
Introduction

In the following X, Y and Z are (finite- or infinite-dimensional) Banach
spaces.

Nonlinear equations are often written in the form (fixed point form)

x = G(x) (1)

with G : D −→ X, D ⊂ X, or

F (x) = 0 (2)

with F : D −→ Y , D ⊂ X.

A solution of (1) is called a fixed point of G.

Remark: An equation of the form (1) also fits into the form (2) with
F (x) = x − G(x). Any equation of the form (2) can be written in fixed

point form (1) with G(x) = x − H(x)F (x), H : D −→ L(Y, X), H(x)
nonsingular.

If one wants to stress the role of the data, one writes

F (x) = y (3)

with F : D −→ Y , D ⊂ X, or more generally

F (x, y) = 0 (4)

with F : D −→ Z, D ⊂ X × Y and given data y.
The concept of a well-posed problem is of great importance. A very

strong form of this concept applied to (3) is the concept of a homeo-
morphism: F : D → Y , D ⊂ X, D open, is a homeomorphism, i.e.
F−1 : F (D) −→ X exists and F and F−1 are continuous on D and F (D),

respectively. Usually, the following local variant of this concept is consid-
ered:
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Definition 0.1. The mapping F : D −→ Y , D ⊂ X, D open, is a local

homeomorphism at x ∈ D if there exist open neighborhoods U and V
of x and F (x), respectively, such that F : U → V is a homeomorphism,

i.e. F−1 : V −→ U exists and F and F−1 are continuous on U and V ,
respectively.

The following theorem provides sufficient conditions for the equation (3)

to be well-posed in this sense:

We first recall the concept of F -derivative:

Definition 0.2. A mapping F : D −→ Y , D ⊂ X, D open, is F -differentiable

at x ∈ D if there is a linear and bounded operator F ′(x) ∈ L(X, Y ) such
that

lim
h→0

1

‖h‖
(F (x + h) − F (x) − F ′(x)h‖ = 0.

Theorem 0.1 (Inverse function theorem). Suppose that F : D −→ Y ,
D ⊂ X, D open, has an F -derivative in D which is continuous at x0 ∈ D

and that F ′(x0) is nonsingular. Then F is a local homeomorphism at x0.
The inverse function F−1 has an F -derivative at F (x0) and

(F−1)′(F (x0)) = F ′(x0)
−1.

The extension to more general problems of the form (4) leads to:

Theorem 0.2 (Implicit function theorem). Let F : D −→ Z, D ⊂ X × Y ,

D open, be continuous and let (x0, y0) ∈ D with F (x0, y0) = 0. Assume that
∂F/∂x exists in D and is continuous at (x0, y0) and that ∂F/∂x(x0, y0) is

nonsingular. Then there exist open neighborhoods U and V of x0 and y0,
respectively, such that, for any y ∈ V the equation

F (x, y) = 0

has a unique solution x = x(y) ∈ U and the mapping x : V −→ X is con-
tinuous. Moreover, if ∂F/∂y exists at (x0, y0), then x(y) is F-differentiable

at y0 and

x′(y0) = −

(

∂F

∂x
(x0, y0)

)−1
∂F

∂y
(x0, y0).
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Remark: Although the notation x = x(y) is formally incorrect (x is used to

denote a variable as well as a function), we will nevertheless use it because
of its suggestive character.

Notation:

‖x‖ norm of x ∈ X
‖x‖ℓ2

Euclidean norm of a vector x ∈ R
n

‖A‖ℓ2
spectral norm of a matrix A ∈ L(Rn)

‖u‖0 L2-norm of u ∈ L2(Ω)

‖u‖1 H1-norm of u ∈ H1(Ω)
(u, v) inner product of u, v ∈ X, X Hilbert space

x · y Euclidean inner product of x, y ∈ R
n

(u, v)1 inner product of u, v ∈ H1(Ω)
〈f, v〉 duality product of f ∈ X∗ and v ∈ X: 〈f, v〉 = f(v).
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Chapter 1

Iterative methods

An iterative method generates a sequence

x0, x1, . . . , xk, . . .

of approximative solutions by

xk+1 = Gk(x
k, xk−1, . . . , x0), k = 0, 1, . . . ,

with Gk : Dk −→ X, Dk ⊂ Xk+1.

An important class of iterative methods are m-step methods:

Definition 1.1 (m-step methods). Let m ∈ N.

