ÜBUNGEN ZU

NUMERIK ELLIPTISCHER PROBLEME

für den 3. 6. 2008

- 37. Let $\mathcal{T}_h = \{\delta_r : r \in \mathbb{R}_h\}$ be an admissible triangulation (subdivision into triangles) of a domain $\Omega \subset \mathbb{R}^2$ (the primary grid). Let \mathcal{E}_h be the set of edges of the triangulation. For each $e \in \mathcal{E}_h$, let x_e denote the midpoint of the edge e. Consider the following secondary grid: For each interior edge e, the box $\mathcal{H}(x_e)$ is the quadrilateral whose vertices are the two endpoints of the edge e and the centroids of the two triangles which share the common edge e. Complete the definition of the secondary grid by defining appropriate boxes associated to edges on the boundary of the domain Ω such that the following conditions are satisfied:
 - (a) $\overline{\Omega} = \bigcup_{e \in \mathcal{E}_h} \overline{\mathcal{H}(x_e)}.$
 - (b) $\mathcal{H}(x_e) \cap \mathcal{H}(x_f) = \emptyset$ for all $e, f \in \mathcal{E}_h$ with $e \neq f$.

For each interior edge e, express the area $|\mathcal{H}(x_e)|$ of the box $\mathcal{H}(x_e)$ in terms of the area of the two triangles, say δ_r and δ_s , which share the common edge e and conclude that

- (c) There is a constant c such that $|\mathcal{H}(x_e)| \leq c h^2$ for all interior edges e.
- 38. Assume the notations and assumptions from exercise 37.

Consider the boundary value problem:

$$-\Delta u(x) = f(x) \quad \text{in } \Omega,$$
$$u(x) = 0 \qquad \text{on } \Gamma.$$

Show for $u \in C^2(\overline{\Omega})$ that

$$-\int_{\partial \mathcal{H}(x_e)} \frac{\partial u}{\partial n}(y) \, ds = \int_{\mathcal{H}(x_e)} f(y) \, dy,$$

and

$$-\int_{\partial \mathcal{H}(x_e)} \frac{\partial u}{\partial n}(y) \ ds = -\int_{(\partial \delta_{e,r})\setminus e} \frac{\partial u}{\partial n}(y) \ ds - \int_{(\partial \delta_{e,s})\setminus e} \frac{\partial u}{\partial n}(y) \ ds,$$

where δ_r and δ_s denote the triangles which share the common edge e, and $\delta_{e,r} = \mathcal{H}(x_e) \cap \delta_r$, $\delta_{e,s} = \mathcal{H}(x_e) \cap \delta_s$, for each interior edge e.

39. Assume the notations and assumptions from exercise 38.

Let u_h be a piece-wise linear function on $\overline{\Omega}$, i.e.: $u_h|_{\delta_r} \in P_1$ for all $r \in \mathbb{R}_h$.

Show that

$$-\int_{(\partial \delta_{e,r})\backslash e} \frac{\partial u_h}{\partial n}(y) \, ds - \int_{(\partial \delta_{e,s})\backslash e} \frac{\partial u_h}{\partial n}(y) \, ds = \left[\frac{\partial u_h}{\partial n}\right]_e (x_e) \, |e|$$

where |e| denotes the length of the edge e and jump term on e for $x \in e$ is defined by

$$\left[\frac{\partial u_h}{\partial n}\right]_e (x) = \lim_{t \downarrow 0} n_{e,r} \cdot \operatorname{grad} u_h(x - t \, n_{e,r}) + \lim_{t \downarrow 0} n_{e,s} \cdot \operatorname{grad} u_h(x - t \, n_{e,s}),$$

where $n_{e,r}$ $(n_{e,s})$ denotes the outward normal unit vector of the triangle δ_e (δ_s) on the edge e.

