ÜBUNGEN ZU

NUMERIK ELLIPTISCHER PROBLEME

für 29.04.2008

19. Let $(\mathcal{T}_h)_{h\in\Theta}$ be a family of subdivisions $\mathcal{T}_h = \{\delta_r : r \in \mathbb{R}_h\}$ of a domain $\Omega \subset \mathbb{R}^2$ into non-degenerate triangles. For a triangle $\delta_r \in \mathcal{T}_h$, its vertices are denoted by $x^{(r,\alpha)}$ with corresponding angles $\theta_{\alpha}^{(r)}$, $\alpha \in A = \{1, 2, 3\}$, the length of the edge opposite to $x_{\alpha}^{(r)}$ is denoted by $h_{\alpha}^{(r)}$, $\alpha \in A = \{1, 2, 3\}$, its diameter is given by $h^{(r)} = \max\{h_{\alpha}^{(r)} : \alpha \in A\}$, and the radius of its largest inscribed circle is denoted by $\rho^{(r)}$. Furthermore, let $\Delta = \{\xi \in \mathbb{R}^2 : \xi_1 > 0, \xi_2 > 0, \xi_1 + \xi_2 < 1\}$ be the reference triangle. The mapping $x_{\delta_r} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which maps Δ to δ_r is given by

$$x_{\delta_r}(\xi) = x^{(r,1)} + J_{\delta_r} \xi \quad \text{with } J_{\delta_r} = (x^{(r,2)} - x^{(r,1)}, x^{(r,3)} - x^{(r,1)}) \in \mathbb{R}^{2 \times 2}.$$

Show that the following two statements are equivalent:

(a) There exists a constant $\theta_0 > 0$ such that $\theta_0 \leq \theta_{\alpha}^{(r)}$ for all $h \in \Theta$, $r \in \mathbb{R}_h$, $\alpha \in A$.

(a) There exists a constant $\sigma_0 > 0$ such that $\sigma_0 h^{(r)} \leq \rho^{(r)}$ for all $h \in \Theta, r \in \mathbb{R}_h$.

Hint: Show and use

$$\rho^{(r)} \left[\cot\left(\frac{\theta_{\beta}^{(r)}}{2}\right) + \cot\left(\frac{\theta_{\gamma}^{(r)}}{2}\right) \right] = h_{\alpha}^{(r)},$$

for pairwise dinstinct indices $\alpha, \beta, \gamma \in A$.

20. Assume the notations and assumptions of exercise 19. Show that there exist constants $\underline{c}_1, \overline{c}_1 > 0$ such that

$$\underline{c}_1 \rho^{(r)} h^{(r)} \le |\det J_{\delta_r}| \le \overline{c}_1 \rho^{(r)} h^{(r)} \quad \text{for all } h \in \Theta, r \in \mathbb{R}_h.$$

Hint: Show and use

$$2 \operatorname{meas}(\delta_r) = (h_1^{(r)} + h_2^{(r)} + h_3^{(r)}) \rho^{(r)}.$$

21. Assume the notations and assumptions of exercise 19. Show that there exist constants $c_2, c_3 > 0$ such that

$$||J_{\delta_r}||_{\ell^2} \le c_2 h^{(r)}$$
 and $||J_{\delta_r}^{-1}||_{\ell^2} \le c_3 \frac{1}{\rho^{(r)}}$ for all $h \in \Theta, r \in \mathbb{R}_h$.

Here, $||M||_{\ell^2}$ denotes the spectral norm of a matrix M:

$$||M||_{\ell^2} = \sup_{v \neq 0} \frac{||Mv||_{\ell^2}}{||v||_{\ell^2}}$$

with the Euclidean vector norm $\|.\|_{\ell^2}$.

Hint: Show and use

$$\|J_{\delta_r}\|_{\ell^2} = \sup_{\xi \in B_R(\eta)} \frac{\|x_{\delta_r}(\xi) - x_{\delta_r}(\eta)\|_{\ell^2}}{\|\xi - \eta\|_{\ell^2}}$$

with $B_R(\eta) = \{\xi \in \mathbb{R}^2 : \|\xi - \eta\| = R\}$ for all $\eta \in \mathbb{R}^2$ and for all R > 0. In particular, consider the largest inscribed circle of Δ for $B_R(\eta)$, in order to show the first upper bound.

- 22. Show: A family of triangulations is regular if and only if it is quasi-uniform.
- 23. Let $(\mathcal{T}_h)_{h\in\Theta}$ be a family of subdivisions $\mathcal{T}_h = \{\delta_r : r \in \mathbb{R}_h\}$ of a domain $\Omega \subset \mathbb{R}^2$ into non-degenerate convex quadrilaterals. Let $\Delta = (0,1) \times (0,1)$ be the unit square with vertices $\xi^{(1)} = (0,0), \ \xi^{(2)} = (1,0), \ \xi^{(3)} = (1,1)$ and $\xi^{(4)} = (0,1)$. For a quadrilateral $\delta_r \in \mathcal{T}_h$, its vertices are denoted by $x^{(r,\alpha)}, \alpha \in A = \{1,2,3,4\}$ (numbered counterclockwise). Let $x_{\delta_r} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the unique mapping with $x_{\delta_r} \in Q_1$ and $x_{\delta_r}(\xi^{(\alpha)}) = x^{(r,\alpha)}$. The Jacobian of x_δ at a point $\xi \in \mathbb{R}^2$ is denoted by $J_{\delta_r}(\xi)$.

Show:

- (a) det $J_{\delta_r}(\xi) \in P_1$.
- (b) det $J_{\delta_r}(\xi^{(\alpha)}) = 2 \operatorname{meas}(S_{\alpha}^{(r)})$ for all $\alpha \in A$, where $S_{\alpha}^{(r)}$ denotes the triangle whose vertices are $x^{(r,\alpha)}$ and the two vertices of δ_r which are connected to $x^{(r,\alpha)}$ by an edge of δ_r .
- (c) det $J_{\delta_r}(\xi) \ge 0$ for all $\xi \in \overline{\Delta}$.

Hint: Show and use

$$x_{\delta_r}(\xi) = \sum_{\alpha=1}^4 p^{(\alpha)}(\xi) \, x^{(r,\alpha)}.$$

24. Assume the notations and assumptions of exercise 23.

Show that there exist constants $\underline{c}_1, \overline{c}_1$ such that

$$\underline{c}_1(\rho^{(r)})^2 \le |\det J_{\delta_r}(\xi)| \le \overline{c}_1(h^{(r)})^2 \quad \text{for all } h \in \Theta, r \in \mathbb{R}_h$$

with $h^{(r)} = \max\{\|y - x\| : x, y \in \overline{\delta_r}\}$ (the diameter of δ_r) and $\rho^{(r)} = 2 \min\{\rho_{\alpha}^{(r)} : \alpha \in A\}$, where $\rho_{\alpha}^{(r)}$ denotes the radius of the largest inscribed circle of $S_{\alpha}^{(r)}$.

Hint: The functional det $J_{\delta_r}(\xi)$ attains its minimum (maximum) at some vertex of Δ .