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Part I

Nonstiff Problems
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Chapter 2

Euler’s Method

See also: Hairer, Nørsett, Wanner, [8], I.7.

Initial value problem (IVP):

u′(t) = f(t, u(t))

u(t0) = u0

Euler’s method:
uj+1 = uj + τj f(tj, uj)

Theorem 2.1 (Cauchy, 1789-1857, French mathematician). Let f be continuous on D,
‖f‖ bounded by A on D, and f satisfy the Lipschitz condition

‖f(t, w)− f(t, v)‖ ≤ L ‖w − v‖

on D, with
D = {(t, v) ∈ R × R

n : t0 ≤ t ≤ T, ‖v − u0‖ ≤ b}.

If T − t0 ≤ b/A, then we have:

a) For |τ | → 0, the Euler polygons converge uniformly to a continuous function u(t).

b) u(t) is continuously differentiable and solves (IVP) on [t0, T ].

c) There is no other solution of (IVP) on [t0, T ].
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Chapter 3

Explicit Runge-Kutta Methods

See also: Hairer, Nørsett, Wanner, [8], II.1.

Explicit s-stage Runge-Kutta methods:

g1 = u0

g2 = u0 + τ a21 f(t0, g1)

g3 = u0 + τ [a31 f(t0, g1) + a32 f(t0 + c2 τ)]

...

gs = u0 + τ [as1 f(t0, g1) + as2 f(t0 + c2 τ) + . . . + as,s−1 f(t0 + cs−1 τ, gs−1]

u1 = u0 + τ [b1 f(t0, g1) + b2 f(t0 + c2 τ) + . . . + bs−1 f(t0 + cs−1 τ, gs−1 + bs f(t0 + cs τ, gs)]

3.1 Order Conditions

See also: Hairer, Nørsett, Wanner, [8], II.2.

Lemma 3.1 (Leibniz’ formula).

[τ · φ(τ)](q)
∣
∣
τ=0

= q · φ(q−1)(0).

Theorem 3.1. The Runge-Kutta method is of order 3 iff
∑

j

bj = 1

2
∑

j,k

bjajk = 1

3
∑

j,k,l

bjajkajl = 1

6
∑

j,k,l

bjajkakl = 1
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Theorem 3.2 (around 1963). For p ≥ 5 no explicit Runge-Kutta method exists of order p
with s ≤ p stages.

Theorem 3.3 (Butcher, 1965). For p ≥ 7 no explicit Runge-Kutta method exists of order
p with s ≤ p+ 1 stages.

Theorem 3.4 (Butcher, 1985). For p ≥ 8 no explicit Runge-Kutta method exists of order
p with s ≤ p+ 2 stages.
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Chapter 4

Implicit Runge-Kutta Methods

See also: Hairer, Nørsett, Wanner, [8], II.7.

s-stage Runge-Kutta methods:

g1 = u0 + τ [a11 f(t0 + c1 τ, g1) + . . .+ a1s f(t0 + cs τ, gs)]
...

gs = u0 + τ [as1 f(t0 + c1 τ, g1) + . . .+ ass f(t0 + cs τ, gs]

u1 = u0 + τ [b1 f(t0 + c1 τ, g1) + . . .+ bs f(t0 + cs τ, gs)]

Tableau
c1
...
cs

a11 . . . a1s
...

...
as1 . . . ass

b1 . . . bs

or, shortly,
c A
bT

Definition 4.1. An s-stage Runge-Kutta method

1. is called explicit, if A is a strictly lower triangular matrix,

2. is called implicit, otherwise.

Fixed point forms:
g = Φ(g; t0, u0, τ) (4.1)

with g = (gj)j=1,...,s and

Φ(g; t0, u0, τ) =

(

u0 + τ

s∑

j=1

aij f(t0 + cj τ, gj)

)

i=1,...,s

or, equivalently,
k = Ψ(k; t0, u0, τ)

6



with k = (kj)j=1,...,s and

Ψ(g; t0, u0, τ) =

(

f(t0 + ci τ, u0 + τ

s∑

j=1

aij kj)

)

i=1,...,s

.

Theorem 4.1. Let f be continuous on D, ‖f‖ bounded by K on D, and f satisfy the
Lipschitz condition

‖f(t, w)− f(t, v)‖ ≤ L ‖w − v‖

on D, with
D = {(t, v) ∈ R × R

n : t0 ≤ t ≤ T, ‖v − u0‖ ≤ b}.

If t0 + ci τ ∈ [t0, T ] for i = 1, . . . , s, τ ‖A‖∞K ≤ b, and τ ‖A‖∞ L < 1, then there exists a
unique solution to the fixed point equations (4.1) in D and the fixed point iteration converges
to this solution for any initial guess in D.

4.1 Order of Consistency

See also: Hairer, Wanner, [9], IV.5.

Theorem 4.2. If the conditions

s∑

i=1

bic
k−1
i =

1

k
k = 1, . . . , p (4.2)

s∑

j=1

aijc
k−1
j =

cki
k

i = 1, . . . , s, k = 1, . . . , q (4.3)

s∑

i=1

bic
k−1
i aij =

bj
k

(1 − ckj ) j = 1, . . . , s, k = 1, . . . , r (4.4)

are satisfied with p ≤ q + r + 1, p ≤ 2q + 2, then the method is of order p.

Lemma 4.1. Assume that c1, . . . , cs are distinct and p ≥ s. Then

a) B(s+ ν) and C(s) imply D(ν).

b) B(s+ ν) and D(s) imply C(ν).

Theorem 4.3. The s-stage Gauß method is of order 2s.

Theorem 4.4. Butcher’s s-stage Radau I and Radau II methods are of order 2s− 1.

Theorem 4.5. Butcher’s s-stage Lobatto III method is of order 2s− 2.
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Chapter 5

Convergence Analysis for One-Step

Methods

See also: Hairer, Nørsett, Wanner, [8], II.3.

A one-step method for solving the initial value problem:

u′(t) = f(t, u(t)), t ∈ I = [t0, T ],

u(t0) = u0

is a method of the form

uj+1 = uj + τj φ(tj , uj, τj) for j = 0, . . . , m− 1.

The function φ is called the increment function.

Example: The Runge-Kutta methods are obviously one-step methods.

The approximations uj determine a grid function uτ : Iτ −→ Rn, given by uτ (tj) = uj,
where Iτ = {t0, t1, . . . , tm}. The set of all grid functions on the subdivision τ is denoted by
Xτ . Notation: For a grid function vτ ∈ Xj the value vτ (tj) will also be denoted by vj .

The global error (discretization error) eτ ∈ Xτ is the grid function, given by

eτ (tj)(= ej) = u(tj) − uτ (tj) = u(tj) − uj.

The following norm is introduced on Xτ :

‖vτ‖Xτ
= max

j=0,1,...,m
‖vj‖.

Definition 5.1. A one-step method is called convergent, if

‖eτ‖Xτ
→ 0 for |τ | → 0.

If there is a constant C ≥ 0 such that

‖eτ‖Xτ
≤ C |τ |p (in short: ‖eτ‖Xτ

= O(|τ |p)) ,

then the one-step method is called convergent of order p.
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The one-step method can be written as

Fτ (uτ ) = 0

with the mapping Fτ : Xτ −→ Xτ , given by

Fτ (vτ )(tj+1) =
1

τj
(vj+1 − vj) − φ(tj, vj , τj) for j = 0, . . . , m− 1

and Fτ (vτ )(t0) = v0 − u0.
The consistency error (approximation error, local truncation error) ψτ (u) is the grid

function, given by

ψτ (u)(tj+1) =
1

τj
(u(tj+1) − u(tj)) − φ(tj, u(tj), τj)

and ψ(u)τ(t0) = 0, or, in short
ψτ (u) = Fτ (Rτu)

with Rτu = u
∣
∣
Iτ

(restriction operator).

Definition 5.2. A one-step method is called consistent with the initial-value problem at u,
if

‖ψτ (u)‖Xτ
→ 0 for |τ | → 0.

If a constant CS ≥ 0 exists such that

‖ψτ (u)‖Xτ
≤ CS |τ |

p (in short: ‖ψτ (u)‖Xτ
= O(|τ |p)) ,

then the one-step method is called consistent of order p.

Theorem 5.1. Let f be continuous. A one-step method with

max
j=0,1,m−1

‖φ(tj, u(tj), τj) − f(tj, u(tj))‖ → 0 for |τ | → 0. (5.1)

is consistent.

Proof. The statement easily follows from the representation

ψτ (u)(tj + τj) =

[
1

τj

(
u(tj + τj) − u(tj)

)
− u′(tj)

]

+ [f(tj, u(tj)) − φ(tj, u(tj), τj)]

The consistency error is directly related to the local error dτ , given by

dτ (u)(tj+1)(= dj+1(u)) = u(tj+1) − [u(tj)) + τjφ(tj, u(tj), τj)]

9



and dτ (u)(t0) = d0(u) = 0. Obviously:

ψj+1(u) =
1

τj
dj+1(u).

If we compare the definition of the consistency error, written in the form

1

τj

(
u(tj+1) − u(tj)

)
− φ(tj, u(tj), τj) = ψτ (u)(tj+1) for j = 0, . . . , m− 1,

with the one-step method

1

τj

(
uj+1 − uj

)
− φ(tj, uj, τj) = 0 for j = 0, . . . , m− 1,

we see that the exact solutions at the grid points result from the same one-step method
perturbed by the consistency error on the right-hand side.

This leads to the more general question: How does the difference vτ − uτ , where the
values vτ is given by

1

τj
(vj+1 − vj) − τjφ(tj , vj, τj) = yj+1, j = 0, 1, . . . , m− 1 (5.2)

with initial value
v0 = u0 + y0 (5.3)

or, in short,
Fτ (vτ ) = yτ

depend on the perturbation yτ with yτ (tj) = yj.

Lemma 5.1. If the increment function satisfies the Lipschitz condition

‖φ(t, w, τ) − φ(t, v, τ)‖ ≤ Λ ‖w − v‖ for all t, v, w and all τ,

then the following estimation is satisfied for (5.3), (5.2):

‖vj − uj‖ ≤ eΛ(tj−t0)‖y0‖ +
1

Λ

(
eΛ (tj−t0) − 1

)
max

i=1,2,...,j
‖yi‖.

Proof. In a first step, we consider only the contribution of the perturbation y0 to the
difference vj − uj, which is v

(0)
j − uj, where v

(0)
τ be given by the one-step method

v
(0)
j+1 = v

(0)
j + τjφ(tj, v

(0)
j , τj), j = 0, 1, . . . , m− 1

with
v

(0)
0 = u0 + y0.

From
v

(0)
j+1 − uj = v

(0)
j − uj + τj [φ(tj, v

(0)
j , τj) − φ(tj , uj, τj)]
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and the Lipschitz condition it follows that

‖v
(0)
j+1 − uj‖ ≤ (1 + Λ τj)‖v

(0)
j − uj‖ ≤ eΛ τj‖v

(0)
j − uj‖.

Hence
‖v

(0)
j − uj‖ ≤ eΛ τj−1eΛ τj−2 · · · eΛ τ0‖v

(0)
0 − uj‖ = eΛ (tj−t0)‖y0‖.

Next we consider the contribution of the perturbation y1 to the difference vj − uj, which

is v
(1)
j − v

(0)
j , where v

(1)
τ be given by the one-step method

v
(1)
j+1 = v

(1)
j + τjφ(tj , v

(1)
j , τj), j = 1, . . . , , m− 1

with
v

(1)
1 = v1.

It follows analogously

‖v
(1)
j − v

(0)
j ‖ ≤ eΛ (tj−t1)‖v

(1)
1 − v

(0)
1 ‖ = eΛ (tj−t1)τ0‖y1‖.

In general, we obtain for the contribution of the perturbation yi, i = 1, . . . , j:

‖v
(i)
j − v

(i−1)
j ‖ ≤ eΛ (tj−ti)‖v

(i)
i − v

(i−1)
i ‖ = eΛ (tj−ti)τi−1‖yi‖,

where v
(i)
τ is given by the one-step method

v
(i)
j+1 = v

(i)
j + τjφ(tj, v

(i)
j , τj), j = i, . . . , m− 1

with
v

(i)
i = vi.

