Monday, 17 November 2008, 10.15–11.45, T 212

Let  $\mathcal{T}_h$  be an equidistant subdivision of (0, 1). Show that there exists a constant  $C_1 > 0$  such that

$$|v - I_h v|_{H^1(0,1)} \le C_1 h ||v''||_{L_2(0,1)} \quad \forall v \in C^2(0,1).$$
 (4.1)

*Hint:* Perform the analogous steps as for the  $L_2$ -estimate in lecture notes.

- Closure principle: Show that all expressions in (4.1) are continuous with respect to the  $H^2$ -norm. (Then, it follows that the inequality holds for all  $v \in H^2(0, 1)$ , because one can show that  $C^2(0, 1)$  is dense in  $H^2(0, 1)$ .)

  Hint: Show Lipschitz conditions for the left and the right hand side of (4.1).
- Let  $\mathcal{T}_h$  be an equidistant subdivision of (0, 1) and let  $V_{0h}$  be the space of piecewise affine linear functions vanising at 0. Estimate the condition number of the stiffness matrix  $K_h$  of our model problem from below and show that there exists a constant  $C_2 > 0$  such that i. e., show an estimate of the form

$$\kappa(K_h) \geq C_2 h^{-2}.$$

Hint: Use the Rayleigh quotient for the special vector  $\underline{v}_h = (1, 0, \dots, 0)^{\top}$  in order to obtain a loer bound for  $\lambda_{\max}(K_h)$ . For an upper bound of  $\lambda_{\min}(K_h)$  use the Rayleigh quotient for the special vector  $\underline{v}_h = (h, 2h, 3h, \dots, 1)^{\top}$ .

Let  $\mathcal{T}_h$  be an equidistant subdivision of (0, 1) and let  $V_{0h}$  be the space of piecewise affine linear functions vanising at 0. Estimate the condition number of the mass matrix  $M_h$  from above, i. e., show an estimate of the form

$$\kappa(M_h) \leq C_3 h^{\beta},$$

for some constants  $C_3 > 0$  and  $\beta \in \mathbb{R}$ .

Let  $\Omega$  be a bounded domain in  $\mathbb{R}^2$ , and let  $\Gamma_D$ ,  $\Gamma_N \subset \partial \Omega$  be disjoint such that  $\overline{\Gamma_D} \cup \overline{\Gamma_N} = \partial \Omega$ . Derive the variational formulation for the following boundary value problem:

$$\begin{aligned} -\Delta u(x) &= f(x) & \forall x \in \Omega, \\ u(x) &= g_D(x) & \forall x \in \Gamma_D, \\ \frac{\partial u}{\partial n}(x) &= g_N(x) & \forall x \in \Gamma_N. \end{aligned}$$

In particular specify V,  $V_0$  and  $V_g$ .

Let  $\widehat{T} := \{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, x + y \leq 1\}$  be the two-dimensional reference element with the corner points  $\xi_0 = (0, 0), \ \xi_1 = (1, 0), \ \text{and} \ \xi_2 = (0, 1)$  Let  $\widehat{\varphi}_0, \ \widehat{\varphi}_1, \ \text{and} \ \widehat{\varphi}_2$  denote the affine linear functions on  $\widehat{T}$  which fulfill

$$\widehat{\varphi}_i(\xi_j) = \delta_{ij} \quad \forall i, j \in \{0, 1, 2\}.$$

Derive an explicit formula for  $\widehat{\varphi}_0$ ,  $\widehat{\varphi}_1$ , and  $\widehat{\varphi}_2$  in terms of  $\xi = (\xi^{(1)}, \xi^{(2)})$ .

