für den 28.1.2008

60. Show that the initial value problem

$$Bu'(t) + Au(t) = f(t),$$

$$u(0) = u_0$$

has at most one solution if $A + \lambda B$ is a regular matrix stencil. Hint: Consider the homogeneous problem.

61. Show that the initial value problem

$$Bu'(t) + Au(t) = 0,$$
$$u(0) = 0$$

has infinitely many different solutions if $A + \lambda B$ is not a regular matrix stencil.

Hint: Construct solutions of the form $u(t) = \sum_i \alpha_i e^{\lambda_i t} v_i$ with distinct values λ_i and vectors $v_i \neq 0$ satisfying $(A + \lambda_i B)v_i = 0$.

62. Let $N \in \mathbb{R}^{n \times n}$ and $\nu \in \mathbb{N}$ with $N^{\nu} = 0$. Show:

$$(I - N)^{-1} = \sum_{i=0}^{\nu - 1} N^i.$$

63. Consider the following formulation of a constrained mechanical system:

$$q' = u$$

$$M(q)u' = f(q, u) - G(q)^T \lambda$$

$$0 = g(q)$$
(1)

with a symmetric positive definite matrix $M(q) \in \mathbb{R}^{n \times n}$, $G(q) = (\partial g/\partial q)(q) \in \mathbb{R}^{m \times n}$ with full rank $m \leq n$. Show that this system is equivalent to the GGL formulation:

$$q' = u - G(q)^T \mu$$

$$M(q)u' = f(q, u) - G(q)^T \lambda$$

$$0 = g(q)$$

$$0 = G(q)u.$$

That means: If q(t), u(t), $\lambda(t)$ satisfy (1), then q(t), u(t), $\lambda(t)$, and $\mu(t) = 0$ satisfy the GGL formulation. If q(t), u(t), $\lambda(t)$, and $\mu(t)$ satisfy the GGL formulation, then q(t), u(t), $\lambda(t)$ satisfy (1).

Hint for the second part: Multiply the first equation by G(q), compare with the differentiated third equation and the fourth equation and conclude $\mu(t) = 0$.

64. Rewrite the GGL formulation as a Hessenberg index 2 system:

$$\begin{array}{rcl}
x_1'(t) &=& f_1(t, x_1(t), x_2(t)), \\
0 &=& f_2(t, x_1(t))
\end{array}$$

with a nonsingular matrix

$$\frac{\partial f_2}{\partial x_1}(t,x_1)\frac{\partial f_1}{\partial x_2}(t,x_1,x_2).$$

65. Consider the following optimal control problem for the unknowns y, p and u:

$$y'(t) = Ay(t) + Bu(t) + f(t), \quad y(0) = y_0,$$

$$p'(t) = -A^T p(t) - Cy(t), \quad p(1) = 0,$$

$$0 = B^T p(t) + Du(t)$$

with positive semi-definite matrices C and D. Show:

- (a) If D is positive definite, then the optimal control problem has index 1.
- (b) If D = 0 and $B^T C B$ is positive definite, then the optimal control problem has index 3.