
NuPDE (Numerical Methods for Partial Differential Equations) WS 2007/2008

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

for the Lectures on NuPDE

T VIII Monday, 7 January 2008 (Time: 08:30 – 10:00, Room: T 212)

1.10 Optimal Preconditioning (MDS)

In this tutorial we consider the MDS (multilevel diagonal scaling) preconditioner. The
exercises are not as complicated as they appear at first.

Let Tl be a subdivision of the interval Ω = (0, 1) given by the nodes

0 = xl,0 ≤ xl,1 ≤ · · · ≤ xl,Nl
= 1 .

For a fixed mesh Tl we derive a new subdivision Tl+1 by refinement: We introduce Nl+1 =
2 Nl − 1 nodes given by

xl+1,2i = xl,i , xl+1,2i+1 =
1

2

(
xl,i + xl,i+1

)
.

We denote the corresponding FEM spaces (using linear Courant elements) by Vl and Vl+1.
Obviously, we have Vl ⊂ Vl+1, and the following relation between the nodal basis functions
holds:

ϕl,i(x) =
1

2
ϕl+1,2i−1(x) + ϕl+1,2i(x) +

1

2
ϕl+1,2i+1(x) , 0 ≤ i ≤ Nl .

In the following we fix a uniform mesh T1 and a fixed number of levels L ≥ 1, and we
define T2, . . . , TL recursively by refinement as above. The mesh T1 is called coarsest grid,
whereas TL is the finest grid. When comparing two subsequent grids Tl, Tl+1, these are
called coarse and fine grid, respectively.

44 Let wl be a finite element function on the coarse grid Tl:

wl(x) =

Nl∑
i=0

wl,i ϕl,i(x) .

Find a representation of wl using the basis functions {ϕl+1,i}i associated to the fine
grid Tl+1 such that

wl(x) =

Nl+1∑
i=0

wl+1,i ϕl+1,i(x) .

Represent the relation between the coefficient vectors wl+1 = (wl+1,i)i=0,...,Nl+1
and

wl = (wl,i)i=0,...,Nl
by an Nl+1 ×Nl matrix I l+1

l such that

wl+1 = I l+1
l wl .

25



45 Let R : H1(0, 1) → R be a continuous linear functional. Furthermore, for the
coefficient vector rl+1 = (rl+1,i)i=0,...,Nl+1

defined by the relation

rl+1,i := 〈R, ϕl+1,i〉 ,

we have

〈R, vl+1〉 =

Nl+1∑
i=0

rl+1, i vl+1, i = (rl+1, vl+1)`2 .

Find a representation of the evaluation of this functional for a finite element function
vl defined on the coarse grid Tl:

〈R, vl〉 =

Nl∑
i=0

rl,i vl,i = (rl, vl)`2 .

Show the following relation between the coefficient vectors rl+1 = (rl+1,i)i=0,...,Nl+1

and rl = (rl,i)i=0,...,Nl
:

rl = I l
l+1 rl+1 , with I l

l+1 = (I l+1
l )> .

Hint:
(rl, vl)`2 = 〈R, vl〉 = (rl+1, vl+1)`2 = (rl+1, I l+1

l vl)`2 .

46* Let Kl and Kl+1 be the stiffness matrices on the grid Tl and Tl+1, respectively. Show
the relation

Kl = I l
l+1 Kl+1 I l+1

l = (I l+1
l )>Kl+1 I l+1

l .

47 Write a function RefineUniform(↓coarsemesh, ↑finemesh), which computes the
refined grid Tl+1 (finemesh) starting from the coarse mesh Tl (coarsemesh) as
described above.

48 Write a function Prolongate(↓coarsevector, ↑finevector) which computes
wl+1 = I l+1

l wl, where coarsevector=wl and finevector=wl+1.

Write a function Restrict(↓finevector, ↑coarsevector) which computes wl =
I l
l+1 wl+1, where finevector=wl+1 and coarsevector=wl.

49 Implement the MDS preconditioner C−1
MDS for a hierarchy of recursively refined grids

T1, . . . , TL, i. e., implement the operation

wL = C−1
MDS rL .

For l = 1, . . . , L we define Dl = diag (Kl).

1. If there is only one grid (L = 1), then the MDS preconditioner coincides with
the Jacobi preconditioner, i. e.,

w1 = D−1
1 r1 .

2. For two grids L = 2, the correction w2 is defined as the sum of

– the correction obtained by the Jacobi preconditioner applied to the residual
r2 on the fine grid,

– and the (prolongated) correction obtained by the Jacobi preconditioner on
the coarse grid for the (restricted) residual r1, i. e.,

26



w2 = D−1
2 r2 + I2

1 w1 ,

with
w1 = D−1

1 r1, where r1 = I1
2 r2 .

3. For a hierarchy of grids T1, . . . , TL we have the recursive definition:

C−1
MDS,1 = D−1

1 ,

C−1
MDS,l = D−1

l + I l
l−1 CMDS,l−1 I l−1

l .

and CMDS := CMDS,L.

Hint: The operation wl = C−1
MDS,l rl for l > 1 is equivalent to

rl−1 = I l−1
l rl ,

wl−1 = C−1
MDS,l−1 rl−1 ,

wl = I l
l−1 wl−1 .

Hence, use a recursive function like

void MDS (int l, const Vector& r, Vector& w)

{

. . .

if (l == 1)

{

w = JacobiPreconditioner.solve (l, r);

}

else

{

w = JacobiPreconditioner.solve (l, r);

Restrict (r, r_coarse);

MDS (l-1, r_coarse, w_coarse);

Prolongate (w_coarse, w_fine);

w += w_fine;

}

}

50 Embed your MDS code in a class MDSPreconditioner where you have a member
function solve similar to the one in your existing Jacobi preconditioner class, e. g.,
Vector MDSPreconditioner::solve (const Vector& r).

Consider a FEM discretized boundary value problem of your choice and solve it
using the preconditioned CG method using the MDS preconditioner.

27


