Tutorial 7

In this tutorial we consider the MDS (multilevel diagonal scaling) preconditioner. Let $\{\mathcal{T}_\ell\}_{1<\ell< L}$ be a family of subdivisions of the interval $\Omega=(0,\,1)$ given by the nodes

$$0 \le i \le N_{\ell}$$
.

In the following we fix a uniform mesh \mathcal{T}_1 and a fixed number of levels $L \geq 1$, and we define $\mathcal{T}_2, \ldots, \mathcal{T}_L$ recursively by refinement as shown below.

The mesh \mathcal{T}_1 is called *coarsest grid*, whereas \mathcal{T}_L is the *finest grid*. When comparing two subsequent grids \mathcal{T}_{ℓ} , $\mathcal{T}_{\ell+1}$, these are called *coarse* and *fine grid*, respectively.

37 Let w_{ℓ} be a finite element function on the coarse grid \mathcal{T}_{ℓ} :

$$w_{\ell}(x) = \sum_{i=0}^{N_{\ell}} w_{\ell,i} \, \varphi_{\ell,i}(x) \,.$$

Find a representation of w_{ℓ} using the basis functions $\{\varphi_{\ell+1,i}\}_i$ associated to the fine grid $\mathcal{T}_{\ell+1}$ such that

$$w_{\ell}(x) = \sum_{i=0}^{N_{\ell+1}} w_{\ell+1,i} \varphi_{\ell+1,i}(x) .$$

Represent the relation between the coefficient vectors $\underline{w}_{\ell+1} = (w_{\ell+1,i})_{i=0,\dots,N_{\ell+1}}$ and $\underline{w}_{\ell} = (w_{\ell,i})_{i=0,\dots,N_{\ell}}$ by an $N_{\ell+1} \times N_{\ell}$ matrix $I_{\ell}^{\ell+1}$ such that

$$\underline{w}_{\ell+1} = I_{\ell}^{\ell+1} \, \underline{w}_{\ell} \, .$$

[38] Let $R: H^1(0, 1) \to \mathbb{R}$ be a continuous linear functional. Furthermore, for the coefficient vector $\underline{r}_{\ell+1} = (r_{\ell+1,i})_{i=0,\dots,N_{\ell+1}}$ defined by the relation

$$r_{\ell+1,i} := \langle R, \varphi_{\ell+1,i} \rangle,$$

we have

$$\langle R, v_{\ell+1} \rangle = \sum_{i=0}^{N_{\ell+1}} r_{\ell+1,i} v_{\ell+1,i} = (\underline{r}_{\ell+1}, \underline{v}_{\ell+1})_{\ell_2}.$$

Find a representation of the evaluation of this functional for a finite element function v_{ℓ} defined on the coarse grid \mathcal{T}_{ℓ} :

$$\langle R, v_{\ell} \rangle = \sum_{i=0}^{N_{\ell}} r_{\ell,i} v_{\ell,i} = (\underline{r}_{\ell}, \underline{v}_{\ell})_{\ell_2}.$$

Show the following relation between the coefficient vectors $\underline{r}_{\ell+1} = (r_{\ell+1,i})_{i=0,\dots,N_{\ell+1}}$ and $r_{\ell} = (r_{\ell,i})_{i=0,\dots,N_{\ell}}$:

$$\underline{r}_{\ell} = I_{\ell+1}^l \, \underline{r}_{\ell+1} \,, \qquad \text{with } I_{\ell+1}^l = (I_{\ell}^{\ell+1})^\top \,.$$

Hint:

$$(\underline{r}_{\ell}, v_{\ell})_{\ell_2} = \langle R, v_{\ell} \rangle = (\underline{r}_{\ell+1}, \underline{v}_{\ell+1})_{\ell_2} = (\underline{r}_{\ell+1}, I_{\ell}^{\ell+1} \underline{v}_{\ell})_{\ell_2}.$$

- Write a function RefineUniform(\downarrow coarsemesh, \uparrow finemesh), which computes the refined grid $\mathcal{T}_{\ell+1}$ (finemesh) starting from the coarse mesh \mathcal{T}_{ℓ} (coarsemesh) as described above.
- Write a function Prolongate(\psiconarsevector, \forall finevector) which computes $\underline{w}_{\ell+1} = I_{\ell}^{\ell+1} w_{\ell}$, where coarsevector= \underline{w}_{ℓ} and finevector= $\underline{w}_{\ell+1}$.

