2. Interpolation, Approximation, Quadratur

1. Gegeben seien die folgenden Wertepaare:

x_i	-2	-1	0	1	2
y_i	-0.2	0.5	-1	0.5	-0.2

- (a) Man bestimme den zugehörigen linearen C^0 -Spline.
- (b) Man bestimme den zugehörigen kubischen C^2 -Spline S(x) mit $S^{(k)}(2) = S^{(k)}(-2), k = 1, 2.$
- 2. Mit Hilfe der Methode der kleinsten Quadrate (Ausgleichsrechnung) bestimme man für die folgenden Wertepaare (x_i, y_i) approximierende Polynome 1. und 2. Grades und vergleiche die zugehörigen Quadratsummen für 2008!

ſ	x_i	2003	2004	2005	2006	2007
	y_i	15	5	1	1	3

- 3. Zu berechnen sei das Integral $I = \int_{0}^{1} \int_{0}^{1-x} f(x,y) dy dx$.
 - (a) Bestimmen Sie eine Gaußformel mit 1 Punkt, die für alle Polynome ersten Grades exakt ist.
 - (b) Bestimmen Sie eine Formel, die für alle quadratischen Funktionen exakt ist.
- 4. Sei $f: [-1,1] \mapsto \mathbb{R}$ gegeben durch

$$f(x) = \frac{1}{1+x^2}.$$

Bestimmen Sie für n=2,4,6,8,10,12 die bestapproximierende Polynomfunktion maximal n-ten Grades in $L^2(-1,1)$ und stelle den Fehler jeweils graphisch dar.

Hinweise: Die Auswertung von Funktionswerten der Legendreschen Polynome erfolgt numerisch stabil mit der Rekursionsformel aus der Vorlesung.

Der Befehl eig bestimmt die Eigenwerte einer Matrix.

Zusatz: Wir betrachten das Randwertproblem: Suche u so daß

$$-u''(x) = f(x)$$

$$u(0) = u(1) = 0$$

mit f(x)=1 für x>0.5 und f(x)=0 für $x\leq 0.5$. Man diskretisiere dieses Problem mit der Finite- Elemente Methode mit \mathbb{M}_h als Raum der stückweise linearen Splines zu den Stützstellen $\frac{j}{N}, j=0,\ldots,N$ für N=8,16,32. Wie lautet die approximative Lösung u_h , wie sieht die Matrix G_h aus?