grad v(x)) + c(x)v(x)

and the boundary conditions

u(x, t) = gD(x, t) (x, t) ∈ ΓD × (0, T ),

A(x) grad u(x, t) · n(x) = gN(x, t) (x, t) ∈ ΓN × (0, T )

and the initial conditions

u(x, 0) = u0(x) x ∈ Ω,

∂u

∂t
(x, 0) = v0(x) x ∈ Ω

are satisfied.

Special case wave equation:

∂2u

∂t2
(x, t) − ∆u(x, t) = f(x, t).

95



Model problem:

utt(x, t) − uxx(x, t) = f(x, t) (x, t) ∈ (0, 1) × (0, T ),

u(0, t) = 0 t ∈ (0, T ),

u(1, t) = 0 t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ [0, 1],

ut(x, 0) = v0(x) x ∈ [0, 1].

Variational Formulation:

Find u ∈ L2((0, T ), V ) = X with

u′ ∈ L2((0, T ), H), u′′ ∈ L2((0, T ), V ∗),

such that

〈u′′(t), v〉 + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0,

u′(0) = v0.

Hence:

u′′(t) + Au(t) = F (t),

u(0) = u0,

u′(0) = v0.

Or in the following form:

d2

dt2
(u(t), v)H + a(u(t), v) = 〈F (t), v〉 for all v ∈ V,

u(0) = u0,

u′(0) = v0.

The derivatives are to be understood as generalized derivatives:

∫ T

0

ϕ(t)u′(t) dt = −
∫ T

0

ϕ′(t)u(t) dt for all ϕ ∈ C∞
0 (0, T ).

∫ T

0

ϕ(t)u′′(t) dt =

∫ T

0

ϕ′′(t)u(t) dt for all ϕ ∈ C∞
0 (0, T ).
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For studying the existence and uniqueness of the solution of an initial-boundary value
problem for a hyperbolic differential equation the problem is transformed to a first order
system by introducing

v(t) = u′(t)

With

u(t) = u0 +

∫ t

0

v(s) ds ≡ (Sv)(t).

one obtains

v′(t) + (Av)(t) = F (t),

v(0) = v0.

where

A : X −→ X∗, (Av)(t) ≡ A(Sv)(t).

It is easy to see that S : X −→ X is Lipschitz continuous:

‖Sw − Sv‖2
X =

∫ T

0

‖(Sw − Sv)(t)‖2
V dt =

∫ T

0

∥∥∥∥
∫ t

0

[w(s) − v(s)] ds

∥∥∥∥
2

V

dt

≤
∫ T

0

[∫ t

0

‖w(s) − v(s)‖V ds

]2

dt ≤
∫ T

0

t

∫ t

0

‖w(s) − v(s)‖2
V ds dt

≤
∫ T

0

t

∫ T

0

‖w(s) − v(s)‖2
V ds dt

=
1

2
T 2‖w − v‖2

X

If A is symmetric, bounded and coercive in V , then:

|〈Av −Aw, u〉| =

∣∣∣∣
∫ T

0

〈A(Sv − Sw)(t), u(t)〉 dt
∣∣∣∣ =

∣∣∣∣
∫ T

0

a((Sv − Sw)(t), u(t)) dt

∣∣∣∣

≤ µ2

∫ T

0

‖(Sv − Sw)(t)‖V ‖u(t)‖V dt ≤ µ2 ‖Sv − Sw‖X ‖u‖X

≤ µ2T√
2
‖w − v‖X‖u‖X
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and

〈Av −Aw, v − w〉 =

∫ T

0

〈A(Sv − Sw)(t), v(t) − w(t)〉 dt

=

∫ T

0

a((Sv − Sw)(t), v(t) − w(t)) dt

=

∫ T

0

a((Sv − Sw)(t), (Sv − Sw)′(t)) dt

=

∫ T

0

d

dt

1

2
a((Sv − Sw)(t), (Sv − Sw)(t)) dt

=
1

2
a((Sv − Sw)(T ), (Sv − Sw)(T )) ≥ 0.

