Monday, January 19, 10.15–11.45, T 212

Consider the initial-value problem

$$u'(t) = f(t, u(t)) \quad \text{for } t > 0,$$

 $u(0) = u_0,$ (9.1)

where $u: \mathbb{R}_0^+ \to X$ and $f: \mathbb{R}_0^+ \times X \to X$ with the Banach space $(X, \|\cdot\|)$.

49 Assume that there exists a constant L > 0 such that

$$||f(t, w) - f(t, v)|| \le L||w - v|| \quad \forall t \in \mathbb{R}_0^+ \quad \forall v, w \in X.$$

Show that, for each t_i and u_i , there exists a unique solution u_{i+1} of the equation

$$u_{j+1} = u_j + \tau f(t_j + \tau, u_{j+1}),$$

if $\tau < 1/L$.

Hint: Apply Banach's fixed point theorem.

| 50 | Assuming X is a Hilbert space with the inner product (\cdot, \cdot) and that

$$||f(t, w) - f(t, v)|| \le L ||w - v|| \quad \forall t \in \mathbb{R}_0^+ \quad \forall v, w \in X,$$

and

$$(f(t, w) - f(t, v), w - v) \leq 0 \quad \forall t \in \mathbb{R}_0^+ \quad \forall v, w \in X,$$

show that, for each $\tau > 0$, t_j and u_j there exists a unique solution u_{j+1} of the equation

$$u_{j+1} = u_j + \tau f(t_j + \tau, u_{j+1}).$$

Hint: Apply Banach's fixed point theorem to the following equivalent equation

$$u_{j+1} = G(u_{j+1}) := (1 - \rho)u_{j+1} + \rho[u_j + \tau f(t_j + \tau, u_{j+1})],$$

for some parameter $\rho \in (0, 1)$. Estimate

$$||G(w) - G(v)||^2 = (G(w) - G(v), G(w) - G(v)),$$

and choose $\rho \in (0, 1)$ such that G is a contraction.

For the following exercises we consider the implicit Euler method, i. e.,

$$u_{j+1} = u_j + \tau f(t_{j+1}, u_{j+1}).$$

Let

$$\psi_{\tau}(t+\tau) = \frac{1}{\tau} [u(t+\tau) - u(t)] - f(t+\tau, u(t+\tau))$$

denote the consistency error of the implicit Euler method, where u(t) is the solution of (9.1). Furthermore,

$$e_k := u(t_k) - u_k$$

denotes the global error.

51 Show that the following estimate holds if $u''(\cdot)$ exists:

$$\|\psi_{\tau}(t+\tau)\| \leq \int_{t}^{t+\tau} \|u''(s)\| ds.$$

52 Show that

$$u(t_{j+1}) = u(t_j) + \tau f(t_{j+1}, u(t_{j+1})) + \tau \psi_{\tau}(t_{j+1}),$$

and

$$e_{j+1} = e_j + \tau [f(t_{j+1}, u(t_{j+1})) - f(t_{j+1}, u_{j+1})] + \tau \psi_\tau(t_{j+1}).$$
 (9.2)

 $\boxed{53}$ Let the assumptions of exercise $\boxed{50}$ be fulfilled. Show that the following estimate holds:

$$||e_{j+1}|| \le ||e_j|| + \tau ||\psi_{\tau}(t_{j+1})||.$$

Hint: Multiply (9.2) by e_{j+1} and apply Cauchy's inequality to the right hand side.

 $\boxed{54}$ Let the assumptions of exercise $\boxed{50}$ be fulfilled. Show that

$$||u(t_j) - u_j|| \le \tau \int_0^{t_j} ||u''(s)|| ds,$$

if $u''(\cdot)$ exists.