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1.6 Error estimates

32 Consider the problem

find u ∈ V0 ∩H1(0, 1) : a(u, v) = 〈F, v〉 ∀v ∈ V0 , (1.22)

with V0 = {v ∈ H1(0, 1) : v(0) = 0}, where the bilinear form is coercive and
bounded, i. e.,

a(v, v) ≥ µ1 ‖v‖2
1 , a(u, v) ≤ µ2 ‖u‖1 ‖v‖1 ∀u, v ∈ V0 .

Furthermore, let {uh} be a family of conforming finite element approximation of u
based on Courant elements on a uniform mesh with mesh size h. Show that we have
at least convergence in H1(0, 1) for h → 0:

lim
h→0

‖u− uh‖1 ≤
µ2

µ1

lim
h→0

inf
vh∈Vh

‖u− vh‖1 = 0

Hint: Use that H2(0, 1) is dense in H1(0, 1).

33 Consider the model problem (1.22) as before with a(u, v) =
∫ 1

0
u′(x)v′(x) dx and

〈F, v〉 =
∫ 1

0
f(x)v(x) dx, and consider a finite element approximation uh based on

linear Courant elements. Let µ1 be the coercivity constant of a(·, ·). Then, the
following a-posteriori error estimate holds (see also your lecture notes):

‖u− uh‖1 ≤
C

µ1

η(uh) , (1.23)

for a positive constant C > 0, where

η(uh) =
( Nh∑

k=1

η2
k

)1/2

, ηk = hk ‖f‖L2(Tk) .

Write a function ErrorEstimator(↓mesh, ↓(*f)(x), ↑error) that computes the
error estimator error=η for a given function f=f .

34 Write a function ImplementNeumannBC(↓i, ↓g, lvector) to implement the Neu-
mann boundary condition

±u′(xi) = gN(xi)
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for i=i, g=gN(xi), and the load vector vector (note, that the sign depends on
whether i is the right or left boundary point). Use this to compute the solution of
the boundary value problem

u′′(x) = f(x) x ∈ (0, 1)

u(0) = −1

u′(1) = −3

(1.24)

for f(x) = 8 with the Richardson method that you implemented in Tutorial V, and
estimate the error with your function ErrorEstimator.

1.7 Schwarz methods

In the following we consider the boundary value problem

u′′(x) = f(x) x ∈ (0, 1) ,

with u(0) = u(1) = 0 and discretize by FEM with N Courant elements, not necessarily
on a uniform mesh. We denote the (N − 1)× (N − 1) FEM stiffness matrix by K.

35 Consider the additive Schwarz method (ASM) with the space splitting

V =
N−1∑
s=1

Vs , Vs := span {ϕs} ,

where ϕk is the Courant basis function at the node xk. Have a look to Algorithm 1.29
in your lecture notes, figure out what Rs is, and compute

Cs := Rs K R>
s

for s = 1, . . . , N − 1 explicitly.

36 For the same setting compute
R>

s C−1
s Rs

(for s = 1, . . . , N − 1) and

C−1 :=
N−1∑
s=1

R>
s C−1

s Rs

explicitly.

1.8 Dirichlet boundary condition via penalty technique

37 Consider the boundary value problem (1.24) but change the Dirichlet boundary
condition to the following Robin-type boundary condition

−u′(0) = α
(
gD(0)− u(0)

)
,

with a large α. Like before gD(0) = −1 and f(x) = 8.

Use your program to compute the FEM solution u
(R)
h with the Robin boundary

condition, and the solution u
(D)
h with the original Dirichlet boundary condition using

ImplementDirichletBC. In the Richardson iteration chose ε=tol=10−10. Try 30

elements and the cases α = 103, 104, 105 and 106. Compare the solutions u
(R)
h and

u
(D)
h , e. g., compute ‖u(D)

h − u
(R)
h ‖`2 .
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