That means that the operator A : X −→ X∗ is monotone and Lipschitz continuous.
By the simple transformation

vλ(t) = e−λtv(t)

with λ > 0 one obtains the system

vλ(t)
′ + (Aλvλ)(t) = Fλ(t)

vλ(0) = v0

with
Fλ(t) = e−λtF (t) and (Aλvλ)(t) = e−λt(Av)(t) + λ vλ(t).

It can easily be shown that Aλ : X −→ X∗ is even strongly monotone and Lipschitz con-
tinuous. The special structure of A (Volterra operator: the value of (Av)(t) depends only
on values v(s), s ∈ [0, t]) and these properties are essential for an existence theory, which
is analogous to the parabolic case: a-priori estimates, semi-discretization, compactness
argument and limit process.

Semi-Discretization:

V is replaced by an finite-dimensional subspace Vh:
Find uh : [0, T ] −→ Vh such that

d2

dt2
(uh(t), vh)H + a(uh(t), vh) = 〈F (t), vh〉 for all vh ∈ Vh,

(uh(0), vh)H = (u0, vh)H for all vh ∈ Vh,

d

dt
(uh(0), vh)H = (v0, vh)H for all vh ∈ Vh.

If a basis {ϕi : i = 1, 2, . . . , Nh} of Vh is introduced, one obtains

Mhu
′′
h(t) +Khuh(t) = f

h
(t),

Mhuh(0) = g
h
,

Mhu
′
h(0) = hh
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with the mass matrix

Mh = (Mij), Mij = (ϕj, ϕi)H ,

the stiffness matrix

Kh = (Kij), Kij = a(ϕj, ϕi)

and the vectors

uh(t) = (ui(t)), f
h
(t) = (fi), fi = 〈F (t), ϕi〉,

and

g
h

= (gi), gi = (u0, ϕi)H hh = (hi), hi = (v0, ϕi)H .

So one obtains an initial value problem. Standard form:

u′′(t) = f(t, u(t)),

u(0) = u0,

u′(0) = v0.

here with u(t) = uh(t), f(t, u(t)) = M−1
h (f

h
(t) −Khuh(t)), u0 = M−1

h gh and u0 = M−1
h gh.

3.2 Runge-Kutta Methods for Initial Value Problems

of Second-Order Ordinary Differential Equations

In this section initial value problems for second-order ordinary differential equations are
discussed. Typical applications are semi-discretized hyperbolic initial-boundary value prob-
lems.

The problem has the following general form:

Find a function u(t) such that

u′′(t) = f(t, u(t)) t ∈ [0, T ], (3.1)

u(0) = u0,

u′(0) = v0.

(3.2)

By introducing v(t) = u′(t) we obtain an equivalent first-order system:

(
u(t)
v(t)

)′

=

(
v(t)

f(t, u(t))

)
,

(
u(0)
v(0)

)
=

(
u0

v0

)
.
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If the same Runge-Kutta method is applied to both first-order differential equations,
then one obtains:

gi = uj + τ

s∑

k=1

aikhk,

hi = vj + τ

s∑

k=1

aikf(tj + ckτ, gk),

uj+1 = uj + τ

s∑

i=1

bihi,

vj+1 = vj + τ
s∑

i=1

bif(tj + ciτ, gi).

Eliminating hi results in:

gi = uj + τ
s∑

k=1

aik[vj + τ
s∑

l=1

aklf(tj + clτ, gl)],

uj+1 = uj + τ
s∑

i=1

bi[vj + τ
s∑

k=1

aikf(tj + ckτ, gk)],

vj+1 = vj + τ
s∑

i=1

bif(tj + ciτ, gi).

Hence

gi = uj + τ ci vj + τ 2

s∑

k=1

āikf(tj + ckτ, gk),

uj+1 = uj + τ vj + τ 2

s∑

i=1

b̄if(tj + ciτ, gi),

vj+1 = vj + τ
s∑

i=1

bif(tj + ciτ, gi)

with

āik =
s∑

l=1

ailalk, b̄i =
s∑

k=1

bkaki.

