
NuPDE (Numerical Methods for Partial Differential Equations) WS 2007/2008

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T IV Monday, 19 November 2007 (Time: 08:30 – 10:00, Room: T 212)

1.4 FEM for BVPs for second-order ODEs (continued)

We consider the same setting in Tutorial III, i. e., the boundary value problem (1.21).

In the following, we denote input parameters of a function by ↓, output parameters
by ↑, and input/output parameters by l.

19 Tidy-up your current program!

– Eliminate dynamic arrays where static can be used

– Memory: Make sure that you don’t lose pointers, and that you delete every-
thing you allocated with new.

– Make sure that you match the interfaces given in Tutorial III. In particular
use reference calls where output parameters are indicated, not function return
values/pointers. For instance

typedef double (*RealFunction)(double x);
typedef double Vec2[2];
void ElementLoadVector (RealFunction f, double xa, double xb, Vec2& element_vector);

20 Write a function ImplementRobinBC(↓i, ↓g, ↓alpha, lmatrix, lvector) to im-
plement the Robin boundary condition

u′(xi) = α(xi)
(
gR(xi)− u(xi)

)
for given values g=gR(xi), alpha=α(xi) at the boundary node xi identified by the in-
dex i=i. The function ImplementRobinBC must update the stiffness matrix matrix

and the load vector vector, previously computed by AssembleStiffnessMatrix

and AssembleLoadVector, respectively, in the case of homogeneous Neumann con-
ditions.

21 Write a function ImplementDirichletBC(↓i, ↓g, lmatrix, lvector) to imple-
ment the Dirichlet boundary condition

u(xi) = gD(xi)

for a given value g=gD(xi) at the boundary node xi identified by the index i=i.
The function ImplementDirichletBC must update the stiffness matrix matrix and
the load vector vector, previously computed by AssembleStiffnessMatrix and

15

AssembleLoadVector, respectively, in the case of homogeneous Neumann condi-
tions, and by ImplementRobinBC.

Hint: Assume that applying AssembleStiffnessMatrix, AssembleLoadVector and
ImplementRobinBC yields the following linear system K00 K01 K02

K10 K11 K12

K20 K21 K22

 u0

u1

u2

 =

 f0

f1

f2

and that we want to impose the Dirichlet boundary condition u0 = u(x0) = gD(x0) =
g0. In this case, we can replace the first equation by K00u0 = K00g0 and substitute
u0 by g0 in the remaining equations. The modified system reads K00 0 0

0 K11 K12

0 K21 K22

 u0

u1

u2

 =

 K00g0

f1 −K10g0

f2 −K20g0

 .

22 Let

K̂ =

(
1 −1
−1 1

)
, M̂ =

(
1/3 1/6
1/6 1/3

)
, D̂ =

(
1 0
0 1

)
.

Show that
1

6
D̂ ≤ M̂ and K̂ ≤ 2D̂ .

23 Consider the one-dimensional boundary value problem

−u′′(x) = f(x) x ∈ (0, 1)

u(0) = g0

u(1) = g1 .

Let Kh denote the stiffness matrix obtained by the finite element method using the
Courant elements on a subdivision 0 = x0 < x1 < · · · < xNh

= 1.

Show that
mink h2

k

6c2
F

Dh ≤ Kh ≤ Dh ,

where Dh = diag (Kh), cF is the constant arising in Friedrichs’ inequality, and
hk = xk − xk−1.

Hint: Use

(Dh vh, vh) = D
(1)
h v2

1 +

Nh∑
k=2

(
D

(k)
h

(vk−1

vk

)
,
(vk−1

vk

))
`2

with

D
(1)
h = K

(1)
h =

1

h1

and D
(k)
h = diag (K

(k)
h) =

1

hk

diag (K̂) =
1

hk

D̂ .

24 Let Mh denote the mass matrix (see your lecture notes) obtained by the finite
element method using the Courant elements on a uniform mesh
0 = x0 < x1 < . . . xNh

= 1, with hk = xk − xk−1 = h for all k = 1, . . . , Nh.

Show that the condition number κ(Mh) = cond2(Mh) = O(1) for h → 0.

16