Then, for the difference

vj − uj = (v
(j)
j − v

(j−1)
j ) + (v

(j−1)
j − v

(j−2)
j ) + . . . (v

(1)
j − v

(0)
j ) + (v

(0)
j − uj)

we obtain the estimate

‖vj − uj‖ ≤ ‖v
(j)
j − v

(j−1)
j ‖ + ‖v

(j−1)
j − v

(j−2)
j ‖ + . . . ‖v

(1)
j − v

(0)
j ‖ + ‖v

(0)
j − uj‖

≤
[
τj−1 + eΛ(tj−tj−1)τj−2 + · · ·+ eΛ(tj−t1)τ0

]
max

i=1,2,...,n
‖yi‖ + eΛ(tj−t0)‖y0‖

≤

[
∫ tj

tj−1

eΛ(tj−t) dt+

∫ tj−1

tj−2

eΛ(tj−t) dt+ · · ·+

∫ t1

t0

eΛ(tj−t) dt

]

max
i=1,2,...,n

‖yi‖

+ eΛ(tj−t0)‖y0‖ =
1

Λ

(
eΛ(tj−t0) − 1

)
max

i=1,2,...,m
‖yi‖ + eΛ(tj−t0)‖y0‖.
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Theorem 5.2. If the increment function satisfies the Lipschitz condition

‖φ(t, w, τ) − φ(t, v, τ)‖ ≤ Λ ‖w − v‖ for all t, v, w and all τ,

then a constant C ≥ 0 exists with

‖vτ − uτ‖Xτ
≤ C ‖Fτ (vτ ) − Fτ (uτ )‖Xτ

for all vτ ∈ Xτ and all τ.

Proof. For yτ = Fτ (vτ ) it follows from Lemma 5.1

max
j=0,1,...,m

‖vj − uj‖ ≤ C max
j=0,1,...,m

‖yj‖

with

C = eΛ(T−t0) +
1

Λ

(
eΛ(T−t0) − 1

)
.

Definition 5.3. A one-step method is called stable at uτ if a constant CS ≥ 0 exists with

‖vτ − uτ‖Xτ
≤ CS ‖Fτ (vτ ) − Fτ (uτ)‖Xτ

for all vτ ∈ Xτ and all τ.

Theorem 5.3. If a one-step method is consistent (of order p) at the exact solution u and
stable at the approximate solution uτ , then the method is convergent (of order p).

Proof. The restriction Rτu of the exact solution u on Iτ satisfies

Fτ (Rτu) = ψτ (u).

The approximate solution uτ satisfies

Fτ (uτ) = 0.

From the stability it follows that

‖Rτu− uτ‖Xτ
≤ CS ‖ψτ (u)‖Xτ

.

From the consistency it follows

‖ψτ (u)‖Xτ
→ 0 for |τ | → 0

and, therefore,
‖eτ‖Xτ

→ 0 for |τ | → 0.

From
‖ψτ (u)‖Xτ

≤ CA |τ |p

it follows
‖eτ‖Xτ

≤ CS CA |τ |p.
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Example: The Runge-Kutta methods are one-step methods with

φ(t, u, τ) =

s∑

i=1

bif(t+ ciτ, gi(t, u, τ)),

where g(t, u, τ) is the solution of the fixed point equation

g = Φ(g; t, u, τ).

Theorem 5.4. Let f be continuous and satisfies the Lipschitz condition

‖f(t, v) − f(t, w)‖ ≤ L ‖v − w‖ for all t, v, w.

If
s∑

j=1

bj = 1,

then the Runge-Kutta method is consistent with the initial value problem.

Proof. Let gi = gi(t, u(t), τ). From

gi − u(t) = τ
s∑

j=1

aijf(t+ cjτ, gj)

= τ

s∑

j=1

aij[f(t+ cjτ, gj) − f(t+ cjτ, u(t)] + τ

s∑

j=1

aijf(t+ cjτ, u(t))

it follows

max
i=1,2,...,s

‖gi − u(t)‖ ≤ τ L ‖A‖∞ max
i=1,2,...,s

‖gi − u(t)‖ + τ ‖A‖∞M

with M = sups,t∈I ‖f(s, u(t)‖. Therefore,

max
i=1,2,...,s

‖gi − u(t)‖ ≤
τ ‖A‖∞M

1 − τ L ‖A‖∞
.

From

φ(t, u(t), τ) − f(t, u(t)) =
s∑

i=1

bi[f(t+ ciτ, gi) − f(t+ ciτ, u(t))]

+

s∑

i=1

bi[f(t+ ciτ, u(t)) − f(t, u(t))]

it follows

‖φ(t, u(t), τ) − f(t, u(t))‖ ≤
τ L ‖b‖1‖A‖∞M

1 − τ L ‖A‖∞
+ ‖b‖1 max

i=1,2,...,s
‖f(t+ ciτ, u(t)) − f(t, u(t))‖

13



and, therefore,

max
j=0,1,...,m−1

‖φ(tj, u(tj), τj) − f(tj , u(tj))‖ → 0 for |τ | → 0,

since f(τ, u(t)) is uniformly continuous. The rest follows from Lemma 5.1.

Remark: For explicit Runge-Kutta method the Lipschitz condition is not needed for the
proof of consistency. For proving some order of consistency for a Runge-Kutta method it
suffices to assume that f is sufficiently smooth.

Under the assumptions of Theorem 5.4 the stability also follows:

Theorem 5.5. Let f be continuous and satisfies the Lipschitz condition

‖f(t, w) − f(t, v)‖ ≤ L‖w − v‖ for all t, v, w.

Then the Runge-Kutta method is stable.

Proof. Let g
(1)
i = gi(t, v, h) and g

(2)
i = gi(t, w, h). Then

‖φ(t, w, τ) − φ(t, v, τ)‖ ≤ ‖b‖1 L ‖g(2) − g(1)‖.

and
‖g(2) − g(1)‖ ≤ ‖w − v‖ + τ L ‖A‖∞ ‖g(2) − g(1)‖,

hence

‖g(2) − g(1)‖ ≤
1

1 − τ L ‖A‖∞
‖w − v‖.

This leads to

‖φ(t, w, τ) − φ(t, v, τ)‖ ≤
L ‖b‖1

1 − τ L ‖A‖∞
‖w − v‖.

The rest follows from Theorem 5.2.

Theorem 5.6. Let f be continuous and satisfies the Lipschitz condition

‖f(t, w) − f(t, v)‖ ≤ L‖w − v‖ for all t, v, w.

If
s∑

j=1

bj = 1,

then the Runge-Kutta method is convergent.

Remark: The results of this chapter can also be shown under the local Lipschitz condition

‖f(t, v) − f(t, w)‖ ≤ L‖v − w‖ for all (t, v), (t, w) ∈ U,

where U ⊂ I × Rn is a neighborhood of the graph of f , given by {(t, f(t, u(t))) : t ∈ I},
and u(t) denotes the exact solution of the initial value problem.

For the local variant of Theorem 5.2 a local Lipschitz condition suffices:

‖φ(t, v, τ) − φ(t, w, τ)‖ ≤ Λ‖v − w‖ for all (t, v), (t, w) ∈ U, τ ≤ τ̄ ,

if it is additionally assumed that the method is consistent. The stability estimate can be
shown for all vτ ∈ Xτ with ‖Fτ (vτ )‖Xτ

≤ η, if η is sufficiently small.
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Chapter 6

Practical Computation

See also: Hairer, Nørsett, Wanner, [8], II.4, II.6.

The right choice of the step sizes is of great importance for the efficiency of a one-step
method. The aim of a step size control is to achieve a prescribed tolerance of the local
error. In the next section two different approaches are discussed how to approximately
compute the local error. Subsequently, an automatic step size control is presented. Finally,
the question is discussed how to efficiently calculate approximate solutions at prescribed
points.

6.1 Error estimation

We assume that the local error can be represented in the following form:

u(t0 + τ) − u1 = C(t0, u0) τ
p+1

︸ ︷︷ ︸

principal error term

+O(τp+2) (6.1)

with C(t0, u0) independent of the step size τ .

Examples: For the explicit Euler method we have:

u(t0 + τ) − u1 =
1

2
(ft + fuf)(t0, u0)τ

2 +O(τ 3).

For the explicit midpoint rule we have:

u(t0 + τ) − u1 =
1

24
(ftt + 2ftuf + fuuf

2 + 4(fuft + f 2
uf))(t0, u0)τ

3 +O(τ 4).

In the following we assume that the coefficient C(t0, u0) is sufficiently smooth in t0 and u0,
but we will not make use of the particular form of this coefficient.
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6.1.1 Richardson extrapolation

After two steps of the method with step size τ we obtain approximations u1 and u2. The
error u(t0 +2τ)−u2 consists of two contributions: the error after the first step e1 = u(t0 +
τ)−u1, transported to t0 +2τ by the differential equation: u(t0 +2τ)−u(1)(t0 +2τ), where
u(1)(t) is the exact solution of the differential equation with initial value u(1)(t0 + τ) = u1

and the new local error u(1)(t0 + 2τ) − u2. Now

u(t0 + 2τ) − u(1)(t0 + 2τ) = e1 +O(τ‖e1‖) = C(t0, u0)τ
p+1 +O(τp+2)

and

u(1)(t0 + 2τ) − u2 = C(t0 + τ, u1)τ
p+1 +O(τp+2) = C(t0, u0)τ

p+1 +O(τp+2).

So
u(t0 + 2τ) − u2 = 2C(t0, u0)τ

p+1 +O(τp+2). (6.2)

We start again at (t0, u0) and compute one step with step size 2τ leading to the approxi-
mation w at t0 + 2τ with

u(t0 + 2τ) − w = C(t0, u0)(2τ)
p+1 +O(τp+2). (6.3)

Next we use (6.3) and (6.2) in order to eliminate C(t0, u0) and obtain a more accurate
approximation of the exact solution:

u(t0 + 2τ) = û2 +O(τp+2) with û2 = u2 +
u2 − w

2p − 1
.

This construction can also interpreted in the following way: (6.3) and (6.2) show that the
approximations w and u2 are very close to the values of the polynomial q(s) = u(t0 +2τ)−
2τC(t0, u0) s

p at s = 2τ and s = τ , respectively. Let p(s) be the interpolation polynomial
p(s) = A+Bsp, determined by

p(2τ) = w and p(τ) = u2.

It is natural to expect the value p(0) is very close to q(0) = u(t0 + τ). One easily sees that
this extrapolated value p(0) is equal to û2.

For the local error we obtain:

u(t0 + τ) − u2 = û2 − u2 +O(τp+2) with û2 − u2 =
u2 − w

2p − 1
,

which leads to the following estimation of the local error:

err =
1

2p − 1
maxi=1,...,n

|u2,i − wi|

di
,

where di is an appropriate scaling factor. Typical values: di = 1 for absolute errors,
di = |û2,i| for componentwise relative errors.

If this step is accepted by the step size control (see later) one continues the calculation
at t0 +2τ either with u2 or with the better approximation û2. The later technique is called
local extrapolation. Next we discuss a different method for estimating the local error,
which makes the rejection of a step size less expensive.
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6.1.2 Embedded Runge-Kutta methods

Consider a Runge-Kutta method of order p. Then, for the local error, we have:

u(t0 + τ) − u1 = O(τp+1),

The basic idea for estimating the local error is to use a second Runge-Kutta method of
higher order q, leading to

u(t0 + τ) − û1 = O(τ q).

Since q > p, it follows that

u(t0 + τ) − u1 = û1 − u1 +O(τ q),

which leads to the following estimation of the local error:

err = maxi=1,...,n
|û1,i − u1,i|

di
.

In order to keep the extra computational costs low we assume that the two Runge-Kutta
methods have the same coefficients c and A and differ only in the last row (b and b̂). A
pair of such methods (called embedded Runge-Kutta methods) are usually represented by
one tableau for the coefficients A, b, c with an extra row for b̂. For an explicit method the
tableau has the form:

0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs
b̂1 b̂2 . . . b̂s−1 b̂s

The two approximate solutions are given by

u1 = u0 + τ (b1k1 + b2k2 + · · · + bsks)

and
û1 = u0 + τ (b̂1k1 + b̂2k2 + · · ·+ b̂sks).

