ÜBUNGEN ZU NUMERIK ZEITABHÄNGIGER PROBLEME für den 29.10.2007 - 14. Construct the tableau of Butcher's 3-stage Lobatto III method. - 15. Let $c_1 = 0, c_2, \ldots, c_s$ and b_1, \ldots, b_s be the coefficients of the corresponding Radau quadrature formula. Show: The conditions $a_{1j} = 0$ for $j = 1, \ldots, s$ and D(s-1) imply C(s). - 16. Let $c_1, c_2, \ldots, c_{s-1}, c_s = 1$ and b_1, \ldots, b_s be the coefficients of the corresponding Radau quadrature formula. Show: The conditions $a_{is} = 0$ for $i = 1, \ldots, s$ and C(s-1) imply D(s) and vice versa. - 17. Let $c_1 = 0, c_2, \ldots, c_{s-1}, c_s$ and b_1, \ldots, b_s be the coefficients of the corresponding Radau quadrature formula. Ehle's Radau IA method is determined by the conditions D(s) (instead of C(s) for Butcher's Radau I method). Show for Ehle's Radau IA method: $a_{i1} = b_1$ for $i = 1, \ldots, s$. - 18. Let $c_1, c_2, \ldots, c_{s-1}, c_s = 1$ and b_1, \ldots, b_s be the coefficients of the corresponding Radau quadrature formula. Ehle's Radau IIA method is determined by the conditions C(s) (instead of D(s) for Butcher's Radau II method). Show for Ehle's Radau IIA method: $a_{sj} = b_j$ for $j = 1, \ldots, s$. - 19. For solving the initial value problem $$u'(t) = f(t, u(t)), t \in [t_0, T],$$ $u(t_0) = u_0$ consider the following so-called collocation method: Let $s \in \mathbb{N}$ and $c_1, c_2, \ldots, c_s \in \mathbb{R}$ be distinct. The approximate solution u_1 for $u(t_0 + \tau)$ is given by $$u_1 = p_s(t_0 + \tau),$$ where p_s is that polynomial of degree s, which satisfies the conditions $$p_s(t_0) = u_0$$ $p'_s(t_0 + c_i\tau) = f(t_0 + c_i\tau, p_s(t_0 + c_i\tau)), \quad i = 1, 2, \dots, s.$ Show: The collocation method can be represented as a Runge-Kutta method with $$a_{ij} = \int_{0}^{c_i} l_j(c) \ dc, \quad b_j = \int_{0}^{1} l_j(c) \ dc,$$ where $l_j(c)$ is the j-th Lagrange polynomial, given by $$l_j(c) = \prod_{k \neq j} (c - c_k) / \prod_{k \neq j} (c_j - c_k).$$ Hint: Show and use $p'_s(t_0 + c\tau) = \sum_j k_j \cdot l_j(c)$ with $k_i = p'_\ell(t_0 + c_j\tau)$, $p_s(t_0 + c_i\tau) = u_0 + \tau \int_0^{c_i} p'_s(t_0 + c\tau) dc$, and $p_s(t_0 + \tau) = u_0 + \tau \int_0^1 p'_s(t_0 + c\tau) dc$.