Introduction

In the following X, Y and Z are (finite- or infinite-dimensional) Banach
spaces.
Nonlinear equations are often written in the form (fixed point form)

r = G(x) (1)
withG: D — X, D C X, or
F(z)=0 (2)

with FF': D — Y D C X.
A solution of (1) is called a fixed point of G.

Remark: An equation of the form (1) also fits into the form (2) with
F(z) = x — G(z). Any equation of the form (2) can be written in fixed
point form (1) with G(z) = « — H(z)F(z), H : D — L(Y, X), H(z)
nonsingular.

If one wants to stress the role of the data, one writes

F(x) =y (3)
with F': D — Y, D C X, or more generally
F(xz,y)=0 (4)

with FF': D — Z, D C X XY and given data y.

The concept of a well-posed problem is of great importance. A very
strong form of this concept applied to (3) is the concept of a homeo-
morphism: F' : D — Y, D C X, D open, is a homeomorphism, i.e.
F~1: F(D) — X exists and F and F~! are continuous on D and F(D),
respectively. Usually, the following local variant of this concept is consid-
ered:



Definition 0.1. The mapping ' : D — Y, D C X, D open, is a local
homeomorphism at x € D if there exist open neighborhoods U and V
of x and F(x), respectively, such that F' : U — V is a homeomorphism,
ie. F71 © V. — U exists and F and F~' are continuous on U and V,
respectively.

The following theorem provides sufficient conditions for the equation (3)
to be well-posed in this sense:
We first recall the concept of F-derivative:

Definition 0.2. A mapping F : D — Y, D C X, D open, is F-differentiable
at x € D if there is a linear and bounded operator F'(x) € L(X,Y) such
that

1
lim —(F(x + h) — F(z) — F'(z)h]| = 0.
h=0 |||
Theorem 0.1 (Inverse function theorem). Suppose that F : D — Y,
D C X, D open, has an F-derivative tn D which is continuous at xo € D
and that F'(xy) is nonsingular. Then F' is a local homeomorphism at xy.
The inverse function F~1 has an F-derivative at F(xq) and

() (Pa0)) = F'(a) ™,
The extension to more general problems of the form (4) leads to:

Theorem 0.2 (Implicit function theorem). Let F: D — Z, D C X x Y/,
D open, be continuous and let (xo,yo) € D with F(xy,y9) = 0. Assume that
OF /0x exists in D and is continuous at (xo,yo) and that OF [0z (o, yo) 18
nonsingular. Then there exist open neighborhoods U and V' of x¢ and vy,
respectively, such that, for any y € V' the equation

F(l‘,y) =0

has a unique solution x = x(y) € U and the mapping z : V — X is con-
tinuous. Moreover, if OF /0y exists at (xo, o), then x(y) is F-differentiable
at yo and

SU’(?JO) = - (g—i(ivo,yo))_ g—g(ivo,yo)-
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Remark: Although the notation x = x(y) is formally incorrect (z is used to
denote a variable as well as a function), we will nevertheless use it because
of its suggestive character.

Notation:

|z|| norm of z € X

|z|le, Euclidean norm of a vector x € R"
|A|le, spectral norm of a matrix A € L(R")

|ullog  L?*norm of u € L?(Q)

|ully  H'-norm of u € H'(Q)

(u,v) inner product of u,v € X, X Hilbert space

x -y FEuclidean inner product of x,y € R"
(u,v); inner product of u,v € H'()

(f,v) duality product of f € X* and v € X: (f,v) = f(v).






Chapter 1

Iterative methods

An iterative method generates a sequence

0 .1 k
x 7x Y 7x Y
of approximative solutions by
k+1 ko k-1 0 _
" =G 2" ), k=0,1,...,

with G, : D, — X, Dj, C X+,
An important class of iterative methods are m-step methods:

Definition 1.1 (m-step methods). Let m € N.

1. A sequence of operators (Gy) with Gy, : D, — X, D C X™ defines
an m-step method for initial values from a non-empty set D, C Dy,
iof the sequence

oM = Gk R Y e > m -1
is well-defined for all (z°,27Y,. .., a=™*) € D,.
2. An m-step method is stationary, if
Gr.=G, Dp=D
for an operator G: D — X, D C X™.

Example: A stationary one-step method is of the form



Definition 1.2 (Convergence). Let the sequence (Gy) define an iterative
method for initial values from a set D, C Dy.

1. The iterative method converges to x* € X for initial values from D,

if
AN

for all initial values (2°, 271, ... a=™) € D,.
2. The iterative method s called locally convergent if there is an ele-

ment x* € X and a neighborhood U of x* such that the iterative method
converges to x* for all initial values from D, = U™,

Definition 1.3 (quotient-convergence order, g-order). Let (Gy) define an
iterative method and let z* be the limit of a sequence (x*) generated by the
iterative method. The the sequence (x%)

1. converges q-linearly (converges with q-order 1) if there are constants
q€10,1) and K € Ny such that

|2 — 2% < qlla® = 2*||  for all k > K;

2. converges with q-order p > 1 if there are constants ¢ > 0 and
K € Ny such that

|2 — 2| < q||l2® — 2P for all k > K.

