ÜBUNGEN ZU NUMERIK ZEITABHÄNGIGER PROBLEME

für den 7.1.2008

- 48. Let R(z) = P(z)/Q(z) be the stability function of an *s*-stage Runge-Kutta method. Show: The Runge-Kutta method is *A*-stable if and only if
 - (a) the Runge-Kutta method is *I*-stable, i.e.: $|R(iy)| \leq 1$ for all $y \in \mathbb{R}$, and
 - (b) R(z) is complex differentiable in \mathbb{C}^- .

Hint: Use (without proof) the maximum principle in \mathbb{C} : Let f be a complex differentiable function on a connected and open set $D \subset \mathbb{C}$. Then |f| cannot attain its maximum in D unless f is a constant function.

Apply this principle to R and the domain $D = \{z \in \mathbb{C} : \operatorname{Re} z < 0 \text{ and } |z| < r\}$ for sufficiently large r, conclude that the maximum of |R| is attained on ∂D . $R(\infty) = \lim_{|z|\to\infty} R(z)$ exists and $|R(\infty)| \leq 1$.

49. Let R(z) = P(z)/Q(z) be the stability function of an *s*-stage Runge-Kutta method. Show: The Runge-Kutta method is *I*-stable if and only if

(c) $E(y) \ge 0$ for all $y \in \mathbb{R}$ with $E(y) = |Q(iy)|^2 - |P(iy)|^2$.

Show that E(y) is an even polynomial of degree $\leq 2 \max(k, j)$, where k and j denote the degree of P(z) and Q(z), respectively.

Hint: Show and use $|Q(iy)|^2 = Q(iy)Q(-iy)$ and $|P(iy)|^2 = P(iy)P(-iy)$.

50. Assume that R(z) = P(z)/Q(z) is the stability function of a Runge-Kutta method of order p. Show

$$E(y) = O(y^{p+1}) \quad \text{for } y \to 0.$$

Hint: Show and use

$$|e^{z}| - \frac{|P(z)|}{|Q(z)|} = O(z^{p+1}).$$

Set z = iy and conclude $|Q(iy)| - |P(iy)| = O(y^{p+1})$.

51. Assume that R(z) = P(z)/Q(z), where P(z) is a polynomial of degree k and Q(z) is a polynomial of degree j, is the stability function of a Runge-Kutta method of order $p \ge 2j-2$. Show that the Runge-Kutta method is *I*-stable if and only if $|R(\infty)| \le 1$. Hint: Show first that E(y) is of the form $K \cdot y^{2j}$ by using Examples 49 and 50. Then show: $K \ge 0$ is equivalent to $|R(\infty)| \le 1$. 52. Let $c_1 = 0, c_2, \ldots, c_{s-1}, c_s = 1$ and b_1, \ldots, b_s be the coefficients of the correspond Lobatto quadrature rule. It can be shown that the c_i are all distinct and the b_i are all non-zero. The coefficients a_{ij} of the Lobatto IIIA method are uniquely determined by the conditions C(s). Show

$$a_{1j} = 0$$
 and $a_{sj} = b_j$ for all $j = 1, \dots, s$.

It can be shown that the Lobatto IIIA method is of order p = 2s - 2. Show that the stability function of the Lobatto IIIA method is the (s-1, s-1)-Padé approximation. Hint for the second part: $R(z) = \det(I - z(A - eb^T)) / \det(I - zA)$. The first row of A and the last row of $A - eb^T$ vanish.

53. Consider the implicit midpoint rule:

$$g_1 = u_{\tau}(t) + \frac{1}{2}\tau f(t + \frac{1}{2}\tau, g_1),$$

$$u_{\tau}(t + \tau) = u_{\tau}(t) + \tau f(t + \frac{1}{2}\tau, g_1).$$

 $u_{\tau/2}(t+\tau)$ denotes the result of two steps of the implicit midpoint rule with step size $\tau/2$ starting at $(t, u_{\tau}(t))$. Consider the extrapolation method

$$\hat{u}_{\tau}(t+\tau) = u_{\tau/2}(t+\tau) + \frac{1}{3}(u_{\tau/2}(t+\tau) - u_{\tau}(t+\tau)).$$

Determine the stability functions of the implicit midpoint rule and the corresponding local extrapolation method. Compute the value of the stability functions at ∞ .