1. A sequence of operators (Gk) with Gk : Dk −→ X, Dk ⊂ Xm defines

an m-step method for initial values from a non-empty set D∗ ⊂ D0,
if the sequence

xk+1 = Gk(x
k, xk−1, . . . , xk−m+1), k ≥ m − 1

is well-defined for all (x0, x−1, . . . , x−m+1) ∈ D∗.

2. An m-step method is stationary, if

Gk = G, Dk = D

for an operator G : D → X, D ⊂ Xm.

Example: A stationary one-step method is of the form

xk+1 = G(xk).
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Definition 1.2 (Convergence). Let the sequence (Gk) define an iterative

method for initial values from a set D∗ ⊂ D0.

1. The iterative method converges to x∗ ∈ X for initial values from D∗

if

xk → x∗

for all initial values (x0, x−1, . . . , x−m+1) ∈ D∗.

2. The iterative method is called locally convergent if there is an ele-
ment x∗ ∈ X and a neighborhood U of x∗ such that the iterative method
converges to x∗ for all initial values from D∗ = Um.

Definition 1.3 (quotient-convergence order, q-order). Let (Gk) define an
iterative method and let x∗ be the limit of a sequence (xk) generated by the

iterative method. The the sequence (xk)

1. converges q-linearly (converges with q-order 1) if there are constants
q ∈ [0, 1) and K ∈ N0 such that

‖xk+1 − x∗‖ ≤ q ‖xk − x∗‖ for all k ≥ K;

2. converges with q-order p > 1 if there are constants q > 0 and
K ∈ N0 such that

‖xk+1 − x∗‖ ≤ q ‖xk − x∗‖p for all k ≥ K.

Remark: In the case p = 2 and p = 3 we speak of q-quadratic and

q-cubic convergence, respectively.

If (xk) converges with q-order p, then the following quotient conver-
gence factor (in short: q-factor) qp{(x

k)} is introduced:

qp{(x
k)} = lim sup

k→∞

‖xk+1 − x∗‖

‖xk − x∗‖p
.

qp{(x
k)} is the infimum of all possible constants q in the definition from

above. An interesting special case is q1{(x
k)} = 0. That means q-linear

convergence with arbitrarily small q.
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Definition 1.4 (q-superlinear convergence). Let (Gk) define an iterative

method and let x∗ be the limit of a sequence (xk) generated by the iterative
method. Then (xk) converges q-superlinearly if q1{(x

k)} = 0.

For simplicity assume that K = 0. Then the q-linear convergence implies

‖xk − x∗‖ ≤ q‖xk−1 − x∗‖ ≤ . . . ≤ qk‖x0 − x∗‖.

So, the error can be estimated by a geometric sequence of the form c qk,

q < 1. For a sequence with q-order p we have

‖xk − x∗‖ ≤ q1+p+···+pk−1

‖x0 − x∗‖pk

=
1

q1/(p−1)

[

q1/(p−1)‖x0 − x∗‖
]pk

.

So, the error can be bounded by a sequence of the form c q̄pk

, q̄ < 1 if x0 is
sufficiently close to x∗. This motivates the following definition:

Definition 1.5 (root-convergence order, r-order). Let (Gk) define an it-

erative method and let x∗ be the limit of a sequence (xk) generated by the
iterative method. The the sequence (xk)

1. converges r-linearly (converges with r-order 1) if there are constants
c ≥ 0, q ∈ [0, 1) and K ∈ N0 such that

‖xk − x∗‖ ≤ c qk for all k ≥ K;

2. converges with r-order p > 1 if there are constants c > 0, q ∈ [0, 1)
and K ∈ N0 such that

‖xk − x∗‖ ≤ c qpk

for all k ≥ K.

The r-convergence order measures only the asymptotic behavior of the
error for k → ∞ while the q-convergence order measure the asymptotic

behavior of two consecutive errors.

Remark: In the case p = 2 and p = 3 we speak of r-quadratic and
r-cubic convergence, respectively.
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If the sequence (xk) is convergent with r-order p, then the following
root-convergence factor (in short: r-factor) rp{(x

k)} is introduced

rp{(x
k)} =

{

lim supk→∞ ‖xk − x∗‖1/k for p = 1,

lim supk→∞ ‖xk − x∗‖1/pk

for p > 1.

rp{(x
k)} is the infimum of all possible constants q in the definition from

above. An interesting special case is r1{(x
k)} = 0. That means r-linear

convergence with arbitrarily small q.