Remark: In the case p = 2 and p = 3 we speak of g-quadratic and
g-cubic convergence, respectively.

If (z¥) converges with g-order p, then the following quotient conver-
gence factor (in short: g-factor) ¢,{(«*)} is introduced:

! — |

k .
g, (2")} = lim sup :
P{( )} PN ka . x*Hp
q,{ (")} is the infimum of all possible constants ¢ in the definition from
above. An interesting special case is ¢;{(2*)} = 0. That means g-linear
convergence with arbitrarily small q.



Definition 1.4 (g-superlinear convergence). Let (Gj) define an iterative
method and let x* be the limit of a sequence (z¥) generated by the iterative
method. Then (%) converges q-superlinearly if ¢ {(z*)} = 0.

For simplicity assume that ' = 0. Then the ¢-linear convergence implies
ot — 2" < qllat ! =] < ... < ¢Fla — 2

So, the error can be estimated by a geometric sequence of the form cg”,
q < 1. For a sequence with g-order p we have

1 k

k=1 - _ 1P
PR |2 — (P = /1) [ql/(p Vlz® —2|

l2* — 2" < q
So, the error can be bounded by a sequence of the form cq‘pk, g <1lifa%is
sufficiently close to z*. This motivates the following definition:

Definition 1.5 (root-convergence order, r-order). Let (Gy) define an it-
erative method and let x* be the limit of a sequence (%) generated by the
iterative method. The the sequence (z*)

1. converges r-linearly (converges with r-order 1) if there are constants
c>0,q€]0,1) and K € Ny such that

2" — 2*|| < eq®  for all k > K;

2. converges with r-order p > 1 if there are constants ¢ > 0, ¢ € [0, 1)
and K € Ny such that

|28 — 2*|| < cq”  for all k > K.

The r-convergence order measures only the asymptotic behavior of the
error for k — oo while the g-convergence order measure the asymptotic
behavior of two consecutive errors.

Remark: In the case p = 2 and p = 3 we speak of r-quadratic and
r-cubic convergence, respectively.



If the sequence (2*) is convergent with r-order p, then the following
root-convergence factor (in short: r-factor) r,{(x*)} is introduced

1/k

lim supy,_ ., [|2% — 2*| for p=1,

(@} = {

limsupy, . [|#% — z*||"/*" for p>1.

rp{ (%)} is the infimum of all possible constants ¢ in the definition from
above. An interesting special case is r1{(2*)} = 0. That means r-linear
convergence with arbitrarily small q.

Definition 1.6 (r-superlinear convergence). Let (G}) define an iterative
method and let x* be the limit of a sequence (z¥) generated by the iterative
method. Then (z¥) converges r-superlinearly if ri{(z*)} = 0.

The Banach fixed point theorem can be seen as an important statement
on stationary one-step methods:

Theorem 1.1 (The Banach fixed point theorem). Let the mapping G :
D — X, D C X, D closed, be contractive, i.e. there is a constant q € [0, 1)
with

IG(y) — G(@)|| < qlly—z|| forallz,y € D,

and assume that G(D) C D. Then:

1. The equation
r = G(x)

has a unique solution x* in D.

2. The sequence (z¥), given by

converges to = for all initial values z° € D and

||$k+1 *H

— 2" <qlla" ~ 2

)

i.e. (z¥) converges q-linearly and, therefore, also r-linearly:
2" — 2" < ¢"[|2° —27]].
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3. Additionally we have

k
q
lz* — 2" < T llzt =2

9

Tl — 2t

l* — 2" <

The following theorem is a local variant of the Banach fixed point theo-
rem. The existence of a fixed point is assumed and only the convergence of
the iterative method is considered:

Theorem 1.2 (Ostrowski). Suppose that the mapping G : D — X, D C
X, D open, has a fized point x* € D and is F-differentiable at x*. If the
spectral radius of G'(x*) satisfies p(G'(z*)) < 1, then the stationary one-
step method generated by G is locally convergent and r-linearly convergent
with r{(2*)} < p(G'(x*)). Under the stronger condition ||G'(x*)|| < 1 the
g-linear convergence with q{(a*)} < ||G'(z*)|| follows.

Proof. Let ||G'(2*)|] < 1. The existence of the F-derivative of G at z*
implies that, for each £ > 0 there is a 6 > 0 with

|1G(2) — G(z*) — G'(a*)(z — 2*)|| < ¢el|lw — 2| for all x € K(x*,)
with K(2*,0) = {y € X : |ly — 2*|| < 6}. Therefore,

IG(z) —2™| < [G(x) = G(z") = G'(a")(z — 2")|| + |G (2") |||z — =7
< (e+ G ) Dlle — 2.