Example: For the θ-method one obtains:

uj+1 = uj + τ vj + τ 2θ [(1 − θ)f(tj, uj) + θf(tj+1, uj+1)],

vj+1 = vj + τ [(1 − θ)f(tj, uj) + θf(tj+1, uj+1)].

The auxiliary variable vk can be easily eliminated and one obtains:

uj+2 − 2uj+1 + uj = τ 2 [θ2f(tj+2, uj+2) + 2θ(1 − θ)f(tj+1, uj+1) + (1 − θ)2f(tj, uj)].
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Stability

We discuss the linear case (without loss of generality we can assume that f(t) ≡ 0):

Mu′′(t) +Ku(t) = 0

under the assumptions KT = K > 0 and MT = M > 0. The equivalent first-order system
reads: (

u(t)
v(t)

)′

=

(
0 I

−M−1K 0

)(
u(t)
v(t)

)
.

The matrix

J =

(
0 I

−M−1K 0

)

is anti-symmetric with respect to the scalar product

((
u1

v1

)
,

(
u2

v2

))

K,M

= (Ku1, u2)`2 + (Mv1, v2)`2.

Therefore, J is a normal matrix, the eigenvalues are purely imaginary. Consequently, the
system is dissipative.

We have for the stability function R(z) of a Runge-Kutta method:

‖R(τ J)‖K,M = max
µ∈σ(J)

|R(τµ)|.

The eigenvalues of J : (
0 I

−M−1K 0

)(
u
v

)
= µ

(
u
v

)

Hence

Ku = −µ2Mu

If 0 < λ1 ≤ λ2 ≤ . . . ≤ λN denote the eigenvalues of M−1K, then one obtains for the
eigenvalues of J :

± i
√
λ1, ± i

√
λ2, . . . ± i

√
λN .

Since the system is dissipative, A-stable methods are contractive.

Example: The θ-method is A-stable (and, therefore, contractive) for θ ≥ 1/2. However,
contrary to the parabolic case, the θ-method is never contractive for θ < 1/2, since the
stability domain contains, except for 0, no further points of the imaginary axis.
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3.3 Partitioned Runge-Kutta Methods

If two not necessarily equal Runge-Kutta methods are applied to the two differential equa-
tions, one obtains a so-called partitioned Runge-Kutta method:

gi = uj + τ

s∑

k=1

aikhk,

hi = vj + τ
s∑

k=1

a′ikf(tj + ckτ, gk),

uj+1 = uj + τ
s∑

i=1

bihi,

vj+1 = vj + τ

s∑

i=1

b′if(tj + ciτ, gi).

By eliminating hi one obtains:

gi = uj + τ
s∑

k=1

aik[vj + τ
s∑

l=1

a′klf(tj + clτ, gl)],

uj+1 = uj + τ
∑

i=1

bi[vj + τ
s∑

k=1

a′ikf(tj + ckτ, gk)],

vj+1 = vj + τ

s∑

i=1

b′if(tj + ciτ, gi).

So

gi = uj + τ ci vj + τ 2
s∑

k=1

āikf(tj + ckτ, gk),

uj+1 = uj + τ vj + τ 2

s∑

i=1

b̄if(tj + ciτ, gi),

vj+1 = vj + τ
s∑

i=1

b′if(tj + ciτ, gi)

with

āik =

s∑

l=1

aila
′
lk, b̄i =

s∑

k=1

bka
′
ki. (3.3)

Example: For the θ method with parameter θ for the first equation and with parameter
1 − θ for the second equation one obtains:

uj+1 = uj + τ vj + τ 2θ [θf(tj, uj) + (1 − θ)f(tj+1, uj+1)],

vj+1 = vj + τ [θf(tj, uj) + (1 − θ)f(tj+1, uj+1)].
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The auxiliary variables vk can easily be eliminated:

uj+2 − 2uj+1 + uj = τ 2 [θ(1 − θ) f(tj+2, uj+2) + 2θ(1 − θ) f(tj+1, uj+1) + θ(1 − θ) f(tj, uj)]

or with σ = θ(1 − θ):

uj+2 − 2uj+1 + uj = τ 2 [σ f(tj+2, uj+2) + (1 − 2σ) f(tj+1, uj+1) + σ f(tj, uj)].

