Numerical Methods for Partial Differential Equations WS 2008 / 2009
Tutorial 3 Monday, 10 November 2008, 10.15-11.45, T 212

Let Q@ = (0,1), I'p = {0}, and I'r = {1}. Consider the following one-dimensional
boundary value problem: Find u(x) such that
—u"(z) = f(x) for z € Q0
u(z) = gp(x) forx e I'p, (3.1)
u'(z) = a(z) (gr(z) —u(z)) forzeTkg.
We discretize this problem using the FEM with Courant elements. Consider the nodes

0= <z <---<xy,, =1 which define a mesh (subdivision) 7}, of {2 with the elements
Ty = (vx_1, 1), k= 1,...,n,. We introduce the finite element space

V' i={v, € C(Q): vpr € P, for all T € T}
whose basis is given by the nodal (hat) functions ¢;, i =0, ..., ny, defined by
i(z;) =106;; fori, j=0,...,np.
In the following exercises we start to develop a C/C**program that will allow us to

compute the finite element approximation u; of the weak solution u to (3.1).

Notation: We indicate input parameters of a C/CTtfunction by “|” and output pa-
rameters by “1”. If not pointed out explicitly, the functions discussed below have no
return value.

Write a function ElementStiffnessMatrix(|xa, |xb, Telement_matrix) which
for given nodes xa=ux,_; and xb=ux; returns the element stiffness matrix
element matrix = K f(Lk) on the element T}, defined by

[Ga@re [da@dee

K}(Lk): fork=1,...,n,.

2
| d@en@a | (bw)
T T
Hint: You can use the type typedef double Mat22[2][2]; to represent a

two-by-two matrix.

Write a function ElementLoadVector (| (*f)(x), |xa, |xb, Telement_vector)

which for a given function f = f € C[0, 1] and the nodes xa = x;_; and

xb = x;, returns the 2-dimensional element load vector element_vector = ,(Lk)

on the element T}, defined by

f(@) pp—1(z) dz
f;gk): T fork=1,...,ny.
: f(x) ox(x) dz

Use the trapezoidal rule to approximate above integrals:
b
b—a
[awde = 25 o + g(0)].
Hint: You can use the following types and function header:

5

typedef double (*RealFunction) (double x);
typedef double Vec2[2];
void ElementLoadVector (RealFunction f, double xa, double xb, Vec2& element_vector);

Define a data type Mesh which contains all the information on the mesh 7;, see also
your lecture notes.

Hint: Use class in C™", or struct in C.

Define an efficient data type Matrix for the sparse stiffness matrix K} exploiting
the fact that K, is tridiagonal.

Hint: Use class or struct.

Consider now the case I'p =), T'gr = {0, 1}, and a(z) = 0, which corresponds to the
homogeneous Neumann boundary conditions.

Write a function AssembleStiffnessMatrix(|mesh, Tmatrix) that assembles the
global (nj, + 1) X (ny + 1) stiffness matrix matrix = Kj for a given subdivision
mesh =7; of Q.

Hint: Set K, = 0, then start with K](11) and loop over all elements T} to update
the matrix Kj. On each element T}, use the function ElementStiffnessMatrix to
compute K }(Zk) and pay attention to put the entries of K }(lk) at the correct positions
in the global matrix Kj,.

Write a function AssembleLoadVector (] (xf) (x), |mesh, Tvector) that assem-
bles the global (nj + 1)-dimensional load vector ~ vector = f, for a given mesh
mesh = 7;, of Q.

Hint: Set f , = 0, then start with ﬁ:) and loop over all elements T}, to update the
vector f . On each element T}, use the function ElementLoadVector to compute

S Elk) and pay attention to add the entries in the right place.

Test the implemented data types and functions using some simple examples, e. g., consider
equidistant nodes z; for different values of n;,, and simple functions f(z) =1, f(x) = z,
etc.

Provide your solution on a USB stick or send it by e-mail before Monday 9.45am.

