TUTORIAL

"Numerical Methods for Solving Partial Differential Equations"

for the Lectures on NuPDE

T VIII Monday, 7 January 2008 (Time: 08:30 - 10:00, Room: T 212)

1.10 Optimal Preconditioning (MDS)

In this tutorial we consider the MDS (multilevel diagonal scaling) preconditioner. The exercises are not as complicated as they appear at first.

Let \mathcal{T}_l be a subdivision of the interval $\Omega = (0, 1)$ given by the nodes

 $0 = x_{l,0} \le x_{l,1} \le \cdots \le x_{l,N_l} = 1$.

For a fixed mesh \mathcal{T}_l we derive a new subdivision \mathcal{T}_{l+1} by refinement: We introduce $N_{l+1} = 2 N_l - 1$ nodes given by

$$x_{l+1,2i} = x_{l,i}, \quad x_{l+1,2i+1} = \frac{1}{2} (x_{l,i} + x_{l,i+1}).$$

We denote the corresponding FEM spaces (using linear Courant elements) by V_l and V_{l+1} . Obviously, we have $V_l \subset V_{l+1}$, and the following relation between the nodal basis functions holds:

$$\varphi_{l,i}(x) = \frac{1}{2} \varphi_{l+1,2i-1}(x) + \varphi_{l+1,2i}(x) + \frac{1}{2} \varphi_{l+1,2i+1}(x), \quad 0 \le i \le N_l.$$

In the following we fix a uniform mesh \mathcal{T}_1 and a fixed number of levels $L \geq 1$, and we define $\mathcal{T}_2, \ldots, \mathcal{T}_L$ recursively by refinement as above. The mesh \mathcal{T}_1 is called *coarsest grid*, whereas \mathcal{T}_L is the *finest grid*. When comparing two subsequent grids \mathcal{T}_l , \mathcal{T}_{l+1} , these are called *coarse* and *fine grid*, respectively.

44 Let w_l be a finite element function on the coarse grid \mathcal{T}_l :

$$w_l(x) = \sum_{i=0}^{N_l} w_{l,i} \varphi_{l,i}(x) \,.$$

Find a representation of w_l using the basis functions $\{\varphi_{l+1,i}\}_i$ associated to the fine grid \mathcal{T}_{l+1} such that

$$w_l(x) = \sum_{i=0}^{N_{l+1}} w_{l+1,i} \varphi_{l+1,i}(x)$$

Represent the relation between the coefficient vectors $\underline{w}_{l+1} = (w_{l+1,i})_{i=0,\dots,N_{l+1}}$ and $\underline{w}_l = (w_{l,i})_{i=0,\dots,N_l}$ by an $N_{l+1} \times N_l$ matrix I_l^{l+1} such that

$$\underline{w}_{l+1} = I_l^{l+1} \underline{w}_l$$

45 Let $R : H^1(0, 1) \to \mathbb{R}$ be a continuous linear functional. Furthermore, for the coefficient vector $\underline{r}_{l+1} = (r_{l+1,i})_{i=0,\dots,N_{l+1}}$ defined by the relation

$$r_{l+1,i} := \langle R, \varphi_{l+1,i} \rangle,$$

we have

$$\langle R, v_{l+1} \rangle = \sum_{i=0}^{N_{l+1}} r_{l+1,i} v_{l+1,i} = (\underline{r}_{l+1}, \underline{v}_{l+1})_{\ell_2}.$$

Find a representation of the evaluation of this functional for a finite element function v_l defined on the coarse grid \mathcal{T}_l :

$$\langle R, v_l \rangle = \sum_{i=0}^{N_l} r_{l,i} v_{l,i} = (\underline{r}_l, \underline{v}_l)_{\ell_2}.$$

Show the following relation between the coefficient vectors $\underline{r}_{l+1} = (r_{l+1,i})_{i=0,\ldots,N_{l+1}}$ and $r_l = (r_{l,i})_{i=0,\ldots,N_l}$:

$$\underline{r}_l = I_{l+1}^l \, \underline{r}_{l+1} \,, \qquad \text{with } I_{l+1}^l = (I_l^{l+1})^\top \,.$$