Observe that, for θ = 0 and θ = 1 (i.e. for σ = 0) the total method is explicit, although it
is the combination of an explicit and an implicit Euler method.

Stability analysis

Assume that the differential equation is of the form

Mu′′(t) +Ku(t) = 0

with MT = M > 0 and KT = K > 0. Only the case θ = 0 is considered. The equivalent
first-order system reads

(
u(t)
v(t)

)′

=

(
0 I

−M−1K 0

)(
u(t)
v(t)

)
.

The partitioned method then becomes the one-step method

uj+1 = uj + τ vj,

vj+1 = vj − τ M−1Kuj+1 = −τ M−1Kuj + (I − τ 2M−1K)vj,

or after eliminating vk, the two-step method (σ = 0):

uj+2 − 2uj+1 + uj + τ 2M−1Kuj+1 = 0.

So (
uj+1

vj+1

)
=

(
I τ I

−τ M−1K I − τ 2M−1K

)(
uj

vj

)
. (3.4)

The stability analysis can be reduced to scalar problems by transforming to the basis
of eigenvectors of M−1K: Assume that the matrix M−1K has the eigenvalues ν2

i with
corresponding eigenvectors ei, i = 1, . . . , N with (Mei, ej)`2 = δij. From the ansatz

uk =
∑

i

αk
i ei and vk =

∑

i

βk
i ei

one obtains

(Kuk, uk)`2 =
∑

i

(νiα
k
i )

2 and (Mvk, vk)`2 =
∑

i

(βk
i )2
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and, therefore,

∥∥∥∥
(
uk

vk

)∥∥∥∥
2

K,M

= (Kuk, uk)`2 + (Mvk, vk)`2 =
∑

i

∥∥∥∥
(
νiα

k
i

βk
i

)∥∥∥∥
2

`2

.

From (3.4) the following conditions are obtained

(
νiα

j+1
i

βj+1
i

)
=

(
1 τνi

−τνi 1 − (τνi)
2

)(
νiα

j
i

βj
i

)
= Gi

(
νiα

j
i

βj
i

)
.

Assume that there are symmetric and positive definite 2 × 2 matrices Hi with

‖Gi‖Hi
≤ 1 for all i = 1, . . . , N. (3.5)

Then it follows:

∑

i

∥∥∥∥
(
νiα

j+1
i

βj+1
i

)∥∥∥∥
2

Hi

=
∑

i

∥∥∥∥Gi

(
νiα

j
i

βj
i

)∥∥∥∥
2

Hi

≤
∑

i

∥∥∥∥
(
νiα

j
i

βj
i

)∥∥∥∥
2

Hi

.

This shows that the method is contractive with respect to the norm

∥∥∥∥
(
uk

vk

)∥∥∥∥
2

∗

=
∑

i

∥∥∥∥
(
νiα

k
i

βk
i

)∥∥∥∥
2

Hi

.

It remains to discuss the condition (3.5).
A necessary condition for (3.5) is that all eigenvalues of the matrices Gi

1 − τ 2ν2
i

2
±
√(

1 − τ 2ν2
i

2

)2

− 1

are less or equal to 1. This is satisfied if and only if

τνi ≤ 2 for all i = 1, . . . , N.

Hence

τ ≤ 2√
λmax(M−1K)

.

Example: Application to the semi-discretized one-dimensional hyperbolic model problem:

λmax(M
−1
h Kh) ≤

12

h2
.