Example: We start with a general explicit 3-stage Runge-Kutta method:

0
c2 a21

c3 a31 a32

b1 b2 b3
b̂1 b̂2 b̂s

17



The conditions for order 2 for the first method are:

b1 + b2 + b3 = 1,

b2c2 + b3c3 =
1

2
.

The conditions for order 3 for the second method are:

b̂1 + b̂2 + b̂3 = 1,

b̂2c2 + b̂3c3 =
1

2
,

b̂2c
2
2 + b̂3c

2
3 =

1

3
,

b̂3a32c2 =
1

6
.

The choice

c2 = 1, c3 =
1

2
, b3 = 0

leads to a so called Runge-Kutta-Fehlberg method abbreviated by RKF 2(3). The symbol
2(3) (in general p(q)) means that the basic method is of order 2 (p), the second method
used for estimating the local error is a method of order 3 (q). The tableau for RKF 2(3)
is given by:

0
1 1

1/2 1/4 1/4
1/2 1/2 0
1/6 1/6 4/6

The weights bi correspond to the trapezoidal rule, the weights b̂i to Simpson’s rule.

Example: Another important example of an embedded explicit Runge-Kutta method was
constructed by Dormand and Prince, (in short: DOPRI (4)5), whose tableau is given by:

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

35
384

0 500
1113

125
192

−2187
6784

11
84

0
5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

Observe that asj = bj which additionally reduces the computational work.
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It is reasonable to continue the computation not with u1 but with the more accurate
approximation û1.

6.2 Step size control

We assume that an estimation err of the local error is available and that

err = C τp+1.

The aim is to keep the local error within a given tolerance tol. This leads to an optimal
step size τneu, satisfying the relation

tol = C τp+1
new .

From these two conditions the unknown constant C can be eliminated and one obtains:

τnew = τ (tol/err)1/(p+1). (6.4)

This motivates the following strategy for a step size selection:

1. One step with a given step size h is computed together with the estimation err for
the local error.

2. If err ≤ tol, the step is accepted and the method is continued with the next step size
τneu, given by (6.4).

3. Otherwise, the step is rejected and the method is restarted with the new step size
τneu, given by (6.4).

In order to be sure that the new step size produces a local error below tol the optimal step
size is reduced by a safety factor fac (e.g.: fac = 0.8). Additionally, it is reasonable to
limit the change of the step size from τ to τneu by factors facmax for the maximal relative
increase and facmin for the maximal decrease, in order to prevent too dramatic changes
of step sizes. With these modifications the new formula for the optimal step size becomes

τnew = τ · min(facmax,max(facmin, fac · (tol/err)1/(p+1))).

Additionally, it is advisable to set facmax = 1 right after a step rejection.

6.3 Dense output

It is often required to compute the approximate solution on a set of prescribed points
without interfering with the steps size control. This can be done by so called continuous
Runge-Kutta methods: These methods contain a parameter θ ∈ (0, 1] and allow the com-
putation of approximations for u(t0 + θ τ). For θ = 1 the original Runge-Kutta method is
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obtained. For efficiency reasons we assume that the coefficients c and A are independent of
θ sind. Only the coefficients of b are allowed to depend on θ. Approximate solutions at pre-
scribed points can be computed without extra function evaluations and with no influence
on the step size control.

Example: An explicit 3-stage Runge-Kutta method for approximating u(t0 + θ τ) for all
θ ∈ (0, 1] is of order 3 iff the following conditions are satisfied:

b1 + b2 + b3 = θ,

b2c2 + b3c3 =
θ2

2
,

b2c
2
2 + b3c

2
3 =

θ3

3
,

b3a32c2 =
θ3

6
.

This is not possible for coefficients c2, c3 and a32 independent of θ. Instead we require
order 3 only for θ = 1 and order 2, otherwise. This guarantees a global error of order 3,
also at intermediate points. For c2 = 1/2 and c3 = 1 one obtains the following tableau of
a continuous Runge-Kutta method:

0
1
2

1
2

1 −1 2

θ(1 + θ(−3
2

+ 2
3
θ)) θ2(2 − 2

3
θ) θ2 (

2
3 − 1

2
θ)
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Chapter 7

Extrapolation Methods

7.1 Asymptotic Expansions

See also: Hairer, Nørsett, Wanner, [8], II.8.

Theorem 7.1. Assume that f and φ are sufficiently smooth and satisfy the consistency
condition φ(t, v, 0) = f(t, v). If the local error dτ (t+ τ) = u(t+ τ) − [u(t) + τ φ(t, u(t), τ)]
possesses an expansion

dτ(t+ τ) = dp+1(t) τ
p+1 +O(τp+2)

with a continuous function dp+1(t), then the global error possesses an expansion

uτ (t) − u(t) = ep(t) τ
p +O(τp+1),

where ep(t) solves the initial value problem

e′(t) = fu(t, u(t)) e(t) − dp+1(t)

e(0) = 0.

Theorem 7.2 (Gragg). Assume that f and φ are sufficiently smooth and satisfy the con-
sistency condition φ(t, v, 0) = f(t, v). If the local error dτ (t + τ) = u(t + τ) − [u(t) +
τ φ(t, u(t), τ)] possesses an expansion

dτ (t+ τ) = dp+1(t) τ
p+1 + . . .+ dq+1 +O(τ q+2)

with continuous functions dp+1(t), . . . , dq+1(t), then the global error possesses an expansion

uτ (t) − u(t) = ep(t) τ
p + . . .+ eq(t) τ

q +O(τ q+1),

where ep(t),. . . ,eq(t) solve initial value problems with

ep(0) = . . . = eq(0) = 0.

21



Definition 7.1. Let φ(t, v, τ) be the increment function of a one-step method. The incre-
ment function B = φ∗(t, A, τ) of the adjoint function is given by the condition

B = A− τ φ(t+ τ, A,−τ).

Theorem 7.3. The coefficients A∗, b∗, c∗ of the adjoint method of a Runge-Kutta method
with coefficients A, b, c are given by

a∗ij = bs+1−i − as+1−i,s+1−j,

b∗j = bs+1−j,

c∗i = 1 − cs+1−i.

Theorem 7.4. The adjoint method is a method of the same order as the original method.
Its principal error term is equal to the principal error term of the original method multiplied
by (−1)p.

Theorem 7.5. The adjoint method has exactly the same asymptotic expansion for the
global error as the original method with τ replaced by −τ .

Definition 7.2. A method is symmetric if φ∗ = φ.

Theorem 7.6. A Runge-Kutta method is symmetric if

as+1−i,s+1−j + aij = bs+1−j = bi.

Theorem 7.7. If, in addition to the assumptions of Theorem 7.2, the method is symmetric,
then

er(t) = 0 for r odd.

7.2 Polynomial Extrapolation

See also: Hairer, Nørsett, Wanner, [8], II.9.

Theorem 7.8. The values Tj,k (as a global extrapolation method) represent a numerical
method of order p+ k − 1.

Theorem 7.9. The values Tj,k (as a local extrapolation method) represent a numerical
method of order p+ k − 1.

7.3 The GBS Method

See also: Hairer, Nørsett, Wanner, [8], II.9.
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Chapter 8

Multistep Methods

A method is called a multistep method (more precisely a k-step method) if the compu-
tation of the next approximate solution uj+1 is based on the last approximate solutions
uj, uj−1, . . . , uj−k+1. If it is more convenient we will also use the notations uj+k for the
new approximate solution and uj+k−1, . . . , uj for the previously computed approximate
solutions.

In order to perform a k-step method, a starting procedure has to be done first to
compute u0, u1, . . . , uk−1. The starting procedure can be done, e.g., by using a one-step
method (with small step sizes) or by a multistep method with a growing number of steps.

8.1 Classical Linear Multistep Methods

See also: Hairer, Nørsett, Wanner, [8], III.1.

8.1.1 Explicit Adams Methods

We know that

u(tj+1) = u(tj) +

∫ tj+1

tj

f(t, u(t)) dt (8.1)

for a solution u of the ODE
u′(t) = f(t, u(t)).

The Runge-Kutta methods are based on quadrature rules whose nodes are typically inside
the interval [tj , tj+1] and, therefore, require function evaluations at additional points. If
instead the grid points tj, tj−1, . . . , tj−k+1 are used as nodes for a quadrature rule, no
additional function evaluations are required.

One possible strategy is to replace the function f(t, u(t)) in (8.1) by an interpolation
polynomial. For simplicity we restrict ourselves to the case of equidistant step sizes: The
interpolation polynomial with the nodes

ti, i = j − k + 1, . . . , j − 1, j,
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and the values
fi = f(ti, ui), i = j − k + 1, . . . , j − 1, j,

can be written in the following form (Newton’s interpolation formula):

p(t) = p(tj + s τ) =

k−1∑

i=0

(−1)i

(
−s

i

)

∇ifj ,

with (
−s

0

)

= 1,

(
−s

i

)

=
(−s)(−s− 1) · · · (−s− i+ 1)

i!
for i ≥ 1.

∇ denotes the backward difference:

∇fj = fj − fj−1,

whose powers ∇ are given by:

∇0 = I, ∇i+1 = ∇i∇.

If f(t, u(t)) is replaced by p(t) in (8.1), we obtain the following class of explicit multistep
methods (explicit Adams methods, Adams-Bashforth methods):

uj+1 = uj + τ
k−1∑

i=0

γi∇
ifj

with

γi = (−1)i

∫ 1

0

(
−s

i

)

ds.

The following table shows a few values of γi:

i 0 1 2 3 4 5 6 7 8

γi 1
1

2

5

12

3

8

251

720

95

288

19087

60480

5257

17280

1070017

3628800

.

The first three Adams-Bashforth methods are:

k = 1 : uj+1 = uj + τ fj,

k = 2 : uj+1 = uj + τ

[
3

2
fj −

1

2
fj−1

]

,

k = 3 : uj+1 = uj + τ

[
23

12
fj −

16

12
fj−1 +

5

12
fj−2

]

.

For k = 1 one obtains Euler’s method.
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8.1.2 Implicit Adams Methods

In this class of multistep methods, the node tj+1 is also used for the interpolation. Then
the interpolation polynomial has the form:

p∗(t) = p∗(tj + s τ) = p(tj+1 + (s− 1) τ) =

k∑

i=0

(−1)i

(
−s + 1

i

)

∇ifj+1.

The corresponding quadrature is given by:

uj+1 = uj + τ

k∑

i=0

γ∗i ∇
ifj+1 (8.2)

with

γ∗i = (−1)i

∫ 1

0

(
−s+ 1

i

)

ds.

These methods are implicit and require the solution of a (in general nonlinear) system of
equations, in order to compute uj+1. For sufficiently small step sizes the solution uj+1

exists and the method is well-defined. An approximation for uj+1 can be obtained, e.g.,
by a fixed point iteration for (8.2) or by Newton’s method. As an initial guess one can use
uj or the result of one step of the corresponding explicit Adams method. Often, it suffices
to perform one step of the explicit Adams method (predictor) followed by one step on an
iterative method for the implicit Adams method (corrector).

The following table contains a few values for γ∗i :

i 0 1 2 3 4 5 6 7 8

γi 1 −
1

2
−

1

12
−

1

24
−

19

720
−

3

160
−

863

60480
−

275

24192
−

33953

3628800

.

The first three Adams-Moulton methods are:

k = 0 : uj+1 = uj + τ fj+1,

k = 1 : uj+1 = uj + τ

[
1

2
fj+1 +

1

2
fj

]

,

k = 2 : uj+1 = uj + τ

[
5

12
fj+1 +

8

12
fj −

1

12
fj−1

]

.

For k = 0 one obtains the implicit Euler method, for k = 1 the implicit trapezoidal rule.

8.1.3 Explicit Nyström Methods

These methods are based on the relation

u(tj+1) = u(tj−1) +

∫ tj+1

tj−1

f(t, u(t)) dt.
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Using polynomial interpolation without the node tj+1 the following class of explicit methods
are obtained:

uj+1 = uj−1 + τ
k−1∑

i=0

κi∇
ifj

with

κi = (−1)i

∫ 1

−1

(
−s

i

)

ds.

The following table contains a few values for κi:

i 0 1 2 3 4 5 6

κi 2 0
1

3

1

3

29

90

14

45

1139

3780

.