Hint:

$$(\underline{r}_l, v_l)_{\ell_2} = \langle R, v_l \rangle = (\underline{r}_{l+1}, \underline{v}_{l+1})_{\ell_2} = (\underline{r}_{l+1}, I_l^{l+1} \underline{v}_l)_{\ell_2}.$$

46^{*} Let K_l and K_{l+1} be the stiffness matrices on the grid \mathcal{T}_l and \mathcal{T}_{l+1} , respectively. Show the relation

$$K_l = I_{l+1}^l K_{l+1} I_l^{l+1} = (I_l^{l+1})^\top K_{l+1} I_l^{l+1}.$$

- Write a function RefineUniform(\downarrow coarsemesh, \uparrow finemesh), which computes the refined grid \mathcal{T}_{l+1} (finemesh) starting from the coarse mesh \mathcal{T}_l (coarsemesh) as described above.
- 48 Write a function Prolongate(\downarrow coarsevector, \uparrow finevector) which computes $\underline{w}_{l+1} = I_l^{l+1} w_l$, where coarsevector= \underline{w}_l and finevector= \underline{w}_{l+1} .

Write a function Restrict(\downarrow finevector, \uparrow coarsevector) which computes $\underline{w}_l = I_{l+1}^l \underline{w}_{l+1}$, where finevector= \underline{w}_{l+1} and coarsevector= \underline{w}_l .

49 Implement the MDS preconditioner C_{MDS}^{-1} for a hierarchy of recursively refined grids $\mathcal{T}_1, \ldots, \mathcal{T}_L$, i.e., implement the operation

$$\underline{w}_L = C_{\text{MDS}}^{-1} \, \underline{r}_L \, .$$

For $l = 1, \ldots, L$ we define $D_l = \text{diag}(K_l)$.

1. If there is only one grid (L = 1), then the MDS preconditioner coincides with the Jacobi preconditioner, i.e.,

$$\underline{w}_1 = D_1^{-1} \, \underline{r}_1 \, .$$

- 2. For two grids L = 2, the correction \underline{w}_2 is defined as the sum of
 - the correction obtained by the Jacobi preconditioner applied to the residual \underline{r}_2 on the fine grid,
 - and the (prolongated) correction obtained by the Jacobi preconditioner on the coarse grid for the (restricted) residual \underline{r}_1 , i.e.,

$$\underline{w}_2 = D_2^{-1} \, \underline{r}_2 + I_1^2 \, \underline{w}_1 \,,$$

with

$$\underline{w}_1 = D_1^{-1} \underline{r}_1, \quad \text{where } \underline{r}_1 = I_2^1 \underline{r}_2.$$

3. For a hierarchy of grids $\mathcal{T}_1, \ldots, \mathcal{T}_L$ we have the recursive definition:

$$\begin{split} C_{\text{MDS},1}^{-1} &= D_1^{-1} ,\\ C_{\text{MDS},l}^{-1} &= D_l^{-1} + I_{l-1}^l \, C_{\text{MDS},l-1} \, I_l^{l-1} \, . \end{split}$$

and $C_{\text{MDS}} := C_{\text{MDS},L}$.

 $\mathit{Hint:}$ The operation $\underline{w}_l = C_{\mathrm{MDS},l}^{-1}\,\underline{r}_l$ for l>1 is equivalent to

$$\underline{r}_{l-1} = I_l^{l-1} \underline{r}_l ,$$

$$\underline{w}_{l-1} = C_{\text{MDS},l-1}^{-1} \underline{r}_{l-1} ,$$

$$\underline{w}_l = I_{l-1}^l \underline{w}_{l-1} .$$

Hence, use a recursive function like

```
void MDS (int 1, const Vector& r, Vector& w)
{
    ...
    if (1 == 1)
        {
            w = JacobiPreconditioner.solve (1, r);
        }
    else
        {
            w = JacobiPreconditioner.solve (1, r);
            Restrict (r, r_coarse);
            MDS (1-1, r_coarse, w_coarse);
            Prolongate (w_coarse, w_fine);
            w += w_fine;
        }
}
```

50 Embed your MDS code in a class MDSPreconditioner where you have a member function solve similar to the one in your existing Jacobi preconditioner class, e.g., Vector MDSPreconditioner::solve (const Vector& r).

Consider a FEM discretized boundary value problem of your choice and solve it using the preconditioned CG method using the MDS preconditioner.