Definition 1.6 (r-superlinear convergence). Let (Gk) define an iterative
method and let x∗ be the limit of a sequence (xk) generated by the iterative

method. Then (xk) converges r-superlinearly if r1{(x
k)} = 0.

The Banach fixed point theorem can be seen as an important statement
on stationary one-step methods:

Theorem 1.1 (The Banach fixed point theorem). Let the mapping G :
D −→ X, D ⊂ X, D closed, be contractive, i.e. there is a constant q ∈ [0, 1)

with

‖G(y) − G(x)‖ ≤ q ‖y − x‖ for all x, y ∈ D,

and assume that G(D) ⊂ D. Then:

1. The equation

x = G(x)

has a unique solution x∗ in D.

2. The sequence (xk), given by

xk+1 = G(xk)

converges to x for all initial values x0 ∈ D and

‖xk+1 − x∗‖ ≤ q ‖xk − x∗‖,

i.e. (xk) converges q-linearly and, therefore, also r-linearly:

‖xk − x∗‖ ≤ qk ‖x0 − x∗‖.
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3. Additionally we have

‖xk − x∗‖ ≤
qk

1 − q
‖x1 − x0‖,

‖xk − x∗‖ ≤
q

1 − q
‖xk − xk−1‖.

The following theorem is a local variant of the Banach fixed point theo-
rem. The existence of a fixed point is assumed and only the convergence of

the iterative method is considered:

Theorem 1.2 (Ostrowski). Suppose that the mapping G : D −→ X, D ⊂
X, D open, has a fixed point x∗ ∈ D and is F-differentiable at x∗. If the
spectral radius of G′(x∗) satisfies ρ(G′(x∗)) < 1, then the stationary one-

step method generated by G is locally convergent and r-linearly convergent
with r1{(x

k)} ≤ ρ(G′(x∗)). Under the stronger condition ‖G′(x∗)‖ < 1 the

q-linear convergence with q1{(x
k)} ≤ ‖G′(x∗)‖ follows.

Proof. Let ‖G′(x∗)‖ < 1. The existence of the F -derivative of G at x∗

implies that, for each ε > 0 there is a δ > 0 with

‖G(x) − G(x∗) − G′(x∗)(x − x∗)‖ ≤ ε‖x − x∗‖ for all x ∈ K(x∗, δ)

with K(x∗, δ) = {y ∈ X : ‖y − x∗‖ ≤ δ}. Therefore,

‖G(x) − x∗‖ ≤ ‖G(x) − G(x∗) − G′(x∗)(x − x∗)‖ + ‖G′(x∗)‖‖x − x∗‖

≤ (ε + ‖G′(x∗)‖)‖x − x∗‖.

For sufficiently small ε we have

‖G(x) − x∗‖ ≤ q ‖x − x∗‖

with q = ε + ‖G′(x∗)‖ < 1. This shows the q-linear convergence and

q1{(x
k)} ≤ ‖G′(x∗)‖.

If ρ(G′(x∗)) = limk→∞ ‖G′(x∗)k‖1/k < 1, then there is an M ∈ N with

‖G′(x∗)m‖ < 1 for all m ≥ M.

For the fixed point equation

x = Gm(x)
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(Gm(x) = G(G(. . .G(x) . . .))) the q-linear convergence of the sub-sequences

(xkm+l)k∈N towards the fixed point x∗ follows from the first part of the proof
for all l = 0, 1, . . . , m − 1 with q1{(x

km+l)} ≤ ‖G′(x∗)m‖.

Therefore, for arbitrary but fixed m ∈ N and ε > 0, there is a number
K ∈ N, such that

‖xkm+l − x∗‖ ≤ [‖G′(x∗)m‖ + ε]
k−K

‖xKm+l − x∗‖.

for all k ≥ K and l < m. Hence

‖xkm+l − x∗‖1/(km+l) ≤ [‖G′(x∗)m‖ + ε]
(k−K)/(km+l)

‖xKm+l − x∗‖1/(km+l).

This implies

lim sup
n→∞

‖xn − x∗‖1/n ≤ [‖G′(x∗)m‖ + ε]
1/m

.

With m → ∞ and ε → 0 we finally have

r1{(x
k)} ≤ ρ(G′(x∗)).

In particular, the Ostrowski theorem implies the r-superlinear conver-
gence if ρ(G′(x∗)) = 0, and the q-superlinear convergence if G′(x∗) = 0.

