WS 2007/2008

TUTORIAL

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

T III Monday, 12 November 2007 (Time: 08:30 – 10:00, Room: T 212)

1.3 FEM for BVPs for second-order ODEs

Let $\Omega = (0, 1), \Gamma = \partial \Omega = \{0, 1\} = \Gamma_D \cup \Gamma_R$ with $\Gamma_D \cap \Gamma_R = \emptyset$. Consider the one-dimensional boundary value problem: Find u(x) such that

$$-u''(x) = f(x) \qquad x \in \Omega,$$

$$u(x) = g_D(x) \qquad x \in \Gamma_D,$$

$$u'(x) = \alpha(x)(g_R(x) - u(x)) \qquad x \in \Gamma_R.$$
(1.21)

We discretize this problem using the finite element method with Courant elements. We consider the nodes $0 = x_0 < x_1 < \cdots < x_{N_h-1} = 1$ which define a mesh (grid) \mathcal{T}_h of Ω with the subintervals $T_k = (x_{k-1}, x_k), k = 1, \ldots, N_h$. We introduce the finite element space

$$V_h := \{ v_h \in \mathcal{C}(\overline{\Omega}) : v_h |_{T_K} \in \mathcal{P}_1 \text{ for all } T_k \in \mathcal{T}_h \}$$

whose basis is given by the nodal (hat) functions φ_i , $i = 0, \ldots, N_h$, with

$$\varphi_i(x_j) = \delta_{ij}$$
 for $i, j = 0, \dots, N_h$.

In the following exercises we start to develop a program that will allow us to compute the finite element approximation u_h of the solution u of (1.21).

Recommended programming language: C⁺⁺ Also allowed: C, Fortran, Java

We denote the input parameter of a function by \downarrow and output parameters by \uparrow .

U13 Write a function ElementStiffnessMatrix(\downarrow xa, \downarrow xb, \uparrow element_matrix) which for given xa= x_{k-1} and xb= x_k returns the 2 × 2 local stiffness matrix element_matrix= $K_h^{(k)}$ on the element T_k , i.e.,

$$K_{h}^{(k)} = \begin{bmatrix} \int_{T_{k}} (\varphi'_{k-1}(x))^{2} dx & \int_{T_{k}} \varphi'_{k-1}(x) \varphi'_{k}(x) dx \\ \int_{T_{k}} \varphi'_{k}(x) \varphi'_{k-1}(x) dx & \int_{T_{k}} (\varphi'_{k}(x))^{2} dx \end{bmatrix}$$

14 Write a function ElementLoadVector(\downarrow (*f)(x), \downarrow xa, \downarrow xb, \uparrow element_vector) which for a given function $\mathbf{f} = f \in \mathcal{C}([0, 1] \to \mathbb{R})$ and $\mathbf{xa} = x_{k-1}$ and $\mathbf{xb} = x_k$ returns the 2-dimensional local load vector element_vector = $f_h^{(k)}$ on the element T_k , i.e.,

$$f_h^{(k)} = \left(\begin{array}{c} \int_{T_k} f(x) \,\varphi_{k-1}(x) \,dx \\ \int_{T_k} f(x) \,\varphi_k(x) \,dx \end{array} \right)$$

Use the trapezoidal rule to approximate above integrals:

$$\int_{a}^{b} g(x) dx \simeq \frac{b-a}{2} \left[g(a) + g(b) \right].$$

15 Define a data type Mesh which contains all the information on the mesh T_h – see also the lecture notes!

Hint: use class in C^{++} , or struct in C.

<u>16</u> Define an efficient data type Matrix for the sparse stiffness matrix K_h exploiting the fact that K_h is tridiagonal.

Hint: use class *or* struct.

Consider now $\Gamma_D = \emptyset$, $\Gamma_R = \{0, 1\}$ and $\alpha(x) = 0$ (pure homogeneous Neumann boundary conditions).

17 Write a function AssembleStiffnessMatrix(\mesh, \matrix) that assembles the global $(N_h + 1) \times (N_h + 1)$ stiffness matrix matrix = K_h for a given subdivision mesh = \mathcal{T}_h of Ω .

Hint: Set $K_h = 0$, then start with $K_h^{(0)}$ and loop over all elements T_k to update the matrix K_h . On each element T_k , use the function ElementStiffnessMatrix to compute $K_h^{(k)}$ and pay attention to put the entries of $K_h^{(k)}$ at the correct positions in K_h .

18 Write a function AssembleLoadVector(\downarrow (*f)(x), \downarrow mesh, \uparrow vector) that assembles the global ($N_h + 1$)-dimensional load vector vector = \underline{f}_h for a given mesh \mathcal{T}_h of Ω .

Hint: Set $\underline{f}_h = 0$, then start with $\underline{f}_h^{(0)}$ and loop over all elements T_k to update the vector \underline{f}_h . On each element T_k , use the function ElementLoadVector to compute $\underline{f}_h^{(k)}$ and pay attention to add the entries in the right place.

Test the implemented data types and functions using some simple examples, e.g., consider equidistant nodes x_i for different values of N_h , and simple functions f(x) = 1, f(x) = x, etc.