<u>TUTORIAL</u>

"Numerical Methods for Solving Partial Differential Equations"

for the Lectures on NuPDE

T XI Monday, 28 January 2008 (Time: 08:30 – 10:00, Room: T 212)

2.3 Runge-Kutta methods for IVPs of ODEs

61 If we evaluate the integral $\int_{t}^{t+\tau} f(s, u(s)) ds$ using the trapezoidal rule (TR), i.e.,

$$\int_{t}^{t+\tau} f(s, u(s)) ds \stackrel{\text{TR}}{\approx} \frac{\tau}{2} \left[f(u, u(t)) + f(t+\tau, u(t+\tau)) \right],$$

and approximate $u(t + \tau) \approx u(t) + \tau f(t, u(t))$ according to the forward Euler method, we obtain the so-called *Heun method*. This method corresponds to the Butcher table

from which you can see that the Heun method is a 2-stage Runge-Kutta method. The scheme reads

$$u_{j+1} = u_j + \frac{\tau}{2} \left[f(t_j, u_j) + f(t_{j+1}, u_j + \tau f(t_j, u_j)) \right].$$

Considering a Taylor expansion of the local error $u(t+\tau) - u_{\tau}(t+\tau)$, show that the Heun method has consistency order 2.

For programming the following exercises you are allowed to use matlab, C, C++ or anything you like. Please, save or print out your plots.

62 Consider the initial-value problem

$$u'(t) = B(u+A) \qquad 0 < t < 1,$$

 $u(0) = 0,$ (2.33)

with B = 3 and $A = e^B - 1$.

- (a) Compute analytically the exact solution u of (2.33).
- (b) Consider the discretization step sizes $\tau = 1, 1/2, 1/4, 1/8, 1/16$, and compute the numerical approximation u_{τ} of u using the following explicit Runge-Kutta methods:
 - the (explicit) forward Euler method (FE)
 - the Heun method (H)

- the classical fourth-order Runge-Kutta method (RK4):

Plot the exact and the numerical solution for each τ_i .

(c) Fill in the following table reporting the approximation $u_{\tau}(1)$ of u(1):

method		1	1/2	1/4	1/8	1/16	u(1)
FE	(*)						
	(E)						
Н	(*)						
	(E)						
RK4	(*)						
	(E)						

Here,

- (*) denotes the 'original' method
- (E) corresponds to a post-processing of the computed values using a global extrapolation strategy considering the formula

$$\widehat{u}_{\tau}(t) = u_{\tau/2}(t) + \frac{u_{\tau/2}(t) - u_{\tau}(t)}{2p - 1}$$

p being the order of the considered method.

63 Consider the following initial-value problem

$$u'(t) = -50(u(t) - \cos(t)) \qquad 0 < t < 1.5, u(0) = 0.$$
(2.35)

- (a) Compute analytically the exact solution u of (2.35).
- (b) Consider the discretization steps sizes $\tau = \frac{1}{20}, \frac{3}{80}, \frac{1}{30}, \frac{1}{40}$, and compute the numerical approximation of u_{τ} of u using the following explicit Runge-Kutta methods:
 - the (explicit) forward Euler method (FE)
 - the Heun method (H)
 - the (implicit) backward Euler method (BE), i.e., the scheme

$$u_{j+1} = u_j + \tau f(t_{j+1}, u_{j+1}).$$

Plot the exact and the computed numerical solutions and compare them. Moreover, fill in the following table with the approximations $u_{\tau}(1.5)$ of the exact solution u at t = 1.5:

method	1/20	3/80	1/30	1/40	u(1.5)
FE					
Н					
BE					

- c) Start the explicit forward Euler method from $t_0 = 1/2$ using the exact solution $u(t_0) = u(1/2)$ and the discretization step size $\tau = 1/20$. Compare graphically the exact and the numerical solution obtained in that case. Which value of τ must be considered in order to guarantee that the method is stable?
- d) Compute the solution of (2.35) considering the (implicit) backward Euler method and the discretization step size $\tau = 1/2$. Compare the computed solution and the exact one graphically.
- 64 The orbit of a satellite in the plane of the Earth-Moon system can be modeled by the following second-order ODE system:

$$y_1'' = y_1 + 2y_2' - (1-\mu)\frac{y_1 + \mu}{D_1} - \mu \frac{y_1 - (1-\mu)}{D_2}, \quad 0 < t < T,$$

$$y_2'' = y_2 - 2y_1' - (1-\mu)\frac{y_2}{D_1} - \mu \frac{y_2}{D_2}, \quad 0 < t < T,$$

$$y_1(0) = 0.994, \quad y_1'(0) = 0,$$

$$y_2(0) = 0, \quad y_2'(0) = -2.001\,585\,106\,379\,082\,522\,405\,378\,622\,24,$$

(2.36)

where

$$D_1 = \left[(y_1 + \mu)^2 + y_2^2 \right]^{3/2}, \quad D_2 = \left[(y_1 - (1 - \mu))^2 + y_2^2 \right]^{3/2}, \quad \mu = 0.012277471.$$

For the given data, the system has a solution whose period is

 $t_{\rm per} = t = \underline{17.065\,216\,560\,157\,96} 2\,558\,891\,720\,624\,9\,.$

- a) Rewrite (2.36) in an equivalent form as a system of first-order ODEs.
- b) Solve (2.36) numerically considering
 - the classical fourth-order Runge-Kutta method (2.34)
 - another method of your choice.
- c) Plot the computed trajectory $(y_{1\tau}(t), y_{2\tau}(t))$, considering a linear interpolation of the computed positions.