So, for

τ ≤ 1√
3
h

the eigenvalues of Gi are less than or equal to 1. This condition on the step size τ is less
restrictive than in the parabolic case!
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The following theorem describes necessary and sufficient conditions for (3.5):

Theorem 3.1 (Kreiss’ Matrix-Theorem). Let F be a family of d-by-d matrices. Then
the following conditions are equivalent:

(A) There is a constant CA with

‖An‖ ≤ CA for all n ∈ N, A ∈ F .

(R) There is a constant CR with

‖(z I − A)−1‖ ≤ CR

|z| − 1
for all z ∈ C with |z| > 1, A ∈ F .

(S) There are constants CS and CB ≥ 0 and, for each matrix A ∈ F there is a non-
singular matrix S with

(a) max(‖S‖, ‖S−1‖) ≤ CS,

(b) B = SAS−1 is an upper triangular matrix and

|Bij| ≤ CB min(1 − |κi|, 1 − |κj|) (3.6)

for all i 6= j, where κj denote the diagonal elements of B, which are the eigen-
values of B and of A.

(H) There is a constant CH and, for each matrix A ∈ F there is a Hermitian and positive
definite matrix H which

C−1
H ‖v‖ ≤ ‖v‖H ≤ CH ‖v‖ for all v ∈ Cd

and

‖A‖H ≤ 1.

If this theorem is applied to the family F = {Gi : i = 1, . . . , N} of 2-by2 matrices, then
it easily follows: If

τνi ≤ 2 − ε for all i = 1, . . . , N

for an arbitrary but fixed number ε > 0, then the method is contractive in the corresponding
norm.

Proof. The eigenvalues of Gi are given by

λ±(c) = 1 − c2

2
± ic

√
1 − c2

4
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with c = τνi. The corresponding eigenvectors define the transformation matrix

X =

(
1 1

λ+(c) − 1

c

λ−(c) − 1

c

)

with inverse

X−1 =
c

λ+(c) − λ−(c)




λ−(c) − 1

c
−1

−λ+(c) − 1

c
1




From

|λ±(c)| = 1,

∣∣∣∣
λ±(c) − 1

c

∣∣∣∣ = 1 and

∣∣∣∣
c

λ+(c) − λ−(c)

∣∣∣∣ =
1√

4 − c2
≤ 1

4ε− ε2

it follows that

‖X‖∞ = 2 and ‖X−1‖∞ ≤ 2

4ε− ε2

and, therefore,

‖Gn
i ‖∞ = ‖X diag(λ+(x)n, λ−(x)n)X−1‖∞ ≤ 4

4ε− ε2
= CA.

The norm introduced above is equivalent to the original norm. Hence the convergence
also holds in the original norm.

Remark: A further generalization leads to the larger class of Runge-Kutta-Nyström meth-
ods: For these methods the relation (3.3) is ignored. Then the tableau of coefficients has
the form:

c1 ā11 ā12 . . . ā1,s−1 ā1s

c2 ā21 ā22 . . . ā2,s−1 ā2s
...
cs ās1 ās2 . . . ās,s−1 āss

b1 b2 . . . bs−1 bs

b̄1 b̄2 . . . b̄s−1 b̄s

or, in compact form:
c Ā

bT

b̄T

The special case
0 0 0
1 b̄1 b̄2

b1 b2
b̄1 b̄2
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leads to the method:

uj+1 = uj + τ vj + τ 2 [b̄1f(tj, uj) + b̄2f(tj+1, uj+1)],

vj+1 = vj + τ [b1f(tj, uj) + b2f(tj+1, uj+1)].

The consistency order is 1, if
b1 + b2 = 1.

The consistency order is 2, if

b1 = b2 =
1

2
and b̄1 + b̄2 =

1

2
.

Consistency order 2 for the first equation and consistency order 1 for the second equation
is obtained, if

b1 + b2 = 1 and b̄1 + b̄2 =
1

2
.

This leads to the so-called Newmark method:

uj+1 = uj + τ vj +
τ 2

2
[(1 − 2β)f(tj, uj) + 2βf(tj+1, uj+1)],

vj+1 = vj + τ [(1 − γ)f(tj, uj) + γf(tj+1, uj+1)].
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