For k = 1 and k = 3 one obtains the Nyström methods:

k = 1 : uj+1 = uj−1 + 2τfj ,

k = 3 : uj+1 = uj−1 + τ

[
7

3
fj −

2

3
fj−1 +

1

3
fj−2

]

.

For k = 1 one obtains the explicit midpoint rule. The case k = 2 is identical to the case
k = 1.

8.1.4 Milne-Simpson Methods

The implicit variants of the Nyström methods are:

uj+1 = uj−1 + τ
k∑

i=0

κ∗i∇
ifj+1

with

κ∗i = (−1)i

∫ 1

−1

(
−s + 1

i

)

ds.

The following table contains a few values for κ∗i :

i 0 1 2 3 4 5 6

κ∗i 2 −2
1

3
0 −

1

90
−

1

90
−

37

3780

.

The first three Milne-Simpson methods are:

k = 0 : uj+1 = uj−1 + 2τ fj+1,

k = 1 : uj+1 = uj−1 + 2τ fj,

k = 2 : uj+1 = uj−1 + τ

[
1

3
fj+1 +

4

3
fj +

1

3
fj−1

]

.
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k = 0 corresponds to the implicit Euler method with doubled step size, for k = 1 one
obtains the explicit midpoint rule and for k = 2 the Simpson rule.

8.1.5 BDF-Methods

This class of methods is based on numerical differentiation: The interpolation polynomial
q with nodes

ti, i = j − k + 1, . . . , j, j + 1,

and values
ui i = j − k + 1, . . . , j, j + 1,

has the following form:

q(t) = q(tj + s τ) =

k∑

i=0

(−1)i

(
−s+ 1

i

)

∇iuj+1.

The differential equation
u′(t) = f(t, u(t))

at t = tj+1 is replaced by
q′(tj+1) = fj+1.

This leads to a multistep method:

k∑

i=0

δ∗i ∇iuj+1 = τ fj+1

with

δ∗i = (−1)i d

ds

(
−s+ 1

i

)∣
∣
∣
∣
s=1

.

This method is called backward differencing formula (BDF-method).
The values δ∗i can be easily calculated:

δ∗0 = 0, δ∗i =
1

i
for i ≥ 1.

The first three BDF-methods are:

k = 1 : uj+1 − uj = τ fj+1

k = 2 :
3

2
uj+1 − 2uj +

1

2
uj−1 = τ fj+1

k = 3 :
11

6
uj+1 − 3uj +

3

2
uj−1 −

1

3
uj−2 = τ fj+1

These methods are implicit.
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8.2 Consistency of Linear Multistep Methods

See also: Hairer, Nørsett, Wanner, [8], III.2.

All multistep methods discussed so far are of the following form:

αkuj+k + αk−1uj+k−1 + · · ·+ α0uj = τ (βkfj+k + βk−1fj+k−1 + · · ·+ β0fj). (8.3)

A multistep method of this form is called a linear multistep method, more precisely, a
linear k-step method.

The coefficient αi and βi are not uniquely determined by the method. They allow an
additional scaling condition, e.g., αk = 1 or

∑k
i=0 bj = 1.

Let (t, u) be given and let u(s) be the exact solution of the differential equation with
u(t) = u. The local error of a multistep method is the difference between exact solution
and approximate solution:

u(t+ k τ) − uτ (t+ k τ),

where it is assumed that the starting procedure is exact, i.e.:

u(t), u(t+ τ), . . . , u(t+ (k − 1) τ)

are the initial settings for the computation of uτ (t+ k τ). The method is called consistent
of order p, if

u(t+ k τ) − uτ (t+ k τ) = O(τp+1).

Assume the scaling condition
∑k

i=0 bj = 1. The approximation error is given by

ψτ (u)(t+ k τ) =
1

τ

k∑

i=0

αiu(t+ i τ) −

k∑

i=0

βif(t+ i τ, u(t+ i τ))

=
1

τ

k∑

i=0

αiu(t+ i τ) −

k∑

i=0

βiu
′(t+ i τ).

We have the following connection between the local error and the approximation error:

Lemma 8.1. Let f be a continuously differentiable function. Then

u(t+ k τ) − uτ (t+ k τ) = τ [αkI − τ βkJ ]−1 ψτ (u)(t+ k τ)

with

J =













∂f1

∂u
(t+ k τ, ν1)

∂f2

∂u
(t+ k τ, ν2)

...
∂fn

∂u
(t+ k τ, νn)













and νi = uτ (t+ k τ) + δi [u(t+ k τ) − uτ (t+ k τ)] for some δi ∈ [0, 1].
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Proof. For one step of the method we obtain

αkuτ(t+ k τ)− τ βkf(t+ kh, uτ (t+ k τ)) +
k−1∑

i=0

[αiu(t+ i τ) − τβif(t+ i τ, u(t+ i τ))] = 0.

By definition of the approximation error it follows that

τ ψτ (u)(t+ k τ) = αk u(t+ k τ) − τ βk f(t+ k τ, u(t+ k τ))

− αkuτ (t+ k τ) + τ βkf(t+ kh, uτ (t+ k τ))

= αk[u(t+ k τ) − uτ (t+ k τ)]

− τ βk[f(t+ k τ, u(t+ k τ)) − f(t+ k τ, uτ(t+ k τ))].

From the mean value theorem it follows that

f(t+ k τ, u(t+ k τ)) − f(t+ k τ, uτ (t+ k τ)) = J [u(t+ k τ) − uτ (t+ k τ)],

which implies

τ ψτ (u)(t+ k τ) = [αkI − τ βkJ ](u(t+ k τ) − uτ (t+ k τ)).

For explicit methods, i.e., βk = 0, the relation simplifies to u(t + k τ) − uτ (t + k τ) =
(τ/αk)ψτ (u)(t+ k τ).

Remark: A multistep method can be written in the following form:

Fτ (uτ ) = 0

with

Fτ (vτ )(t+ k τ) =
1

τ

k∑

i=0

αivτ (t+ i τ) −

k∑

i=0

βif(t+ i τ, vτ (t+ i τ))

and (assuming an ideal starting procedure) Fτ (vτ )(t0 + i τ) = vτ (t0 + i τ) − u(t + i τ) for
i = 0, 1, . . . , k − 1. With these notations we have

ψτ (u) = Fτ (Rτu)

as for one-step methods. By Lemma 8.1 the method is consistent of order p if

‖ψτ (u)‖Xτ
= O(τp).

Next the so-called generating polynomials of the multistep method are introduced by

ρ(z) = αkz
k + αk−1z

k−1 + · · · + α0,

σ(z) = βkz
k + βk−1z

k−1 + · · ·+ β0.

We have
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Theorem 8.1. Let f be sufficiently smooth. A linear multistep method of the form (8.3)
is consistent of order p, if

k∑

i=0

αi = 0 and
k∑

i=0

αii
q = q

k∑

i=0

βii
q−1 for q = 1, 2, . . . , p.

Proof. We obtain by Taylor expansion:

τ ψτ (u)(t) =
k∑

i=0

[

αi

p
∑

q=0

iq

q!
u(q)(t)τ q − βiτ

p−1
∑

r=0

ir

r!
u(r+1)(t)τ r

]

+O(τp+1)

=

[
k∑

i=0

αi

]

u(t) +

p
∑

q=1

τ q

q!

[
k∑

i=0

αii
q − q

k∑

i=0

βii
q−1

]

u(q)(t) +O(τp+1)

= O(τp+1).

For the case p = 1 the conditions can be written in the form:

ρ(1) = 0, ρ′(1) = σ(1).

Remark: It is easy to show that the Adams-Bashforth methods, the Nyström methods
and the BDF-methods are of order k, the Adams-Moulton methods and the Milne-Simpson
methods are of order k + 1. These classes of multistep methods are exact for the ODEs

u′(t) = qtq−1

with q = 0, 1, . . . , k and q = 0, 1, . . . , k + 1, respectively. Hence, with the exact solution
u(t) = tq, we obtain:

0 = τ ψτ (u)(t+ k τ) = τ q

[
k∑

i=0

αii
q − q

k∑

i=0

βii
q−1

]

,

which implies the corresponding order.

Remark: The highest attainable order of a k-step method is 2k.

8.3 Stability of Linear Multistep Methods

See also: Hairer, Nørsett, Wanner, [8], III.3.

For Runge-Kutta methods a Lipschitz condition on f with respect to u is sufficient for
stability. For multistep method the situation is more delicate.
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Example: The explicit 2-step method of maximum order 3 is given by:

uj+2 + 4uj+1 − 5uj = τ (4fj+1 + 2fj).

If applied to the initial value problem

u′ = u, u(0) = 1

with exact starting procedure u0 = 1 and u1 = eτ , the method leads to completely useless
results.

We start the discussion of stability for the trivial right-hand side f = 0, i.e., for the
differential equation

u′(t) = 0.

Then the method is of the following form:

αkuj+k + αk−1uj+k−1 + · · · + α0uj = 0. (8.4)

Theorem 8.2. Let ζ1, ζ2, . . . , ζl be the roots of ρ with multiplicity m1, m2, . . . , ml. Then
the general solution of (8.4) is given by

uj = p1(j) ζ
j
1 + p2(j) ζ

j
2 + · · ·+ pl(j) ζ

j
l ,

where pj are arbitrary polynomials of degree ≤ mj − 1.

Proof. The general solution is obtained as linear combination of the m1 +m2 + . . .+ml = k
particular solutions

uj =

(
j

µ

)

ζj,

where ζ is a root of ρ with multiplicity m and µ ≤ m − 1. In order to verify that these
sequences solve the recurrence relation (8.4), the identity

(
j + i

µ

)

=

µ
∑

ν=0

(
j

µ− ν

)(
i

ν

)

is used. Then we obtain

k∑

i=0

αiuj+i =
k∑

i=0

αi

(
j + i

µ

)

ζj+i = ζj

µ
∑

ν=0

(
j

µ− ν

) k∑

i=0

αi

(
i

ν

)

ζ i

= ζj

µ
∑

ν=0

(
j

µ− ν

)
ζν

ν!

k∑

i=0

αi i(i− 1) · · · (i− ν + 1)ζ i−ν

︸ ︷︷ ︸

= ρ(l)(ζ) = 0

= 0.
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The k coefficients of the polynomials p1(j), p2(j), . . . , pl(j) are uniquely determined by
prescribing the k values u0, u1, . . . , uk−1 of the starting phase. It immediately follows from
the last theorem that the sequence (uj)j∈N0

, generated by the linear multistep method,
is bounded for arbitrary initial phase if and only if the roots ζ of ρ satisfy the following
condition:

|ζ | ≤ 1 and |ζ | = 1 only if ζ is simple. (8.5)

This leads to the following definition:

Definition 8.1. The multistep method (8.3) is called 0–stable, if all roots ζ of ρ satisfy
the condition (8.5).

For the explicit and the implicit Adams methods we have:

ρ(z) = zk − zk−1.

0 is a root of multiplicity (k − 1), 1 is a simple root. Hence, the methods are 0–stable.
For the explicit Nyström methods and the Milne-Simpson methods we have:

ρ(z) = zk − zk−2.

0 is a root of multiplicity (k − 2), 1 and −1 are simple roots. The methods are 0-stable.
The analysis of the 0–stability of the BDF-methods is more difficult. It can be shown

that these methods are 0-stable for k ≤ 6 and not 0–stable for k ≥ 7.

Theorem 8.3 (The first Dahlquist barrier). The order of a 0–stable k-step method satisfies:

p ≤







k + 2 if k is odd,
k + 1 if k is even,
k if βk/αk ≤ 0.

8.4 Convergence of Linear Multistep Methods

See also: Hairer, Nørsett, Wanner, [8], III.4.

Let f be continuous and satisfies the Lipschitz condition

‖f(t, w) − f(t, v)‖ ≤ L ‖w − v‖ for all t, v, w.

