ÜBUNGEN ZU

NUMERIK ELLIPTISCHER PROBLEME

für 15.04.2008

7. Let

- (i) $\delta \subset \mathbb{R}^d$ be a domain with piecewise smooth boundary (the element domain),
- (ii) $\mathcal{F}(\delta)$ be a finite-dimensional space of functions on δ (the shape functions) and
- (iii) $\{l^{(\alpha)} : \alpha \in A\}$ be a finite set of linear functionals on $\mathcal{F}(\delta)$ (the nodal variables).

Let $\mathcal{F}(\delta)$ be an |A|-dimensional vector space, where |A| denotes the cardinality of the index set A. Show that the following three statements are equivalent:

- (a) $\{l^{(\alpha)} : \alpha \in A\}$ is a basis of $\mathcal{F}(\delta)^*$ (the dual space of $\mathcal{F}(\delta)$).
- (b) For all $v \in \mathcal{F}(\delta)$: If $l^{(\alpha)}(v) = 0$ for all $\alpha \in A$, then v(x) = 0 for all $x \in \delta$.
- (c) For all values $v^{(\alpha)} \in \mathbb{R}$, $\alpha \in A$, there exists a unique function $v \in \mathcal{F}(\delta)$ with $l^{(\alpha)}(v) = v^{(\alpha)}$ for all $\alpha \in A$.

Hint: Let $\{p^{(\alpha)} : \alpha \in A\}$ be a basis of $\mathcal{F}(\delta)$. Each of the three statements corresponds directly to a property of the square matrix $M = (l^{(\alpha)}(p^{(\beta)}))_{\alpha,\beta\in A}$.

8. Let $L: \mathbb{R}^d \longrightarrow \mathbb{R}$ be given by

$$L(x) = a \cdot x + b$$

with $0 \neq a \in \mathbb{R}^d$, $b \in \mathbb{R}$, where \cdot denotes the Euclidean inner product. The set $\ker L = \{x \in \mathbb{R}^d : L(x) = 0\}$ is called a hyperplane. Let $p \in P_k$ (the set of polynomials in x of degree $\leq k$).

Show: If p vanishes on the hyperplane ker L, then we can write p = Lq, where $q \in P_{k-1}$.

Hint: Show the statement first for the special hyperplane, given by $x_d = 0$. Then use the fact that there is an affine change of coordinates $\hat{x} = T(x)$ with $\hat{x}_d = L(x)$, which transforms the hyperplane ker L to the hyperplane, given by $x_d = 0$.

- 9. Consider the Courant finite element, given by
 - (i) a non-degenerate triangle δ as element domain, whose vertices are denoted by $x^{(\alpha)}$ for $\alpha \in A = \{1, 2, 3\},\$
 - (ii) the shape functions $\mathcal{F}(\delta) = P_1$ and
 - (iii) the nodal variables $l^{(\alpha)}$, given by

$$l^{(\alpha)}(v) = v(x^{(\alpha)}) \text{ for } \alpha \in A.$$

Use exercise 8 to show property (b) of exercise 7.

Hint: Use the hyperplane (straight line) determined by an edge of the triangle to show that v = Lq with $q \in P_0$.

- 10. Use exercise 8 to show property (b) of exercise 7 for the quadratic triangular Lagrange finite element, given by
 - (i) a non-degenerate triangle δ as element domain, whose vertices are denoted by $x^{(\alpha)}$ for $\alpha \in \{1, 2, 3\}$ and whose midpoints of the edges are denoted by $x^{(\alpha)}$ for $\alpha \in \{4, 5, 6\}$,
 - (ii) the shape functions $\mathcal{F}(\delta) = P_2$ and
 - (iii) the nodal variables $l^{(\alpha)}$ for $\alpha \in A = \{1, 2, 3, 4, 5, 6\}$ are given by:

$$l^{(\alpha)}(v) = v(x^{(\alpha)})$$

for $\alpha \in A$.

Hint: Use the same technique as in exercise 9 consecutively for two edges.

- 11. Use exercise 8 to show property (b) of exercise 7 for the cubic Hermite finite element, given by
 - (i) a non-degenerate triangle δ as element domain, whose vertices are denoted by $x^{(\alpha)}$ for $\alpha \in \{1, 2, 3\}$ and whose centroid is denoted by $x^{(4)}$,
 - (ii) the shape functions $\mathcal{F}(\delta) = P_3$ and
 - (iii) the nodal variables $l^{(\alpha)}$ for $\alpha \in A = \{1, 2, \dots, 10\}$ are given by:

$$l^{(\alpha)}(v) = v(x^{(\alpha)}) \text{ for } \alpha \in \{1, 2, 3, 4\}$$

and

$$l^{(2\alpha+3)}(v) = \frac{\partial v}{\partial x_1}(x^{(\alpha)}), \quad l^{(2\alpha+4)}(v) = \frac{\partial v}{\partial x_2}(x^{(\alpha)}) \quad \text{for } \alpha \in \{1, 2, 3, \}.$$

Hint: Use the same technique as in exercise 9 consecutively for the three edges.

12. Let $\delta = \Delta = \{\xi \in \mathbb{R}^2 : \xi_1 > 0, \xi_2 > 0, \xi_1 + \xi_2 < 1\}$. Find an explicit formula in ξ for the nodal basis function $p^{(1)}(\xi)$ (associated to the node $\xi^{(1)} = (0,0)$) for the finite element of exercise 11.