For sufficiently small € we have
|G (z) — 27| < qlle — 27|

with ¢ = ¢ + ||G'(*)|| < 1. This shows the g-linear convergence and
a{(@")} < [G'(@@)]l.
If p(G'(2%)) = limy,_o ||G"(z*)¥||"/* < 1, then there is an M € N with

|G (z*)"]| <1 for all m > M.
For the fixed point equation
r=G"(x)
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(G™(z) = G(G(...G(x)...))) the g-linear convergence of the sub-sequences
(2Fm+) oy towards the fixed point z* follows from the first part of the proof
foralll =0,1,...,m — 1 with ¢ {(z*"")} < [|G'(z*)™].

Therefore, for arbitrary but fixed m € N and € > 0, there is a number
K € N, such that

k= 2| < (G @) 4 ] =

for all £k > K and [ < m. Hence

kam+l o x*Hl/(km+Z) < [HG/(x*)mH +€](k—K)/(km+l) Hme—i—l o $*|‘1/(km+l).

This implies

lim sup || — &*|| /" < [| G/ («*)™|| +€]"/™ .

n—oo

With m — oo and ¢ — 0 we finally have

ri{(@")} < p(G'(27)).
O

In particular, the Ostrowski theorem implies the r-superlinear conver-
gence if p(G'(z*)) = 0, and the g-superlinear convergence if G’(z*) = 0.

Theorem 1.3. Suppose that the mapping G : D — X, D C X, D open,
has a fixed point x* € D, and is m times differentiable in D and the deriva-
tive G satisfies the Lipschitz-condition:

G (2) — G ()| < ||z — || for all z € D.
Then we have: If
GH () =0, forallk=1,2,...,m,

then the one-step method generated by G 1is locally convergent and has q-
order m + 1.
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Proof. By estimating the remainder of the Taylor expansion it follows

* 1 * *
|G(z) —=*|| = [[G(z) - ZEGW@ )(z —a*)|
k=0
1 (m), * * (m)(, % *\ M
< G+ e —27) = G ()] (@ — 27)"|
v %[|m
< e - atm
for some t € (0,1). This immediately implies the statements. ]

Remark: For m = 1 the last theorem implies the g-quadratic convergence,
if G'(z*) = 0 and if G’ satisfies the Lipschitz-condition.

Remark: The existence of GV (z*) guarantees the Lipschitz-condition
for G™ in a neighborhood of z*.

For an equation of the form F(z) = 0 we obtain a fixed point form
r = G(r) with
G(x) =2 — A(x) 'F(x). (1.1)

for nonsingular A(z) € L(X,Y). We study the differentiability of such a
mapping G in the next lemma:

Lemma 1.1. Assume that F': D — Y, D C X open, is F'-differentiable
atr* € D with F(x*) =0. Let A: D — L(X,Y) be continuous at x* with
nonsingular A(z*). Then there is a neighborhood U C D of x*, for which

G:U— X, G)=x—A(x)"'F(z)
18 well-defined. Moreover, G is IF'-differentiable at x* differenzierbar and
G'(z*) =1 — A(z*) 1 F'(2%).

If A is F-differentiable, the proof is trivial. If A is continuous the proof
goes as follows:

Proof. A(x*) is nonsingular, A is continuous at x*. Then A(x) is nonsingular
in a neighborhood U of z*. This shows that G is well-defined.
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For x € U we have:

HG( ) = G@") = [I = A2 ‘1F'(x*)](x—x )|

Gz
= [A@") " F' (@)@ — ") — Alz) " F(a)]
I[A@") ™ = Al2) F (@) (@ — 2")|| + [ A(2) 7 [F(z) — F(z") = F'(2") (x — 2")]||

For arbitrary € > 0 there is a § > 0 such that

IA

|A(z) — A(z")| < for all 2 € K (2", 0)
and
|F(z) — F(z*) — F'(z")(z — 2*)|| < ez — 2*|| £ ur alle 2 € K (a7, 6).
Then we have
[A@@) ™ = A(x) 7 = [[A(2) 7 [A(z) — A(z")]A(z*)
< BelA()
with 8 = || A(z*)"!| and

-1

IAG@) = IIAGY) +AA]T | = || [1+ A(z*) ' A4]

[AG) 8
S T |[A(e) AA] S 1-3e

A

Therefore,
G(x) ~ Gl) — [~ A )] (a - )
< ({2 15 ) e =l

Be
which implies that I — A(z*) 1 F’(z*) is the F-derivative of G at z*. O
This lemma shows that
p(I — A(z*) ' F' () < 1.
implies the local convergence of the corresponding one-step method. If
Al) = F'(a),
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we have G'(z*) = 0, which implies the g-superlinear convergence. One way
to guarantee this condition is the choice

A(z) = F'(x).
This leads to Newton’s method

xk—kl _ xk o F’(:Uk)_lF(xk)
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