
Numerical Methods for Partial Differential Equations WS 2008 / 2009
Tutorial 3 Monday, 10 November 2008, 10.15–11.45, T 212

Let Ω = (0, 1), ΓD = {0}, and ΓR = {1}. Consider the following one-dimensional
boundary value problem: Find u(x) such that

−u′′(x) = f(x) for x ∈ Ω ,

u(x) = gD(x) for x ∈ ΓD ,

u′(x) = α(x)
(
gR(x)− u(x)

)
for x ∈ ΓR .

(3.1)

We discretize this problem using the FEM with Courant elements. Consider the nodes
0 = x0 < x1 < · · · < xnh

= 1 which define a mesh (subdivision) Th of Ω with the elements
Tk = (xk−1, xk), k = 1, . . . , nh. We introduce the finite element space

V h := {vh ∈ C(Ω) : vh|T ∈ P1 for all T ∈ Th}

whose basis is given by the nodal (hat) functions ϕi, i = 0, . . . , nh, defined by

ϕi(xj) = δij for i, j = 0, . . . , nh .

In the following exercises we start to develop a C/C++program that will allow us to
compute the finite element approximation uh of the weak solution u to (3.1).

Notation: We indicate input parameters of a C/C++function by “↓” and output pa-
rameters by “↑”. If not pointed out explicitly, the functions discussed below have no
return value.

13 Write a function ElementStiffnessMatrix(↓xa, ↓xb, ↑element matrix) which
for given nodes xa = xk−1 and xb = xk returns the element stiffness matrix

element matrix = K
(k)
h on the element Tk, defined by

K
(k)
h =


∫

Tk

(
ϕ′

k−1(x)
)2

dx

∫
Tk

ϕ′
k−1(x) ϕ′

k(x) dx∫
Tk

ϕ′
k(x) ϕ′

k−1(x) dx

∫
Tk

(
ϕ′

k(x)
)2

dx

 for k = 1, . . . , nh .

Hint: You can use the type typedef double Mat22[2][2]; to represent a
two-by-two matrix.

14 Write a function ElementLoadVector(↓(*f)(x), ↓xa, ↓xb, ↑element vector)

which for a given function f = f ∈ C[0, 1] and the nodes xa = xk−1 and

xb = xk returns the 2-dimensional element load vector element vector = f
(k)
h

on the element Tk, defined by

f
(k)
h =


∫

Tk

f(x) ϕk−1(x) dx∫
Tk

f(x) ϕk(x) dx

 for k = 1, . . . , nh .

Use the trapezoidal rule to approximate above integrals:∫ b

a

g(x) dx ' b− a

2

[
g(a) + g(b)

]
.

Hint: You can use the following types and function header:

5



typedef double (*RealFunction)(double x);
typedef double Vec2[2];
void ElementLoadVector (RealFunction f, double xa, double xb, Vec2& element_vector);

15 Define a data type Mesh which contains all the information on the mesh Th, see also
your lecture notes.

Hint: Use class in C++, or struct in C.

16 Define an efficient data type Matrix for the sparse stiffness matrix Kh exploiting
the fact that Kh is tridiagonal.

Hint: Use class or struct.

Consider now the case ΓD = ∅, ΓR = {0, 1}, and α(x) = 0, which corresponds to the
homogeneous Neumann boundary conditions.

17 Write a function AssembleStiffnessMatrix(↓mesh, ↑matrix) that assembles the
global (nh + 1)× (nh + 1) stiffness matrix matrix = Kh for a given subdivision
mesh = Th of Ω.

Hint: Set Kh = 0, then start with K
(1)
h and loop over all elements Tk to update

the matrix Kh. On each element Tk, use the function ElementStiffnessMatrix to
compute K

(k)
h and pay attention to put the entries of K

(k)
h at the correct positions

in the global matrix Kh.

18 Write a function AssembleLoadVector(↓(*f)(x), ↓mesh, ↑vector) that assem-
bles the global (nh + 1)-dimensional load vector vector = f

h
for a given mesh

mesh = Th of Ω.

Hint: Set f
h

= 0, then start with f (1)

h
and loop over all elements Tk to update the

vector f
h
. On each element Tk, use the function ElementLoadVector to compute

f (k)

h
and pay attention to add the entries in the right place.

Test the implemented data types and functions using some simple examples, e. g., consider
equidistant nodes xi for different values of nh, and simple functions f(x) = 1, f(x) = x,
etc.

Provide your solution on a USB stick or send it by e-mail before Monday 9.45am.

6