Then there is a unique solution uj+k = φ(tj , uj+k−1, uj+k−2, . . . , uj, τ) of

uj+k +

k−1∑

i=0

α′
iuj+j = τ β ′

k f(tj + k τ, uj+k) + τ

k−1∑

i=0

β ′
i, fj+i,

for arbitrary values tj , uj+k−1, uj+k−2, . . . , uj and sufficiently small τ , where

α′
i =

αi

αk

, β ′
i =

βi

αk

.
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With

ψ(tj, uj+k−1, uj+k−2, . . . , uj, τ) = β ′
k f(tj + k τ, φ(tj , uj+k−1, uj+k−2, . . . , uj, τ)) +

k−1∑

i=0

β ′
i fj+i

the multistep method can be written in the form

uj+k = −

k−1∑

i=0

α′
i uj+i + τ ψ(tj , uj+k−1, uj+k−2, . . . , uj, τ).

Let

Uj =








uj+k−1

uj+k−2
...
uj







, A =








−α′
k−1 −α′

k−2 . . . −α′
0

1 0 . . . 0
. . .

. . .
...

1 0







, e1 =








1
0
...
0







.

Then the multistep method can be written as a one-step method

Uj+1 = (A⊗ I)Uj + τ Φ(tj , Uj , τ) (8.6)

with
Φ(t, U, τ) = (e1 ⊗ I)ψ(t, U, τ).

Here, C ⊗D denotes the Kronecker product (tensor product) of two matrices:

C ⊗D =








c11D c12 D · · · c1nD
c21D c22 D · · · c2nD

...
...

. . .
...

cm1D cm2D · · · cmnD







.

Remark: We have
(A⊗B)(C ⊗D) = (AC) ⊗ (BD)

for arbitrary matrices A, B, C, D with suitable dimensions.

Let u(t) be the exact solution of the initial value problem and set

U(t) =








u(t+ (k − 1) τ)
u(t+ (k − 2) τ)

...
u(t)







.

The approximate solution at t+ τ , which is obtained by (8.6) starting with U(t) is denoted
by Uτ (t+ τ). Then the first component of

U(t+ τ) − Uτ (t+ τ)

is the local error of the multistep method, the other components all vanish. If the multistep
method is consistent of order p it follows

‖U(t+ τ) − Uτ (t+ τ)‖ = O(τp+1).
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Lemma 8.2. Assume that the multistep method is 0-stable. Then there is a vector norm
on (Rn)k, such that

‖A⊗ I‖ ≤ 1.

for the corresponding matrix norm.

Proof. The roots ζ of ρ are the eigenvalue of A with eigenvector (ζk−1, ζk−2, . . . , ζ, 1)T .
Therefore, there is a transformation matrix T with

T−1AT =















ζ1
. . .

ζl
ζl+1 δl

. . .
. . .
. . . δk−1

ζk















with |ζi| = 1 for i = 1, . . . , l and |ζi| < 1, δi ∈ {0, 1} for i = l + 1, . . . , k. Then

T−1
ε ATε =















ζ1
. . .

ζl
ζl+1 ε δl

. . .
. . .
. . . ε δk−1

ζk















= J

with Tε = TDε and the diagonal matrix Dǫ = diag(1, ε, ε2, . . . , εk−1). We choose ε > 0
sufficiently small, such that |εδi| < 1 − |ζi| for all i = l + 1, . . . , k.

We define the following norm in (Rn)k: ‖x‖ = ‖(T−1
ε ⊗ I)x‖∞. Then

‖(A⊗ I)x‖ = ‖(T−1
ε ⊗ I)(A⊗ I)x‖∞ = ‖((T−1

ε A) ⊗ I)x‖∞

= ‖((JT−1
ε ) ⊗ I)x‖∞ = ‖(J ⊗ I)(T−1

ε ⊗ I)x‖∞

≤ ‖(J ⊗ I)‖∞
︸ ︷︷ ︸

≤ 1

‖(T−1
ε ⊗ I)x‖∞

︸ ︷︷ ︸

= ‖x‖

Remark: A linear multistep method is 0–stable if and only if there exists a constant C
such that

‖Aj‖ ≤ C for all j ∈ N.
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Theorem 8.4. Assume that f satisfies the Lipschitz condition

‖f(t, w) − f(t, v)‖ ≤ Λ ‖w − v‖ for all t, v, w.

If the linear multistep method is consistent of order p and 0-stable, then the method is
convergent of order p.

Proof. From the Lipschitz condition for f it easily follows a Lipschitz condition for Φ:

‖Φ(t,W, τ) − Φ(t, V, τ)‖ ≤ Λ ‖W − V ‖ for all t, V,W and for sufficiently small τ.

Together with Lemma 8.2 stability follows. The rest is obtained analogously to the con-
vergence proof of one-step methods.

8.5 Variable Step Size Multistep Methods

See also: Hairer, Nørsett, Wanner, [8], III.5.

The presented classes of linear multistep methods can be extended to variable step sizes.
We will discuss this for the explicit and implicit Adams methods.

By Newton’s interpolation formula we have:

p(t) =

k−1∑

i=0

i−1∏

l=0

(t− tj−l)f [tj , tj−1, . . . , tj−i]

where the divided differences f [tj, tj−1, . . . , tj−l] are recursively defined by

f [tj] = fj ,

f [tj , tj−1, . . . , tj−l] =
f [tj , tj−1, . . . , tj−l+1] − f [tj−1, tj−1, . . . , tj−l]

tj − tj−l
.

Therefore,

p(t) =

k−1∑

i=0

i−1∏

l=0

t− tj−l

tj+1 − tj−l
Φ∗

i (j) with Φ∗
i (j) =

i−1∏

l=0

(tj+1 − tj−l)f [tj, tj−1, . . . , tj−l].

This leads to the explicit Adams method

uj+1 = uj +

∫ tj+1

tj

p(t) dt = uj + τj

k−1∑

i=0

gi(j)Φ
∗
i (j)

with

gi(j) =
1

τj

∫ tj+1

tj

i−1∏

l=0

t− tj−l

tj+1 − tj−l

dt.
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For constant step sizes these expressions reduce to:

gi(j) = γi, Φ∗
i (j) = ∆ifj.

For the interpolation polynomial of the implicit Adams methods we have:

p∗(t) = p(t) +

k−1∏

l=0

(t− tj−l)f [tj+1, tj . . . , tj−k+1].

Therefore

uj+1 = uj +

∫ tj+1

tj

p∗(t) dt = pj+1 + τj gk(j)Φk(j + 1)

with the approximation obtained by the explicit Adams method

pj+1 = uj + τj

k−1∑

i=0

gi(j)Φ
∗
i (j)

and

Φk(j + 1) =
k−1∏

l=0

(tj+1 − tj−l) f [tj+1, tj, . . . , tj−k+1].

The values Φi(j),Φ
∗
i (j) and gi(j) can be calculated by appropriate recurrence relations in

j and i, see Hairer, Wanner, Nørsett [8].

General variable step size multistep methods

The different classes of linear multistep methods with variable step sizes can be written in
the form

uj+k +

k−1∑

i=0

αijuj+i = τj+k−1

k∑

i=0

βijfj+i.

The coefficients are now functions in ωi = τi/τi−1 for i = k + 1, . . . , j + k − 1:

αij = αi(ωj+1, . . . , ωj+k−1), βij = βi(ωj+1, . . . , ωj+k−1).

Example: The implicit Adams methods for k = 2 can be written in the form:

uj+1 = uj +
τj

6(1 + ωj)

(
(3 + 2ωj) fj+1 + (3 + ωj)(1 + ωj) fj − ω2

l fj−1

)
.
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Order of consistency

The method is called consistent of order p if the local error at tj+k is O(τp+1
j ).

Theorem 8.5. If

q(tj+k) +
k−1∑

i=0

αij q(tj+i) = τj+k−1

k∑

i=0

βij q
′(tj+i)

for all polynomials q of degree ≤ p, if the ratios τi/τj are bounded for i = j+1, . . . , j+k−1
and if the coefficients αij and βij are bounded, then the method is consistent of order p.

For the explicit and implicit Adams methods the coefficients αij and βij are bounded if

τj/τj−1 ≤ Ω

for some constant Ω. Under this condition the explicit Adams methods are of order k and
the implicit Adams methods are of order k + 1.

Stability

If applied to the trivial differential u′ = 0 the general multistep method can be written in
the form

Uj+1 = Aj Uj .

with

Uj =








uj+k−1

uj+k−2
...
uj







, Aj =








−αk−1,j −αk−2,j . . . −α0,j

1 0 . . . 0
. . .

. . .
...

1 0







.

A general linear multistep method is called 0–stable, if there is a constant C such that

‖Aj+lAj+l−1 · · ·Aj‖ ≤ C

for all j and l ≥ 0.

Theorem 8.6. Assume that

1. 1 +
∑k−1

i=0 αij = 0;

2. the coefficients αi(ωj+1, . . . , ωj+k−1) and βi(ωj+1, . . . , ωj+k−1) are continuous in a
neighborhood of (1, 1, . . . , 1);

3. all roots ζ of

zk +
k−1∑

i=0

αi(1, . . . , 1) zi = 0

lie inside the open unit disc |ζ | < 1 with the exception ζ1 = 1.

Then there exist real numbers ω, Ω with 0 < ω < 1 < Ω such that the method is 0–stable,
if

ω ≤ ωj ≤ Ω for all j.
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Convergence

Consistency and stability imply convergence.

8.6 Practical Implementation and Comparison

See also: Hairer, Nørsett, Wanner, [8], III.7.

In the following several implementation issues are discussed. As an example we consider
only the class of implicit Adams methods.

8.6.1 Predictor–corrector methods

The computation of the new approximate solution uj+1 is typically performed iteratively:

(P) Predictor step: We start with the result of the corresponding explicit Adams method:

u
(p)
j+1 = pj+1.

(E) Evaluation: The actual approximate solution u
(a)
j+1 for uj+1 is used for the approximate

evaluation
f

(a)
j+1 = f(tj+1, u

(a)
j+1)

for fj+1.

(C) Corrector step: From

u
(c)
j+1 = pj+1 + τj gk(j)Φ

(a)
i (j + 1)

an improved approximate solution is obtained, where Φ
(a)
i (j + 1) is obtained from

Φi(j + 1) by replacing fj+1 by the actual approximate solution f
(a)
j+1.

The second and third step is repeatedly l times, leading to a predictor-corrector method,
denoted by the symbols P (EC)lE or P (EC)l. Typically, l = 1 or l = 2.

8.6.2 Order and step size control

By using Newton’s interpolation formula a change in k and, therefore, a change of the
order is relatively easy to do. This offers the possibility of a combined order and step size
control. In contrast to extrapolation methods, the number of function evaluation does not
change with the order.

The principle of a combined order and step size control is discussed for the example of
the implicit Adams methods: An estimation of the local error for uj+1, obtained by the
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k-step Adams method, by using the approximate solution ûj+1, obtained the k + 1-step
Adams method:

u(tj+1) − uj+1 ≈ ûj+1 − uj+1

= τj (gk+1(j) − gk(j))Φk+1(j + 1)

≈ τj (gk+1(j) − gk(j))Φ
(p)
k+1(j + 1)

≈ τj γ
∗
k+1Φ

(p)
k+1(j + 1).

8.6.3 Comparison of the methods
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Chapter 9

Numerical Methods for

Second-Order Differential Equations

See also: Hairer, Nørsett, Wanner, [8], II.14.
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Part II

Stiff Problems

41



Chapter 10

One-Sided Lipschitz Conditions

See also: Hairer, Wanner, [9], IV.12.

Definition 10.1. A differential equation

u′ = f(t, u) (10.1)

is dissipative if
(f(t, w) − f(t, v), w − v) ≤ 0 for all t, v, w.

Lemma 10.1. Let f be continuous and satisfy the one-sided Lipschitz condition

(f(t, w) − f(t, v), w − v) ≤ ν ‖w − v‖2 for all t, v, w.

Then, for any two solutions v(t) and w(t) of (10.1), we have

‖w(t) − v(t)‖ ≤ eν (t−t0) ‖w(t0) − v(t0)‖ for all t ≥ t0.

Definition 10.2. A one-step method is contractive if

‖wj+1 − vj+1‖ ≤ ‖wj − vj‖ for all j.
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Chapter 11

A-Stability

11.1 The Stability Function

See also: Hairer, Wanner, [9], IV.3.

Definition 11.1. The stability function R(z) of a Runge-Kutta method is given by

R(z) = 1 + z bT (I − z A)−1e.

Lemma 11.1.