Write a function Restrict(\downarrow finevector, \uparrow coarsevector) which computes $\underline{w}_{\ell} = I_{\ell+1}^{l} \underline{w}_{\ell+1}$, where finevector= $\underline{w}_{\ell+1}$ and coarsevector= \underline{w}_{ℓ} .

41–42 Implement the MDS preconditioner C_{MDS}^{-1} for a hierarchy of recursively refined grids $\mathcal{T}_1, \ldots, \mathcal{T}_\ell$, i. e., implement the operation

$$\underline{w}_{\ell} = C_{\text{MDS}}^{-1} \underline{r}_{\ell} .$$

For $\ell = 1, ..., L$ we define $D_{\ell} = \operatorname{diag}(K_{\ell})$.

1. If there is only one grid (L = 1), then the MDS preconditioner coincides with the Jacobi preconditioner, i. e.,

$$\underline{w}_1 = D_1^{-1} \, \underline{r}_1 \, .$$

- 2. For two grids L=2, the correction \underline{w}_2 is defined as the sum of
 - the correction obtained by the Jacobi preconditioner applied to the residual \underline{r}_2 on the fine grid,
 - and the (prolongated) correction obtained by the Jacobi preconditioner on the coarse grid for the (restricted) residual \underline{r}_1 , i. e.,

$$\underline{w}_2 = D_2^{-1} \, \underline{r}_2 + I_1^2 \, \underline{w}_1 \,,$$

with

$$\underline{w}_1 = D_1^{-1} \underline{r}_1, \quad \text{where } \underline{r}_1 = I_2^1 \underline{r}_2.$$

3. For a hierarchy of grids $\mathcal{T}_1, \ldots, \mathcal{T}_\ell$ we have the recursive definition:

$$\begin{split} C_{\text{MDS},1}^{-1} &= D_1^{-1} \,, \\ C_{\text{MDS},l}^{-1} &= D_\ell^{-1} + I_{\ell-1}^l \, C_{\text{MDS},l-1} \, I_\ell^{\ell-1} \,. \end{split}$$

and $C_{\text{MDS}} := C_{\text{MDS},L}$.

 $\mathit{Hint} \colon$ The operation $\underline{w}_\ell = C_{\mathrm{MDS},l}^{-1}\,\underline{r}_\ell$ for l>1 is equivalent to

$$\begin{split} \underline{r}_{\ell-1} &= I_\ell^{\ell-1}\,\underline{r}_\ell\,,\\ \underline{w}_{\ell-1} &= C_{\mathrm{MDS},l-1}^{-1}\,\underline{r}_{\ell-1}\,,\\ \underline{w}_\ell &= I_{\ell-1}^l\,\underline{w}_{\ell-1}\,. \end{split}$$

Hence, use a recursive function like

```
void MDS (int 1, const Vector& r, Vector& w)
{
    . . .
    if (1 == 1)
        {
            w = JacobiPreconditioner.solve (1, r);
        }
```

```
else
{
    w = JacobiPreconditioner.solve (1, r);
    Restrict (r, r_coarse);
    MDS (1-1, r_coarse, w_coarse);
    Prolongate (w_coarse, w_fine);
    w += w_fine;
}
```

Preview to Tutorial 08 (in January):

- Embed your MDS code in a class MDSPreconditioner where you have a member function solve similar to the one in your existing Jacobi preconditioner class, e.g., Vector MDSPreconditioner::solve (const Vector& r).
 - Consider a FEM discretized boundary value problem of your choice and solve it using the preconditioned CG method using the MDS preconditioner.
- Numerical comparisons of CG with Jacobi and MDS (with different levels etc.).