Theorem 1.3. Suppose that the mapping G : D −→ X, D ⊂ X, D open,
has a fixed point x∗ ∈ D, and is m times differentiable in D and the deriva-

tive G(m) satisfies the Lipschitz-condition:

‖G(m)(x) − G(m)(x∗)‖ ≤ γ‖x − x∗‖ for all x ∈ D.

Then we have: If

G(k)(x∗) = 0, for all k = 1, 2, . . . , m,

then the one-step method generated by G is locally convergent and has q-
order m + 1.
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Proof. By estimating the remainder of the Taylor expansion it follows

‖G(x) − x∗‖ = ‖G(x) −
m

∑

k=0

1

k!
G(k)(x∗)(x − x∗)k‖

≤
1

m!
‖[G(m)(x∗ + t(x − x∗)) − G(m)(x∗)](x− x∗)m‖

≤
γ

m!
‖x − x∗‖m+1

for some t ∈ (0, 1). This immediately implies the statements.

Remark: For m = 1 the last theorem implies the q-quadratic convergence,
if G′(x∗) = 0 and if G′ satisfies the Lipschitz-condition.

Remark: The existence of G(m+1)(x∗) guarantees the Lipschitz-condition

for G(m) in a neighborhood of x∗.

For an equation of the form F (x) = 0 we obtain a fixed point form

x = G(x) with

G(x) = x − A(x)−1F (x). (1.1)

for nonsingular A(x) ∈ L(X, Y ). We study the differentiability of such a
mapping G in the next lemma:

Lemma 1.1. Assume that F : D −→ Y , D ⊂ X open, is F -differentiable

atx∗ ∈ D with F (x∗) = 0. Let A : D −→ L(X, Y ) be continuous at x∗ with
nonsingular A(x∗). Then there is a neighborhood U ⊂ D of x∗, for which

G : U −→ X, G(x) = x − A(x)−1F (x)

is well-defined. Moreover, G is F -differentiable at x∗ differenzierbar and

G′(x∗) = I − A(x∗)−1F ′(x∗).

If A is F -differentiable, the proof is trivial. If A is continuous the proof

goes as follows:

Proof. A(x∗) is nonsingular, A is continuous at x∗. Then A(x) is nonsingular
in a neighborhood U of x∗. This shows that G is well-defined.
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For x ∈ U we have:

‖G(x) − G(x∗) − [I − A(x∗)−1F ′(x∗)](x − x∗)‖

= ‖A(x∗)−1F ′(x∗)(x − x∗) − A(x)−1F (x)‖

≤ ‖[A(x∗)−1 − A(x)−1]F ′(x∗)(x − x∗)‖ + ‖A(x)−1[F (x) − F (x∗) − F ′(x∗)(x − x∗)]‖.

For arbitrary ε > 0 there is a δ > 0 such that

‖A(x)− A(x∗)‖ ≤ ε for all x ∈ K(x∗, δ)

and

‖F (x) − F (x∗) − F ′(x∗)(x − x∗)‖ ≤ ε‖x − x∗‖ f”ur alle x ∈ K(x∗, δ).

Then we have

‖A(x∗)−1 − A(x)−1‖ = ‖A(x)−1[A(x)− A(x∗)]A(x∗)−1‖

≤ β ε ‖A(x)−1‖

with β = ‖A(x∗)−1‖ and

‖A(x)−1‖ = ‖ [A(x∗) + ∆A]−1 ‖ = ‖
[

I + A(x∗)−1∆A
]−1

A(x∗)−1‖

≤
‖A(x∗)−1‖

1 − ‖A(x∗)−1∆A‖
≤

β

1 − β ε

Therefore,

‖G(x) − G(x∗) − [I − A(x∗)−1F ′(x∗)](x − x∗)‖

≤

(

β2ε

1 − βε
‖F ′(x∗)‖ +

βε

1 − βε

)

‖x − x∗‖,

which implies that I − A(x∗)−1F ′(x∗) is the F -derivative of G at x∗.

This lemma shows that

ρ(I − A(x∗)−1F ′(x∗)) < 1.

implies the local convergence of the corresponding one-step method. If

A(x∗) = F ′(x∗),
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we have G′(x∗) = 0, which implies the q-superlinear convergence. One way

to guarantee this condition is the choice

A(x) = F ′(x).

This leads to Newton’s method

xk+1 = xk − F ′(xk)−1F (xk).
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