R(z) =
P (z)

Q(z)
with P (z) = det(I − z A+ z ebT ) and Q(z) = det(I − z A).

Definition 11.2. The stability domain S of a Runge-Kutta method is given by

S = {z ∈ C|R(z)| ≤ 1}.

Definition 11.3. A Runge-Kutta method is called A-stable if

C
− ⊂ S

with C
− = {z ∈ C : Re z ≤ 0}.

Lemma 11.2. No explicit Runge-Kutta method is A-stable.

Definition 11.4. A Runge-Kutta method is called L-stable if it is A-stable and

lim
z→∞

R(z) = 0.

Lemma 11.3. If an implicit Runge-Kutta method with nonsingular matrix A satisfies one
of the following two conditions:

a) asj = bj for j = 1, . . . s,

b) ai1 = b1 for i = 1, . . . , s,

then R(∞) = 0.
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11.2 Padé Approximation of the Exponential Func-

tion

See also: Hairer, Wanner, [9], IV.3, IV.4.

Theorem 11.1. If a Runge-Kutta method is of order p, then

ez − R(z) = O(zp+1) for z → 0.

Theorem 11.2. Of an explicit Runge-Kutta method is of order p, then

R(z) = 1 + z +
1

2!
z2 + . . .+

1

p!
zp +O(zp+1).

Theorem 11.3. Let j, k ∈ N0. The (k, j)-Padé approximation to ez, given by

Rkj(z) =
Pkj(z)

Qkj(z)
,

where

Pkj(z) = 1 +
k

j + k
z +

k(k − 1)

(j + k)(j + k − 1)

z2

2!
+ . . .+

k(k − 1) . . . 1

(j + k)(j + k − 1) . . . (j + 1)

zk

k!

and

Qkj(z) = 1−
j

k + j
z+

j(j − 1)

(k + j)(k + j − 1)

z2

2!
+ . . .+ (−1)j j(j − 1) . . . 1

(k + j)(k + j − 1) . . . (k + 1)

zj

j!

(Q(kj(z) = P (jk(−z)), is the unique rational approximation to ez of order j + k, such that
the degrees of numerator and denominator are k and j, respectively:

ez − Rjk(z) = O(zj+k+1).

Theorem 11.4. Assume that Rjk(z) is the stability function of a Runge-Kutta method.
Then the method is A-stable if and only if k ≤ j ≤ k + 2.

Theorem 11.5. The s-stage Gauß method is of order 2s. Its stability function is Rs,s(z)
and the method is A-stable.

Theorem 11.6. The s-stage Radau IA method and the s-stage Radau IIA method are of
order 2s− 1. Their stability function is Rs−1,s(z) and the methods are A-stable.

Theorem 11.7. The s-stage Lobatto IIIA, IIIB, and IIC methods are of order 2s−2. The
stability function of the Lobatto IIIA and IIIB methods is Rs−1,s−1(z), the stability function
of the Lobatto IIIC method is Rs−2,s(z). All these methods are A-stable.
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11.3 Linear Systems of ODEs with Constant Coeffi-

cients

See also: Hairer, Wanner, [9], IV.2, IV.11.

Linear system

u′(t) = Ju(t) + f(t),

u(0) = 0

with constant matrix J ∈ Rn×n.

Theorem 11.8. If
(Jv, v) ≤ 0 for all v ∈ C

n

and if the Runge-Kutta method is A-stable, then the method is contractive for all τ > 0.

11.4 General Dissipative Problems

See also: Hairer, Wanner, [9], IV.12.

Definition 11.5. A one-step method is called B-stable if

‖û1 − u1‖ ≤ ‖û0 − u0‖

for all τ > 0 and all dissipative problems, i.e., for all f with

(f(t, w) − f(t, v), w − v) ≤ 0 for all t, v, w.

Theorem 11.9. B-stability implies A-stability.

Definition 11.6. A Runge-Kutta method is called algebraically stable if

1. bi ≥ 0 for all i = 1, . . . , s.

2. M = (mij) with mij = biaij + bjaji − bibj is positive semi-definite.

Theorem 11.10. An algebraically stable Runge-Kutta method is B-stable.

11.5 Practical Implementation

See also: Hairer, Wanner, [9], IV.8.
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11.6 Multistep Methods for Stiff Problems

See also: Hairer, Wanner, [9], V.1.

General linear k-step method:

αk uj+k + αk−1 uj+k−1 + . . .+ α0 uk = τ [βk fj+k + βk−1 fj+k−1 + . . .+ β0 fk]

If applied to the model problem
u′ = λu,

we obtain
(αk − µ βk) + (αk−1 − µ βk−1) + . . .+ (α0 − µ β0) = 0

with µ = τ λ.

Definition 11.7. The set

S = {µ ∈ C : all roots ζ(µ) of ρ(z) − µσ(z) satisfy

either |ζ(µ)| < 1 or (|ζ(µ)| = 1 and ζ(µ) is a simple root)}

is the stability domain of the linear k-step method.

Definition 11.8. A linear k-step method is called A-stable if C− ⊂ S.

Theorem 11.11 (The second Dahlquist barrier). An A-stable linear multistep method
must be of order p ≤ 2. The implicit trapezoidal rule is that A-stable method of this class,
which has the smallest principal error term.

Definition 11.9. A method is called A(α)-stable if Cα ⊂ S with

Cα = {z ∈ C : | arg(−z)| < α, z 6= 0}.

Definition 11.10. A linear k-step method is called G-stable if there exists a symmetric
and positive definite matrix G ∈ Rk×k such that

‖Ûj+1 − Uj+1‖G ≤ ‖Ûj − Uj‖G

for all τ > 0 and all dissipative problems, i.e., for all f with

(f(t, w) − f(t, v), w − v) ≤ 0 for all t, v, w.
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Part III

Differential-Algebraic Problems
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Chapter 12

Index and Classification of DAEs

See also: Hairer, Wanner, [9], VII.1.

12.1 Linear DAEs with Constant Coefficients

Linear systems with constant coefficients:

Bu′(t) + Au(t) = f(t) (12.1)

Special case explicit ODEs: B = I .

Definition 12.1. 1. The expression A+ λB as a function in λ ∈ C is called a matrix
pencil.

2. A matrix pencil is called regular if det[A + λB] 6≡ 0.

Let P and Q be non-singular matrices. By multiplying with P and using the transfor-
mation u(t) = Qv(t) we obtain

PBQv′(t) + PAQv(t) = Pf(t).

Example: Explicit ODEs:

Jordan canonical (or normal) form:

A = QJQ−1 with J = diag(J1, . . . , Jk),

where the µi × µi-matrices Ji are of the form

Ji =








λi 1
. . .

. . .

λi 1
λi







.
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With P = Q−1 we obtain:
PAQ = J PIQ = I.

and
v′(t) + Jv(t) = g(t)

with v(t) = Q−1u(t) and g(t) = Pf(t).
The system of differential equations consists of systems of the form

w′
1(t) + λw1(t) + w2(t) = g1(t),

...

w′
ν−1(t) + λwν−1(t) + wν(t) = gν−1(t),

wν(t) + λwν(t) = gν(t).

Hence

wν(t) = wν(0)e−λt +

∫ t

0

gν(s)e
λ(s−t) ds,

wν−1(t) = [wν−1(0) − wν(0) t] e−λt +

∫ t

0

[gν−1(s) − gν(s) s] e
λ(s−t) ds,

...

w1(t) =

[

w1(0) − w2(0) t+ w3(0)
t2

2
− . . .+ (−1)ν−1wν(0)

tν−1

(ν − 1)!

]

e−λt,

+

∫ t

0

[

g1(s) − g2(s) s+ g3(s)
s2

2
− . . .+ (−1)ν−1gν(s)

sν−1

(ν − 1)!

]

eλ(s−t) ds.

Therefore, the following stability estimate results:

‖w(t)‖ ≤ C

[

‖w(0)‖ +

∫ t

0

‖g(s)‖ ds

]

with a constant C > 0 for all t ∈ [0, T ]. In terms of the original quantities:

‖u(t)‖ ≤ C

[

‖u(0)‖ +

∫ t

0

‖f(s)‖ ds

]

.

Theorem 12.1 (Weierstraß, Kronecker). Let A + λB be a regular matrix pencil. Then
there exist matrices P and Q such that

PAQ =

(
J 0
0 I

)

, PBQ =

(
I 0
0 N

)

,

where J is a Jordan canonical form, N = diag(N1, . . . , Nm) with νi ×νi-matrices Ni, given
by

Ni =








0 1
. . .

. . .

0 1
0







.
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For

Q−1u(t) = v(t) =

(
y(t)
z(t)

)

we obtain

y′(t) + Jy(t) = g(t), (12.2)

Nz′(t) + z(t) = h(t). (12.3)

The system (12.2) is an explicit ODE and possesses a unique solution for arbitrary
initial values y(0), see above.

The system (12.3) consists of systems of the form

w′
2(t) + w1(t) = h1(t),

...

w′
ν(t) + wν−1(t) = hν−1(t),

wν(t) = hν(t).

Hence

wν(t) = hν(t),

wν−1(t) = hν−1(t) − h′ν(t),
...

w1(t) = h1(t) − h′2(t) + h′′3(t) − . . .+ (−1)ν−1h(ν−1)
ν (t).

So, it is uniquely solvable (without initial values z(0)) and

‖w(t)‖ ≤ C

[

‖h(t)‖ + ‖h′(t)‖ + . . .+ ‖h(ν−1)(t)‖

]

.

In summary, in terms of the original quantities

‖u(t)‖ ≤ C

[

‖u(0)‖ +

∫ t

0

‖f(s)‖ ds

+ max
0≤s≤t

‖f(s)‖ + max
s∈[0,t]

‖f ′(s)‖ + . . .+ max
s∈[0,t]

‖f (ν−1)(s)‖

]

.

The highest derivative is of order ν − 1 with ν = max{νi|1 ≤ i ≤ m}.

Definition 12.2. The index ν of a linear system of DAEs with constant coefficients is
given by

ν = max
1≤i≤m

νi.

ν = 0 : explicit ODEs. There is a unique solution for arbitrary initial values u(0). The
solution can be estimated by the initial data and the L1-norm of the right hand side.
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ν = 1 : N = 0. The transformed problem consists of an explicit ODE and a purely an
algebraic problem. For estimating the solution we additionally need the L∞-norm of
the right hand side.

ν > 1 : higher index DAEs, hidden constraints. For estimating the solution we additionally
need the L∞-norm of derivatives of the right hand side.

Equivalent definition of ν:

Nν−1 6= 0 and Nν = 0.

The matrix N is called nilpotent with index Index ν.

12.2 Differentiation Index and Perturbation Index

General implicit ODE:
F (t, u(t), u′(t)) = 0 (12.4)

Definition 12.3. The implicit ODE (12.4) has differentiation index νd if m = νd is the
smallest integer such that the system

F (t, u(t), u′(t)) = 0,

d

dt
F (t, u(t), u′(t)) = 0,

...
dm

dtm
F (t, u(t), u′(t)) = 0,

or, in short,
G(t, u, u′, w) = 0 with w = (u′′, . . . , u(m+1)),

allows us to extract an explicit ODE

u′(t) = f(t, u(t))

by purely algebraic manipulations.

Consider implicit ODEs
F (t, u(t), u′(t)) = 0

with non-singular Fu′: νd = 1
Consider the linear system of DAEs with constant coefficients

w′
2(t) + w1(t) = h1(t),

w′
3(t) + w2(t) = h2(t),

...

w′
ν(t) + wν−1(t) = hν−1(t),

wν(t) = hν(t).
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If the first equation is differentiated once, the second twice, and so on, we obtain

w′′
2(t) + w′

1(t) = h′1(t),

w′′′
3 (t) + w′′

2(t) = h′′2(t),
...

w(ν)
ν (t) + w

(ν−1)
ν−1 (t) = h

(ν−1)
ν−1 (t),

w(ν)
ν (t) = h(ν)

ν (t).

Hence
w′

1(t) = h′1(t) − h′′2(t) + h′′′3 (t) − . . .+ (−1)ν−1h(ν)
ν (t).

