Monday, 10 November 2008, 10.15–11.45, T 212

Let $\Omega = (0, 1)$, $\Gamma_D = \{0\}$, and $\Gamma_R = \{1\}$. Consider the following one-dimensional boundary value problem: Find u(x) such that

$$-u''(x) = f(x) \qquad \text{for } x \in \Omega,$$

$$u(x) = g_D(x) \qquad \text{for } x \in \Gamma_D,$$

$$u'(x) = \alpha(x) (g_R(x) - u(x)) \quad \text{for } x \in \Gamma_R.$$

$$(3.1)$$

We discretize this problem using the FEM with Courant elements. Consider the nodes $0 = x_0 < x_1 < \cdots < x_{n_h} = 1$ which define a mesh (subdivision) \mathcal{T}_h of Ω with the elements $T_k = (x_{k-1}, x_k), k = 1, \ldots, n_h$. We introduce the finite element space

$$V^h := \{ v_h \in C(\overline{\Omega}) : v_{h|T} \in P_1 \text{ for all } T \in \mathcal{T}_h \}$$

whose basis is given by the nodal (hat) functions φ_i , $i = 0, \ldots, n_h$, defined by

$$\varphi_i(x_i) = \delta_{ij}$$
 for $i, j = 0, \dots, n_h$.

In the following exercises we start to develop a C/C^{++} program that will allow us to compute the finite element approximation u_h of the weak solution u to (3.1).

Notation: We indicate input parameters of a C/C^{++} function by " \downarrow " and output parameters by " \uparrow ". If not pointed out explicitly, the functions discussed below have no return value.

Write a function ElementStiffnessMatrix(\downarrow xa, \downarrow xb, \uparrow element_matrix) which for given nodes $xa = x_{k-1}$ and $xb = x_k$ returns the element stiffness matrix element_matrix = $K_h^{(k)}$ on the element T_k , defined by

$$K_{h}^{(k)} = \begin{bmatrix} \int_{T_{k}} (\varphi'_{k-1}(x))^{2} dx & \int_{T_{k}} \varphi'_{k-1}(x) \varphi'_{k}(x) dx \\ \int_{T_{k}} \varphi'_{k}(x) \varphi'_{k-1}(x) dx & \int_{T_{k}} (\varphi'_{k}(x))^{2} dx \end{bmatrix}$$
 for $k = 1, \dots, n_{h}$.

Hint: You can use the type typedef double Mat22[2][2]; to represent a two-by-two matrix.

Write a function ElementLoadVector(\downarrow (*f)(x), \downarrow xa, \downarrow xb, \uparrow element_vector) which for a given function $f = f \in C[0, 1]$ and the nodes $xa = x_{k-1}$ and $xb = x_k$ returns the 2-dimensional element load vector element_vector = $f_h^{(k)}$ on the element T_k , defined by

$$f_h^{(k)} = \begin{pmatrix} \int_{T_k} f(x) \, \varphi_{k-1}(x) \, dx \\ \int_{T_k} f(x) \, \varphi_k(x) \, dx \end{pmatrix} \quad \text{for } k = 1, \dots, n_h.$$

Use the trapezoidal rule to approximate above integrals:

$$\int_a^b g(x) dx \simeq \frac{b-a}{2} [g(a) + g(b)].$$

Hint: You can use the following types and function header:

typedef double (*RealFunction)(double x);
typedef double Vec2[2];
void ElementLoadVector (RealFunction f, double xa, double xb, Vec2& element_vector);

Define a data type Mesh which contains all the information on the mesh \mathcal{T}_h , see also your lecture notes.

Hint: Use class in C^{++} , or struct in C.

Define an efficient data type Matrix for the sparse stiffness matrix K_h exploiting the fact that K_h is tridiagonal.

Hint: Use class or struct.

Consider now the case $\Gamma_D = \emptyset$, $\Gamma_R = \{0, 1\}$, and $\alpha(x) = 0$, which corresponds to the homogeneous Neumann boundary conditions.

Urite a function AssembleStiffnessMatrix(\mesh, \frac{matrix}{matrix}) that assembles the global $(n_h + 1) \times (n_h + 1)$ stiffness matrix $matrix = K_h$ for a given subdivision $mesh = T_h$ of Ω .

Hint: Set $K_h = 0$, then start with $K_h^{(1)}$ and loop over all elements T_k to update the matrix K_h . On each element T_k , use the function ElementStiffnessMatrix to compute $K_h^{(k)}$ and pay attention to put the entries of $K_h^{(k)}$ at the correct positions in the global matrix K_h .

Write a function AssembleLoadVector(\downarrow (*f)(x), \downarrow mesh, \uparrow vector) that assembles the global $(n_h + 1)$ -dimensional load vector vector = \underline{f}_h for a given mesh mesh = \mathcal{T}_h of Ω .

Hint: Set $\underline{f}_h = 0$, then start with $\underline{f}_h^{(1)}$ and loop over all elements T_k to update the vector \underline{f}_h . On each element T_k , use the function ElementLoadVector to compute $f_h^{(k)}$ and pay attention to add the entries in the right place.

Test the implemented data types and functions using some simple examples, e.g., consider equidistant nodes x_i for different values of n_h , and simple functions f(x) = 1, f(x) = x, etc.

Provide your solution on a USB stick or send it by e-mail before Monday 9.45am.