ÜBUNGEN ZU

NUMERIK ELLIPTISCHER PROBLEME

für 20.05.2008

31. Let $(\mathcal{T}_h)_{h\in\Theta}$ be a family of admissible subdivisions $\mathcal{T}_h = \{\delta_r : r \in \mathbb{R}_h\}$ of a bounded domain $\Omega \subset \mathbb{R}^2$ into triangles. The length of the longest edge of the triangle δ_r is denoted by $h^{(r)}$. Let $\Delta = \{\xi \in \mathbb{R}^2 : \xi_1 > 0, \xi_2 > 0, \xi_1 + \xi_2 < 1\}$ and let $x_{\delta_r} : \mathbb{R}^d \longrightarrow \mathbb{R}^d$ be the usual bijective and affine linear mapping with $x_{\delta_r}(\Delta) = \delta_r$ for each $h \in \Theta$ and $r \in \mathbb{R}_h$. The Jacobian of x_{δ_r} is denoted by J_{δ_r} .

For each $m \in \mathbb{N}_0$, it can be shown that there exists a constant c_1 (depending only on m) such that

$$|v|_{H^{m}(\delta_{r})} \leq c_{1} |\det J_{\delta_{r}}|^{1/2} ||J_{\delta_{r}}^{-1}||^{m} |v \circ x_{\delta_{r}}|_{H^{m}(\Delta)}$$
(1)

and

$$|v \circ x_{\delta_r}|_{H^m(\Delta)} \le c_1 |\det J_{\delta_r}|^{-1/2} ||J_{\delta_r}||^m |v|_{H^m(\delta_r)}$$
(2)

for all $h \in \Theta$, $r \in \mathbb{R}_h$ and all $v \in H^m(\delta_r)$. In class we showed (1) for m = 1 and (2) for m = 2.

Consider the finite element space $V_h \subset H^1(\Omega)$, given by the shape functions $\mathcal{F}(\Delta) = P_k$ with $k \geq 1$ and the evaluations at all nodes $\xi^{(\alpha)} \in \{(\frac{i}{k}, \frac{j}{k}) : i, j \in \mathbb{N}_0 \text{ with } i+j \leq k\}$ as nodal variables $l^{(\alpha)}$, i.e., for example, for k = 3:

In class we constructed a linear (interpolation) operator $I_h: H^2(\Omega) \longrightarrow V_h$ with

$$(I_h(v))(x_{\delta_r}(\xi)) = (\hat{I}(v \circ x_{\delta_r}))(\xi) \text{ for all } \xi \in \Delta \text{ and all } r \in \mathbb{R}_h,$$

for the corresponding linear (interpolation) operator $\hat{I} : H^2(\Delta) \longrightarrow P_k$ on the reference element. For all integers s and l with $0 \le s \le l$ and $2 \le l \le k+1$ it can be shown that there exists a constant c_2 (depending only on s and l) with

$$|\hat{v} - \hat{I}(\hat{v})|_{H^s(\Delta)} \le c_2 \, |\hat{v}|_{H^l(\Delta)} \quad \text{for all } \hat{v} \in H^l(\Delta). \tag{3}$$

In class we showed (3) for s = 1 and l = 2.

For $m \in \mathbb{N}_0$ consider the so-called broken Sobolev space $H^m(\Omega, \mathcal{T}_h)$, given by

$$H^m(\Omega, \mathcal{T}_h) = \{ v \in L^2(\Omega) : v |_{\delta_r} \in H^m(\delta_r) \text{ for all } r \in \mathbb{R}_h \}$$

with semi-norm

$$|v|_{H^m(\Omega,\mathcal{T}_h)} = \left(\sum_{r \in \mathbb{R}_h} |v|_{H^m(\delta_r)}^2\right)^{1/2}.$$

It is obvious that

$$H^m(\Omega) \subset H^m(\Omega, \mathcal{T}_h)$$
 and $|v|_{H^m(\Omega)} = |v|_{H^m(\Omega, \mathcal{T}_h)}$ for all $v \in H^m(\Omega)$.