Therefore: νd = ν.
Consider the semi-explicit DAE

y′(t) = f(t, y(t), z(t)),

0 = g(t, y(t), z(t))

with non-singular matrix gz(t, y, z). If the second equation is differentiated once, we obtain

gz(t, y(t), z(t))z
′(t) + gy(t, y(t), z(t))y

′(t) + gt(t, y(t), z(t)) = 0,

Hence

y′(t) = f(t, y(t), z(t)),

z′(t) = −gz(t, y(t), z(t))
−1[gy(t, y(t), z(t))f(t, y(t), z(t)) + gt(t, y(t), z(t))].

Therefore: νd = 1. The original DAE is called a Hessenberg index-1 system.
Consider a semi-explicit DAE of the form

y′(t) = f(t, y(t), z(t)),

0 = g(t, y(t))

with non-singular matrix gy(t, y) fz(t, y, z). If the second equation is differentiated once,
we obtain

gy(t, y(t))y
′(t) + gt(t, y(t)) = 0

and, therefore, the new (hidden) constraint

gy(t, y(t))f(t, y(t), z(t)) + gt(t, y(t)) = 0.

If this constraint is differentiated once, we obtain an explicit system of ODEs, since
gy(t, y(t))fz(t, y(t), z(t)) is non-singular. Therefore: νd = 2. It a called a Hessenberg
index-2 system.
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Similarly one can show that the semi-explicit DAE

x′(t) = f(t, x(t), y(t), z(t)),

y′(t) = g(t, x(t), y(t)),

0 = h(t, y(t))

with non-singular matrix hy(t, y)gx(t, x, y)fz(t, x, y, z): νd = 3. It a called a Hessenberg
index-3 system.

The last two examples are special cases of Hessenberg index-m DAEs:

x′1(t) = f1(t, x1(t), x2(t), . . . , xm−1(t), xm(t)),

x′2(t) = f2(t, x1(t), x2(t), . . . , xm−1(t)),
...

x′i(t) = fi(t, xi−1(t), xi(t), . . . , xm−1(t)),
...

x′m−1(t) = fm−1(t, xm−2(t), xm−1(t)),

0 = fm(t, xm−1(t))

with a non-singular
∂fm

∂xm−1

∂fm−1

∂xm−2

· · ·
∂f2

∂x1

∂f1

∂xm

.

Obviously: νd = m.
Linear Hessenberg index-m DAEs with constant coefficients:











I 0 · · · · · · 0

0 I
. . .

...
...

. . .
. . .

. . .
...

...
. . . I 0

0 · · · · · · 0 0






















x′
1

x′
2
...
...

x′
m











+











A11 · · · · · · A1,m−1 A1m

A21 A22 · · · A2,m−1 0

0
. . .

. . .
...

...
...

. . .
. . . Am−1,m−1

...
0 · · · 0 Am,m−1 0





















x1

x2
...
...

xm











=











f1

f2
...
...

fm











with
Am,m−1Am−1,m−2 · · · A21 A1m non-singular.

By reordering we obtain











0 I · · · · · · 0

0 0
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 I

0 · · · · · · 0 0






















x′
m

x′
1
...
...

x′
m−1











+











A1m A11 · · · · · · A1,m−1

0 A21 A22 · · · A2,m−1
... 0

. . .
. . .

...
...

...
. . .

. . . Am−1,m−1

0 0 · · · 0 Am,m−1





















xm

x1
...
...

xm−1











=











f1

f2
...
...

fm











Hence
Nx′ +Rx = f
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with a nilpotent matrix N of index m and a non-singular upper block-triangular matrix
R, which easily imply ν = m .

Example: Constrained mechanical systems

M(q)q̈ = f(q, q̇) −G(q)Tλ

0 = g(q)

written as a system of first order

M(q)u̇ = f(q, u) −G(q)Tλ

q̇ = v

0 = g(q)

are DAEs of index 3, if the matrix M(q) is nonsingular and G(q) has full rank equal to
the number of rows. If the first equation is multiplied by M(q)−1, the system becomes a
Hessenberg index-3 DAE with x = u, y = q, z = λ, and hy(t, y)gx(x, y)fz(x, y, z) = S(q) =
−G(q)M(q)−1G(q)T .

If the constraint is differentiated once, we obtain

M(q)u̇ = f(q, u) −G(q)Tλ

q̇ = u

0 = G(q)u

This system is a DAE of index 2, if the matrix M(q) is nonsingular and G(q) has full rank
equal to the number of rows. If the first equation is multiplied by M(q)−1, the system
becomes a Hessenberg index-2 DAE with y = (u, q), z = λ, and gy(y) fz(y, z) = S(q) =
−G(q)M(q)−1G(q)T .

If the constraint is differentiated twice, we obtain

q̇ = u
(
M(q) G(q)T

G(q) 0

)(
u̇
λ

)

=

(
f(q, u)

−gqq(q)(u, u)

)

This system is a DAE of index 1, if the matrix M(q) is nonsingular and G(q) has full rank
equal to the number of rows. If the second part of the system is multiplied by the inverse
of the 2-by-2 block matrix, the system becomes a Hessenberg index-1 DAE with y = (u, q),
z = λ, and gz(y, z) = S(q) = −G(q)M(q)−1G(q)T .

Consider the GGL-formulation (after Gear, Gupta, and Leimkuhler):

M(q)u̇ = f(q, u) −G(q)Tλ

q̇ = u−G(q)Tµ

0 = G(q)u

0 = g(q)
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If the matrix M(q) is nonsingular and G(q) has full rank equal to the number of rows, this
system is equivalent to the index-2 formulation and has also index 2. If the first equation
is multiplied by M(q)−1, the system becomes a Hessenberg index-2 DAE with y = (u, q),
z = (λ, µ), and

gy(y)fz(y, z) =

(
G(q) gqq(q)u

0 G(q)

)(
−M(q)−1G(q)T 0

0 −G(q)T

)

=

(
S(q) −gqq(q)(u,G(q)T .)

0 −G(q)G(q)T

)

.

Consider the general implicit ODEs:

F (t, u(t), u′(t)) = 0. (12.5)

Definition 12.4. The implicit ODE (12.5) has perturbation index νp with respect to a
solution u(t), t ∈ [0, T ] if m = νp is the smallest integer such that, for all functions û(t)
with

F (t, û(t), û′(t)) = δ(t),

there exists a constant C > 0 with

‖û(t) − u(t)‖ ≤ C

[

‖û(0) − u(0)‖

+

∫ t

0

‖δ(s)‖ ds+ max
0≤s≤t

‖δ(s)‖ + max
s∈[0,t]

‖δ′(s)‖ + . . .+ max
s∈[0,t]

‖δ(m−1)(s)‖

]

for all t ∈ [0, T ] and all sufficiently small perturbations δ.

For

• linear systems of DAEs with constant coefficients,

• DAEs in Hessenberg form.

it follows that
νp = νd.

See also Gear [3].
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Chapter 13

Numerical Methods for Implicit

ODEs

13.1 Runge-Kutta Methods

Consider the implicit ODE
F (t, u(t), u′(t)) = 0

Runge-Kutta methods:

uj+1 = uj + τj

s∑

k=1

bkkjk

with

F (tji, Uji, kji) = 0 and Uji = uj + τj

s∑

k=1

aikkjk,

where tji = tj + ciτj . So

F (tji, uj + τj

s∑

k=1

aikkjk, kik) = 0.

In particular, we obtain for the linear DAE with constant coefficients

Nz′(t) + z(t) = h(t)

with Nν = 0, Nν−1 6= 0 for ν ≥ 1 the linear system

Nlni + zj + τj

s∑

k=1

aikljk = h(tji), i = 1, . . . , s,
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for the values lji, which can be interpreted as approximations to z′(tji). That means















N 0 · · · 0
0 N · · · 0
...

...
. . .

...
0 0 · · · N








+ τj








a11 I a12 I · · · a1s I
a21 I a22 I · · · a2s I

...
...

. . .
...

as1 I as2 I · · · ass I






















lj1
lj2
...
ljs








=








h(tj1) − zj

h(tj2) − zj
...

h(tjs) − zj








or, in short,

[I ⊗N + τj A⊗ I]








lj1
lj2
...
ljs








=








h(tj1) − zj

h(tj2) − zj
...

h(tjs) − zj







.

In order to obtain a well-defined method the matrix I⊗N + τj A⊗I must be non-singular,
which is true if and only if A is non-singular.

Proof. If A is singular, then there is a vector y 6= 0 with Ay = 0. Since N is singular, there
is a vector z 6= 0 with Nz = 0. Then: (I ⊗N + τnA⊗ I)(y⊗ z) = y⊗Nz+ τnAy⊗ z = 0.

Assume that A is non-singular. Because of

I ⊗N + τnA⊗ I = [τnA⊗ I][I ⊗ I +
1

τn
A−1 ⊗N ].

it follows that

[τn A⊗ I + I ⊗N ]−1 = [I ⊗ I +
1

τn
A−1 ⊗N ]−1[τnA⊗ I]−1

=

ν−1∑

k=0

(−1)k

τk
n

[
A−1 ⊗N

]k 1

τn

[
A−1 ⊗ I

]

=

ν−1∑

k=0

(−1)k

τk+1
n

[
A−(k+1) ⊗Nk

]
.

The requirement that A is non-singular, excludes the class of explicit Runge-Kutta
methods.

Remark:

1. The Gauß methods, the Radau IA methods, the Radau IIA methods, and the Lo-
battoIIIC methods have a non-singular coefficient matrix A = (aij).
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2. For the Lobatto IIIA methods, the first row of A = (aij) vanishes. Nevertheless, it
can be shown that these methods are also suitable for DAEs, since A is of the form

A =

(
0 0
a A

)

with a non-singular matrix A if properly modified: Set lj1 = lj−1,s and determine
(lj2, · · · , ljs) from the reduced system obtained by ignoring the first equation. This
approach requires an initial value for l01, e.g. l01 = z′(0).

3. For the Lobatto IIIB methods, the last column of A = (aij) vanishes, these methods
are not appropriate methods for DAEs.

13.2 BDF-Methods

Consider the implicit ODE
F (t, u(t), u′(t)) = 0.

BDF-methods:

F (tj+k, uj+k,
1

τ

k∑

i=1

1

i
∇iuj+k) = 0.

In particular, we obtain for the linear DAE with constant coefficients

Nz′(t) + z(t) = h(t)

with Nν = 0, Nν−1 6= 0 for ν ≥ 1

N
1

τ

k∑

i=1

1

i
∇izj+k + zj+k = h(tj+k).

So

zj+k =

(

I +N
1

τ

k∑

i=1

1

i
∇i

)−1

h(tj+k) =
ν−1∑

l=0

(−1)lN l

(

1

τ

k∑

i=1

1

i
∇i

)l

h(tj+k).

This shows the method is defined and zj+k depends only on the values of the right-hand
side h(t) at tn+k and at the previous (ν − 1) k grid points.

For the exact solution we have a similar representation:

z(t) =

(

I +N
d

dt

)−1

h(t) =

(
ν−1∑

i=0

(−1)iN i d
i

dti

)

h(t) =

ν−1∑

i=0

(−1)iN ih(i)(t).
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Chapter 14

Hessenberg Index-1 DAEs

Consider the Hessenberg index-1 DAE:

y′(t) = f(t, y(t), z(t)), (14.1)

0 = g(t, y(t), z(t)) (14.2)

where
gz(t, y, z) non-singular in a neighborhood of the solution. (14.3)

Then, by the implicit function theorem, we have locally:

z(t) = G(t, y(t)).

Reduced problem:
y′(t) = f(t, y(t), G(t, y(t)). (14.4)

Any method appropriate for explicit ODEs can be applied to (14.4). This approach is
called indirect approach or state space form method.

A Runge-Kutta method applied to (14.4):

yj+1 = yj + τj

s∑

k=1

bkkjk

with
kji = f(tji, Yji, G(tji, Yji))

and

Yji = yj + τj

s∑

k=1

aikkjk.

For zj+1 one obtains
zj+1 = G(tj+1, yj+1).

By introducing
Zji = G(tji, Yji)
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the method can be written in the form

yj+1 = yj + τj

s∑

k=1

bkkjk, 0 = g(tj+1, yj+1, zj+1)

with
Y kji = f(tji, Yji, Zji), 0 = g(tji, Yji, Zji)

and

Yji = yj + τj

s∑

k=1

aikY
′
jk.