Hint: Show and use

$$\int_{(\partial \delta_{e,r}) \setminus e} \frac{\partial u_h}{\partial n}(y) \, ds = \underbrace{\int_{\partial \delta_{e,s}} \frac{\partial u_h}{\partial n}(y) \, ds}_{\int_{\delta_{e,s}} \Delta u_h(y) \, dy} - \int_e \frac{\partial u_h}{\partial n}(y) \, ds.$$

40. Assume the notations and assumptions from exercise 39. Additionally, assume that u_h is continuous at x_e for all $e \in \mathcal{E}_h$, i.e.: the value of u_h at x_e is well-defined for all $e \in \mathcal{E}_h$.

Express $\lim_{t\downarrow 0} n_{e,r} \cdot \operatorname{grad} u_h(x - t n_{e,r})$ as a linear combination of the values of u_h at x_e , x_f and x_g , where x_f and x_g denote the other two midpoints of edges for the triangle δ_r .

Hint: Show and use on the triangle δ_r :

$$\frac{\partial u_h}{\partial n}(x_e) = \frac{u_h(x_e) - u_h(x_\lambda)}{|x_\lambda - x_e|},$$

where x_{λ} is that point on the line through x_f and x_g (i.e.: $x_{\lambda} = \lambda x_f + (1 - \lambda) x_g$), for which $x_{\lambda} - x_e$ is orthogonal to the edge e. Determine λ and use the linearity of u_h to express $u_h(x_{\lambda})$ in terms of $u_h(x_f)$ and $u_h(x_g)$.

41. Assume the notations and assumptions from exercise 40.

Let $V = H^1(\Omega)$ and $V_0 = H^1_0(\Omega)$, and let V_h be the finite element space defined by the non-conforming Crouzeix-Raviart element (piecewise linear functions given by the values at the midpoints of the edges of \mathcal{T}_h), and let $V_{0h} \subset V_h$ be the sub-space with values 0 at the midpoint of edges on the boundary $\partial\Omega$.

Let $f \in L_2(\Omega)$. Consider the variational formulation of the boundary value problem from exercise 38: Find $u_h \in V_{0h}$ such that

$$a_h(u_h, v_h) = \langle F, v_h \rangle \quad \forall v_h \in V_{0h} \tag{1}$$

with

$$a_h(u_h, v_h) = \sum_{r \in \mathbb{R}_h} \int_{\delta_r} \operatorname{grad} u_h(x) \cdot \operatorname{grad} v_h(x) \, dx, \quad \langle F, v_h \rangle = \int_{\Omega} f(x) \, v_h(x) \, dx$$

Let $\phi_e \in V_h$ be the (nodal) basis function defined by

$$\phi_e(x_f) = \delta_{ef}$$
. for all $f \in \mathcal{E}_h$.

Show

$$a_h(u_h, \phi_e) = \left[\frac{\partial u_h}{\partial n}\right](x_e) |e|$$
 for all interior edges e .

Hint: Observe that ϕ_e vanishes outside the two triangles δ_r and δ_s which share the common edge e. Use integration by parts on δ_r and δ_s .

42. Assume the notations and assumptions from all previous exercises.

The finite volume method motivated by exercises 37, 38, 39, 40 is given by the conditions

$$\left[\frac{\partial u_h}{\partial n}\right](x_e) |e| = \int_{\mathcal{H}(x_e)} f(y) \, dy \quad \text{for all interior edges } e.$$

The finite element method from exercise 41 is given by the conditions

$$\left[\frac{\partial u_h}{\partial n}\right](x_e) |e| = \int_{\Omega} f(y) \phi_e(y) \, dy \quad \text{for all interior edges } e.$$

Show that the two methods are identical if applied to a piece-wise constant function f(y), i.e.:

$$\int_{\mathcal{H}(x_e)} f(y) \, dy = \int_{\Omega} f(y) \, \phi_e(y) \, dy \quad \text{for all interior edges } e$$

for all $f \in \{v \in L_2(\Omega) : v |_{\delta_r} \in P_0 \text{ for all } r \in \mathbb{R}_h\}.$