Assume that there are constant c_4 , c_5 such that

$$\|J_{\delta_r}\| \le c_4 h^{(r)} \quad \text{for all } h \in \Theta, \ r \in \mathbb{R}_h,$$
(4)

$$\|J_{\delta_r}^{-1}\| \le c_5/h^{(r)} \quad \text{for all } h \in \Theta, \ r \in \mathbb{R}_h.$$
(5)

Use the conditions (1) - (5) to show that, for all integers s and l with $0 \le s \le l$ and $2 \le l \le k+1$, there exists a constant c_6 (depending only on c_1 , c_2 , c_3 , c_4 and c_5) such that

$$|v - I_h(v)|_{H^s(\Omega,\mathcal{T}_h)} \le c_6 h^{l-s} |v|_{H^l(\Omega)}$$
 for all $v \in H^l(\Omega)$

with $h = \max_{r \in \mathbb{R}_h} h^{(r)}$.

32. Assume the notations and assumptions of exercise 31 except that (3) is replaced by weaker condition: There exists a constant c_2 (depending only on s and l) with

$$|\hat{v} - \hat{I}(\hat{v})|_{H^s(\Delta)} \le c_2 \, \|\hat{v}\|_{H^l(\Delta)} \quad \text{for all } \hat{v} \in H^l(\Delta).$$
(6)

What kind of estimate for $v - I_h(v)$ can be derived under these circumstances?

- 33. Assume the notations and assumptions of exercise 31. Show:
 - (a) For all integers s and l with $0 \le s \le 1$ and $2 \le l \le k+1$, there exists a constant c_7 such that

$$|v - I_h(v)|_{H^s(\Omega)} \le c_7 h^{l-s} |v|_{H^l(\Omega)} \quad \text{for all } v \in H^l(\Omega).$$

(b) For all integers s and l with $0 \le s \le l$ and $2 \le l \le k+1$ there exists a constant c_8 such that

$$|I_h(v)|_{H^s(\Omega,\mathcal{T}_h)} \le c_8 \, \|v\|_{H^l(\Omega)} \quad \text{for all } v \in H^l(\Omega).$$

Hint: $I_h(v) = I_h(v) - v + v$.

(c) There exists a constant c_9 such that

$$\|v - I_h(v)\|_{L^2(\Omega)} + h \, |v - I_h(v)|_{H^1(\Omega)} \le c_9 \, h^2 \, |v|_{H^2(\Omega)} \quad \text{for all } v \in H^2(\Omega).$$

34. Assume the notations and assumptions of exercise 31 for the case k = 0, s = 0 and l = 1 with the following modifications:

 $V_h \subset L^2(\Omega)$ is the set of piecewise constant functions with respect to the subdivision. $I_h: L^2(\Omega) \longrightarrow V_h$ is now given (element-wise) by

$$I_h(v)(x) = \overline{v}_{\delta_r}$$
 for all $x \in \delta_r$,

where \overline{v}_{δ_r} denotes the mean value of v on δ_r :

$$\overline{v}_{\delta_r} = \frac{1}{\operatorname{meas}(\delta_r)} \int_{\delta_r} v \, dx.$$

Show:

(a) Show that

$$(I_h(v))(x_{\delta_r}(\xi)) = (\hat{I}(v \circ x_{\delta_r}))(\xi) \quad \text{for all } \xi \in \Delta \text{ and all } r \in \mathbb{R}_h,$$

for an appropriate linear operator $\hat{I}: L^2(\Delta) \longrightarrow P_0$ on the reference element.

(b) Show (3) for the new operator \hat{I} .

Hint: Apply Poincaré's inequality for the function $\hat{v} - \hat{I}(\hat{v})$.

(c) Show that there exists a constant c_{10} such that

$$||v - I_h(v)||_{L^2(\Omega)} \le c_{10} h |v|_{H^1(\Omega)}$$
 for all $v \in H^1(\Omega)$.

35. Assume the notations and assumptions of exercise 31. Additionally assume that the family of triangulations is quasi-uniform. Show that there exists a constant c_{11} such that the inverse inequality

$$||v_h||_{H^1(\Omega)} \le c_{11} \frac{1}{h} ||v_h||_{L^2(\Omega)}$$
 for all $v_h \in V_h$

is satisfied.

36. Assume the notations and assumptions of exercise 35. Does a constant c_{12} exist such that the inverse of the inverse inequality

$$\frac{1}{h} \|v_h\|_{L^2(\Omega)} \le c_{12} \|v_h\|_{H^1(\Omega)} \quad \text{for all } v_h \in V_h$$

is satisfied?