
Numerical Methods for Partial Differential Equations WS 2008 / 2009
Tutorial 8 Monday, January 12, 10.15–11.45, T 212

We consider the elliptic problem: Find u(x) such that

−u′′(x) = 8 x ∈ (0, 1) ,

u(0) = −1 ,

u′(0) = 0 ,

(8.1)

and its corresponding variational formulation

find u ∈ V0 : a(u, v) = 〈F, v〉 ∀v ∈ V0 , (8.2)

and the corresponding discrete problem

Kh uh = f
h
. (8.3)

43 Embed your MDS code from Tutorial 7 in a class MDSPreconditioner where you
have a member function solve similar to the one in your existing Jacobi precondi-
tioner class, e. g., MDSPreconditioner::solve (const Vector& r, Vector& w).
Look to the pseudo code at the very end of this assignment.

Solve system (8.3) using the preconditioned CG method with this MDS precondi-
tioner.

44 Solve same the system using the preconditioned conjugate gradient method with
the following strategies:

a) without any preconditioner (M = I),

b) with the Jacobi preconditioner (M = diag (Kh)),

c) with the MDS preconditioner on two, four, and eight levels (L = 2, 4, 8).

Let hf denote the mesh size of the finest grid in the whole computation, all the
coarser grids are nested. Fill in the following table:

Number of iterations

no prec. Jacobi MDS (L = 2) MDS (L = 4) MDS (L = 8)
hf = 1/800
hf = 1/1600

optional: CPU time

no prec. Jacobi MDS (L = 2) MDS (L = 4) MDS (L = 8)
hf = 1/800
hf = 1/1600

How do the number of iterations (and the CPU time) depend on the mesh size and
the number of unknowns?

This finishes the tutorials on stationary problems. We consider now the abstract
problem

d

dt
(u(t), v)H + a(u(t), v) = 〈f(t), v〉 ∀v ∈ V , for t ∈ (0, T ) a.e.,

u(0) = u0 ,
(8.4)

17



where V and H are separable Hilbert spaces with V ⊂ H dense and there exists c > 0

‖v‖H ≤ c ‖v‖V ∀v ∈ V .

Furthermore, let a(·, ·) be a bilinear form on V , u0 ∈ H, and f ∈ L2((0, T ), V ∗).

45 Show that for all λ ∈ R: The function u ∈ H1((0, T ); H) is a solution to (8.4) if
and only if uλ ∈ H1(0, T ); H) is a solution to

d

dt
(uλ(t), v)H + aλ(uλ(t), v) = 〈fλ(t), v〉 ∀v ∈ V , for t ∈ (0, T ) a.e.,

uλ(0) = u0 ,

with

uλ(t) = e−λtu(t) , aλ(w, v) + λ(w, v)H , fλ(t) = e−λtf(t) .

46 In your lecture notes you find a theorem which states the existence and uniqueness
of a solution to (8.4) under the condition that the bilinear form a(·, ·) is coercive
and bounded, i. e., there exist constants µ2 ≥ µ1 > 0 with

a(v, v) ≥ µ1 ‖v‖2
V ∀v ∈ V ,

a(u, v) ≤ µ2 ‖u‖V ‖v‖V ∀u, v ∈ V .

Using that theorem and example 45 , show that a unique solution also exists if we
replace the coercivity assumption by the following weaker condition (called G̊arding
inequality): There exists λ ∈ R and µ1 > 0 with

a(v, v) + λ‖v‖2
H ≥ µ1 ‖v‖2

V ∀v ∈ V .

47 Consider the bilinear form

a(w, v) :=

∫ 1

0

a(x) w′(x) v′(x) + b(x) w′(x) v(x) + c(x) w(x) v(x) dx

in H1(0, 1) with a, b, c ∈ L∞(0, 1) and a0 = infx∈(0,1) a(x) > 0. Show the G̊arding
inequality: There exist constants λ ∈ R and µ1 > 0 with

a(v, v) + λ‖v‖2
L2(0, 1) ≥ µ1 ‖v‖2

H1(0, 1) ∀v ∈ H1(0, 1) .

48 Assume that a(·, ·) is bounded an coercive with coercivity constant µ1 > 0. Show
that

‖θh(t)‖H ≤ ‖θh(0)‖H e−µ1t/c2 +

∫ t

0

‖ρ′h(s)‖He−µ1 (t−s)/c2 ds ,

where θh and ρh are defined according to the lecture notes.
Hint: Modify the proof in the lecture notes, use the coercivity, and investigate the
term

d

dt

[
‖θh(t)‖H eµ1 t/c2

]
.

18



Hints for MDS: In order to uncouple the problem and the solver, use (not necessarily
exactly) the following structure. The comments indicate that you have to complete, fill
in, or rewrite according to your current implementation.

typedef valarray<double> Vector;

class MDSPreconditioner
{
public:

MDSPreconditioner (int lvls)
: levels(lvls), jacobi(lvls) // (reserve lvls entries in jacobi)

{ ; }

void setJacobi (int l, const Vector& diag)
{ /* set jacobi[l] to diag; */ }

void solve (const Vector& r, Vector& w)
{ /* call the routine MDS (...) on finest level */ }

private:
int levels;
vector<JacobiPreconditioner> jacobi;

void MDS (int l, const Vector& r, Vector& w);
// (this is essentially the routine from Tutorial 7)

{
// jacobi[l].solve (r, w);
if (l != 0)
{

Restrict (r, r_coarse);
MDS (l-1, r_coarse, w_coarse);
Prolongate (w_coarse, w_fine);
w += w_fine;

}
}

}; // class MDSPreconditioner

void main ()
{
...
MDSPreconditioner M(levels);
// create coarsest mesh

for (l=0; l<levels; l++)
{
// assemble stiffness matrix K, load vector f, implement B.C.
// M.setJacobi (l, ...)
// if (l != levels-1) refineUniform (...)

}

CG (K ... f ... M ...);
...

} // main

19


