Numerical Methods for Partial Differential Equations WS 2008 / 2009
Tutorial 5 Monday, 24 November 2008, 10.15-11.45, T 212

Write a function ImplementRobinBC(|i, |g, |alpha, [matrix, [vector) toim-
plement the Robin boundary condition

u' () = o) (QR(%‘) - U(l"z‘))

for given values g=gg(z;), alpha=a(z;) at the boundary node x; identified by the in-
dex i=i. The function ImplementRobinBC must update the stiffness matrix matrix
and the load vector vector, previously computed by AssembleStiffnessMatrix
and AssembleLoadVector, respectively, in the case of homogeneous Neumann con-
ditions.

Write a function ImplementDirichletBC(|i, |g, [matrix, [vector) to imple-
ment the Dirichlet boundary condition

u(z;) = gp(zi)

for a given value g=gp(x;) at the boundary node z; identified by the index i=i.
The function ImplementDirichletBC must update the stiffness matrix matrix and
the load vector vector, previously computed by AssembleStiffnessMatrix and
AssemblelLoadVector, respectively, in the case of homogeneous Neumann condi-
tions, and by ImplementRobinBC.

Hint: Assume that applying AssembleStiffnessMatrix, AssembleLoadVector and
ImplementRobinBC yields the following linear system

Ko Ko Ko Ug fo
Ky K1 Ko Uy = f1
Ky Ko Ky Uz f2

and that we want to impose the Dirichlet boundary condition ug = u(zg) = gp(x¢) =
go- In this case, we can replace the first equation by Kyyug = Kgogo and substitute
ug by go in the remaining equations. The modified system reads

Ko O 0 U Koogo
0 Ku Ko ur | =1 fi— Kiogo
0 Ko Ky Uy fo — K290

Write a function Mult (|matrix, |vector, Tresult) which computes the matrix-
vector product result=K u of a given tridiagonal matrix K (matrix), implemented
by the data type Matrix (see Exercise 16 in Tutorial 3), and of a given vector
vector= u.

If you like, you can then use C**’s operator overloading to allow x = A * y;

inline Vector operator* (const Matrix& mat, const Vector& vec) {
Vector res(vec.size ());
Mult (mat, vec, res);
return res;

}

Define a C*™* class Preconditioner which implements the Jacobi Preconditioner
Cy = D, = diag(K}). Write a function (or a member function of the class
Preconditioner which solves the linear system

Chwy, =1y
for C, = Dy, (diagonal) and for a given vector r,.

Write a function Richardson(|A, [x, |b, |C, [max_iter, [tol) to solve the
linear system

Ar =10
by the preconditioned Richardson method:

z(n+1) - g(n) + 0—1@ _ Ag("))
with the stopping criterion

I, = 1o~ A2, < el

where A=A, x=2 in input and x=z" in output, b=b, C=C and tol=e¢. In input,

maxiter is the maximal number of iterations. In output, maxiter=n returns the
number of iterations needed to satisfy the stopping criterion.

Hint: use the template Richardson.hpp and rewrite it for your own purposes, or
use, e.g., std::valarray<double> (#include <valarray>) as a vector class.

Use your program to discretize the following boundary value problem:

Find a function u(z) satisfying

—u"(z) = f(x) x €}
u(z) = gp(x) xelp

—(LL’) = rzely

with the data f(z) =8, Q2= (0, 1), I'p = {0}, gp(z) = —1, 'y = {1}. Then solve
the discretized problem
Knuy, = [,

by the preconditioned Richardson method with the Jacobi preconditioner C) =
Dh = dlag (Kh)

// file richardson.hpp

#ifndef __RICHARDSON_H
#define __RICHARDSON_H

// Iterative template routine -- preconditioned Richardson

//

// RICHARDSON solves the linear system Ax=b using

// the preconditioned richardson iteration.

// The returned value indicates convergence within

// max_iter iterations (return value 0)

// or no convergence within max_iter iterations (return value 1)
// Upon successful return (0), the output arguments have the

// following values:

// x: computed solution
// mat_iter: number of iterations to satisfy the stopping criterion
// tol: residual after the final iteration

template <class MATRIX, class VECTOR, class PRECONDITIONER, class REAL>
int
RICHARDSON (const MATRIX & A, VECTOR & x, const VECTOR & b,
const PRECONDITIONER & M, int & max_iter, REAL & tol)

{

REAL resid;

VECTOR z(b.size ());

REAL normb = norm (b);

VECTOR r = b - A * x;

if (normb == 0.0) normb = 1;
resid = norm (r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = 0;

return O;
}
for (int i=1; i<max_iter; i++)
{
z = M.solve (r);
X += z;

r=D>b-A % x;
resid = norm(r) / normb;

if (resid <= tol)
{
tol = resid;
max_iter = 1i;
return O;

}

tol = resid;
return 1;

}

#endif // __RICHARDSON_H

10