A BDF-method applied to (14.4):

k∑

i=1

1

i
∇iyj+i = τ f(tj+k, yj+k, G(tj+k, yj+k))

and
zj+1 = G(tj+1, yj+1).

One obtains

k∑

i=1

1

i
∇iyj+i = τ f(tj+k, yj+k, zj+k),

0 = g(tj+k, yj+k, zj+k).

This corresponds exactly to the approach of chapter 13.
An alternative approach for constructing a method for the semi-explicit DAE (14.1),

(14.2) is called direct approach or ε-embedding method. (14.1), (14.2) is considered as
limit case ε = 0 of the explicit singularly perturbed ODE

y′(t) = f(t, y(t), z(t)), (14.5)

ε z′(t) = g(t, y(t), z(t)). (14.6)

for which any method appropriate for explicit ODEs could, at least in principle, be con-
sidered. Subsequently, we set ε = 0.

If a Runge-Kutta method is applied to (14.5), (14.6), we obtain

yj+1 = yj + τj

s∑

k=1

bkkjk, zj+1 = zj + τj

s∑

k=1

bkljk

with
kji = f(tji, Yji, Zji), ε lji = g(tji, Yji, Zji)

and

Yj = yj + τj

s∑

k=1

aikkjk, Zj = zj + τj

s∑

k=1

aikljk.
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The limit ε→ 0 leads to the following method:

yj+1 = yj + τj

s∑

k=1

bkkjk, zj+1 = zj + τj

s∑

k=1

bkljk

with
kji = f(tji, Yji, Zji), 0 = g(tji, Yji, Zji)

and

Yji = yj + τj

s∑

k=1

aikkjk, Zji = zj + τj

s∑

k=1

aikljk.

This corresponds exactly to the approach of chapter 13.
Observe, however, the new approximate solutions (yj+1, zj+1) need not necessarily sat-

isfy the algebraic constraint
0 = g(tj+1, yj+1, zj+1),

despite the fact that:
0 = g(tj, yj, zj).

If
cs = 1, bj = asj , j = 1, 2, . . . , s, (14.7)

(the method is called stiffly accurate) the direct and the indirect approach coincide: We
have yj+1 = Yjs and zj+1 = Zjs. Therefore, the new approximate solutions satisfy the
constraints since the intermediate values satisfy the constraints.

Remark: The Radau IIA methods, the Lobatto IIIA methods, and the Lobatto IIIC
methods satisfy (14.7).

If a BDF-method is applied to (14.5), (14.6), one obtains

k∑

i=1

1

i
∇iyj+k = τ f(tj+k, yj+k, zj+k),

ε

(
k∑

i=1

1

i
∇izj+k

)

= τ g(tj+k, yj+k, zj+k).

The limit ε→ 0 leads to the following method:

k∑

i=1

1

i
∇iyj+k = τ f(tj+k, yj+k, zj+k),

0 = g(tj+k, yj+k, zj+k).

Here, the direct approach coincides with the indirect approach. As a consequence, the
following estimate for the global error holds:

‖yj − y(tj)‖ = O(τk)
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and
‖zj − z(tj)‖ = ‖G(tj , yj) −G(tj , y(tj))‖ = O(‖yj − y(tj)‖) = O(τk)

for all j = k, k + 1, . . ., if the initial values satisfy

‖yj − y(tj)‖ = O(τk), for all j = 0, . . . , k − 1.

14.1 Direct Approach for Runge-Kutta Methods

For a Runge-Kutta method

yj+1 = yj + τj

s∑

k=1

bkkjk, zj+1 = zj + τj

s∑

k=1

bkljk

with
kji = f(tji, Yji, Zji) 0 = g(tji, Yji, Zji)

and

Yji = yj + τj

s∑

k=1

aikkjk, Zji = zj + τj

s∑

k=1

aikljk

one obtains
zj+1 = zj + τj [bT ⊗ I]lj

and
Zj = e⊗ zj + τj [A⊗ I]lj

with

Yj =








Yj1

Yj2
...
Yjs







, kj =








kj1

kj2
...
kjs







, Zj =








Zj1

Zj2
...
Zjs







, lj =








lj1
lj2
...
ljs







.

The last equation implies:

lj =
1

τj
[A−1 ⊗ I] (Zj − e⊗ zj) =

1

τj
[A−1 ⊗ I]Zj −

1

τj
[A−1e⊗ zj ].

Hence

zj+1 = zj + τj [bT ⊗ I]lj = zj + [bT ⊗ I]
(
[A−1 ⊗ I]Zj − [A−1e⊗ zj ]

)

= (1 − bTA−1e)zj + [bTA−1 ⊗ I]Zj.

Therefore, we obtain the following form of the Runge-Kutta method:

yj+1 = yj + τj

s∑

k=1

bkf(tjk, Yjk, Zjk)

zj+1 = (1 − bTA−1e)zk + [bTA−1 ⊗ I]Zj
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where Yj and Zj are given by the system of equations

Yji = yj + τj

s∑

k=1

aikf(tjk, Yjk, Zjk), (14.8)

0 = g(tji, Yji, Zji). (14.9)

The existence of a locally unique solution follows from the implicit function theorem: If

yj − y(tj) = O(τ̄j−1) and zj − z(tj) = O(τ̄j−1) with τ̄i = max
0≤l≤i

τi,

then (14.3) implies the existence of a locally unique solution z̄j = G(tj , yj) to the equation

0 = g(tj, yj, z̄j).

Therefore, Yji = yj and Zji = z̄j are the locally unique solution to the system (14.8), (14.9)
for τj = 0. The Jacobian with respect to Yji and Zji at τj = 0 has the following form:

(
I ⊗ I 0

I ⊗ gy(tj , yj, z̄j) I ⊗ gz(tj , yj, z̄j)

)

and, therefore, is non-singular. From the implicit function theorem the existence of a
locally unique solution to the system (14.8), (14.9) follows for sufficiently small step sizes
τj , and

Yji − yj = O(τj) and Zji − z̄j = O(τj).

Theorem 14.1. Assume that the system (14.1), (14.2) satisfy the condition (14.3) in
a neighborhood of the exact solution and the initial values (y0, z0) are consistent, i.e.:
g(0, y0, z0) = 0. Consider a Runge-Kutta method of order p, of stage order q, i.e.: C(q) is
satisfied, whose coefficient matrix A in non-singular. Then the global error satisfies

yj − y(tj) = O(τ̄p
j−1), zj − z(tj) = O(τ̄ r

j−1)

with

1. r = p if (14.7) holds,

2. r = min(p, q + 1) if |R(∞)| < 1,

3. r = min(p− 1, q) if |R(∞)| = 1

Remark: For R(∞) = −1 and constant step sizes one can show an improved result in the
last case with r = min(p, q + 1).

Stage order q and order of accuracy p for explicit ODEs, p for the differential variable
y and r of the algebraic variable r for Hessenberg index-1 DAEs:
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method explicit ODE DAE Index 1
q p p r

Gauß s 2s s odd: 2s s+ 1
s even: 2s s

Radau IA s− 1 2s− 1 2s− 1 s
Radau IIA s 2s− 1 2s− 1 2s− 1
Lobatto IIIA s 2s− 2 2s− 2 2s− 2
Lobatto IIIC s− 1 2s− 2 2s− 2 2s− 2

Order of accuracy r for the algebraic variable z:

method s = 1 s = 2 s = 3 s = 4
Gauß 1(2) 2 3(4) 4
Radau IA 1 2 3 4
Radau IIA 1 3 5 7
Lobatto IIIA 2 4 6
Lobatto IIIC 2 4 6

System of equations to be solved in each step, is of dimension s · n:

Yji = yj + τj

s∑

k=1

aikf(tjk, Yjk, Zjk),

0 = g(tji, Yji, Zji)

This system is solved by the simplified Newton method with the Jacobian at Yji = yj and
Zji = zj: (

I ⊗ I − τ A⊗ fy(tj, yj, zj) −τ A⊗ fz(tj , yj, zj)
I ⊗ gy(tj , yj, zj) I ⊗ gz(tj , yj, zj)

)

By multiplying the first block row by (τ A)−1 ⊗ I, one obtains

(
(τ A)−1 ⊗ I − I ⊗ fy(tj , yj, zj) −I ⊗ fz(tj , yj, zj)

I ⊗ gy(tj , yj, zj) I ⊗ gz(tj, yj, zj)

)

Using
T−1AT = Λ

with Λ = diag(Λ1, . . . ,Λs) the system can be further transformed to

(
(τ Λ)−1 ⊗ I − I ⊗ fy(tj , yj, zj) −I ⊗ fz(tj , yj, zj)

I ⊗ gy(tj , yj, zj) I ⊗ gz(tj , yj, zj).

)

which consists of sub-matrices of the form
(

(τ Λi)
−1 I − fy(tj , yj, zj) −fz(tj , yj, zj)
gy(tj , yj, zj) gz(tj , yj, zj).

)

64



In this case the original linear system of dimension s · n is reduced to s linear systems of
dimension n. The computational costs of a direct solver like Gaußian elimination reduces
from 4(sn)3/3 = 4s3n3/3 to 4sn3/3 elementary operations.

In case of complex eigenvalues Λi complex arithmetic is necessary.

Example: Consider the 3-stage Radau IIA method (RADAU5). A has a pair of complex
conjugate eigenvalues Λ1 = α + iβ, Λ2 = α − iβ and one real eigenvalue Λ3 = γ. LU-
decompositions must be computed only for Λ1 and Λ3. The LU − decomposition for Λ2 is
the complex conjugate of the LU -decomposition for Λ2.
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Chapter 15

Hessenberg Index-2 DAEs

Consider a Hessenberg index-2 DAE (without loss of generality in autonomous form):

y′(t) = f(y(t), z(t)), (15.1)

0 = g(y(t)) (15.2)

with
gy(y)fz(y, z) non-singular in a neighborhood of the solution. (15.3)

Hidden algebraic constraint:

0 = gy(y(t)) f(y(t), z(t)). (15.4)

Summary of results for some classes of Runge-Kutta methods:
Stage order q and order of accuracy p for explicit ODEs, p for the differential variable

y and r of the algebraic variable r for Hessenberg index-2 DAEs:

method explicit ODE DAE index 2
q p p r

Gauß s 2s s odd: s+ 1 s− 1
s even: s s− 2

Radau IA s− 1 2s− 1 s s− 1
Radau IIA s 2s− 1 2s− 1 s
Lobatto IIIA s 2s− 2 s odd: 2s− 2 s− 1

s even: 2s− 2 s
Lobatto IIIC s− 1 2s− 2 2s− 2 s− 1

Order of accuracy r for the algebraic variable z:

method s = 1 s = 2 s = 3 s = 4
Gauß 1(2) 2
Radau IA 1 2 3
Radau IIA 1 2 3 4
Lobatto IIIA 1(2) 2 3(4)
Lobatto IIIC 1 2 3
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15.1 BDF-Methods

BDF-method applied to (15.1), (15.2):

k∑

i=1

1

i
∇iyj+k = τ f(yj+k, zj+k), (15.5)

0 = g(yj+k). (15.6)

or, in general notation

k∑

i=0

αiyj+i = τ f(yj+k, zj+k),

0 = g(yj+k).

Theorem 15.1. Assume that

yj+i = y(tj+i) +O(τ) and g(yj+i) = 0 for i = 0, 1, . . . , k − 1.

Then the system (15.5), (15.6) has a locally unique solution

yj+k = y(tj+k) +O(τ), zj+k = z(tj+k) +O(τ)

for sufficiently small step sizes.

Let yj+k and zj+k denote the approximate solutions after one step of the BDF-method
with initial values y(tj+i), z(tj+i) for i = 0, 1, . . . , k − 1. For the local error

dy,j+k = yj+k − y(tj+k), dz,j+k = zj+k − z(tj+k)

we have

Theorem 15.2.

dy,j+k = O(τk+1), dz,j+k = O(τk).

Theorem 15.3. For initial values satisfying

‖yi − y(ti)‖ = O(τk+1) for all i = 0, . . . , k − 1,

we have for the global error

‖yi − y(ti)‖ = O(τk), ‖zi − z(ti)‖ = O(τk) for all i = k, k + 1, . . . .
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