
NuPDE (Numerical Methods for Partial Differential Equations) WS 2007/2008

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T III Monday, 12 November 2007 (Time: 08:30 – 10:00, Room: T 212)

1.3 FEM for BVPs for second-order ODEs

Let Ω = (0, 1), Γ = ∂Ω = {0, 1} = ΓD ∪ ΓR with ΓD ∩ ΓR = ∅.
Consider the one-dimensional boundary value problem: Find u(x) such that

−u′′(x) = f(x) x ∈ Ω ,

u(x) = gD(x) x ∈ ΓD ,

u′(x) = α(x)(gR(x)− u(x)) x ∈ ΓR .

(1.21)

We discretize this problem using the finite element method with Courant elements.
We consider the nodes 0 = x0 < x1 < · · · < xNh−1 = 1 which define a mesh (grid) Th of
Ω with the subintervals Tk = (xk−1, xk), k = 1, . . . , Nh. We introduce the finite element
space

Vh := {vh ∈ C(Ω) : vh|TK
∈ P1 for all Tk ∈ Th}

whose basis is given by the nodal (hat) functions ϕi, i = 0, . . . , Nh, with

ϕi(xj) = δij for i, j = 0, . . . , Nh .

In the following exercises we start to develop a program that will allow us to compute
the finite element approximation uh of the solution u of (1.21).

Recommended programming language: C++

Also allowed: C, Fortran, Java

We denote the input parameter of a function by ↓ and output parameters by ↑.

13 Write a function ElementStiffnessMatrix(↓xa, ↓xb, ↑element matrix) which
for given xa=xk−1 and xb=xk returns the 2 × 2 local stiffness matrix

element matrix=K
(k)
h on the element Tk, i. e.,

K
(k)
h =


∫

Tk

(ϕ′
k−1(x))2 dx

∫
Tk

ϕ′
k−1(x) ϕ′

k(x) dx∫
Tk

ϕ′
k(x) ϕ′

k−1(x) dx

∫
Tk

(ϕ′
k(x))2 dx

 .

14 Write a function ElementLoadVector(↓(*f)(x), ↓xa, ↓xb, ↑element vector)

which for a given function f = f ∈ C([0, 1] → R) and xa=xk−1 and xb=xk re-

turns the 2-dimensional local load vector element vector = f
(k)
h on the element Tk,

5



i. e.,

f
(k)
h =


∫

Tk

f(x) ϕk−1(x) dx∫
Tk

f(x) ϕk(x) dx

 .

Use the trapezoidal rule to approximate above integrals:∫ b

a

g(x) dx ' b− a

2

[
g(a) + g(b)

]
.

15 Define a data type Mesh which contains all the information on the mesh Th – see
also the lecture notes!

Hint: use class in C++, or struct in C.

16 Define an efficient data type Matrix for the sparse stiffness matrix Kh exploiting
the fact that Kh is tridiagonal.

Hint: use class or struct.

Consider now ΓD = ∅, ΓR = {0, 1} and α(x) = 0 (pure homogeneous Neumann
boundary conditions).

17 Write a function AssembleStiffnessMatrix(↓mesh, ↑matrix) that assembles the
global (Nh + 1) × (Nh + 1) stiffness matrix matrix = Kh for a given subdivision
mesh = Th of Ω.

Hint: Set Kh = 0, then start with K
(0)
h and loop over all elements Tk to update

the matrix Kh. On each element Tk, use the function ElementStiffnessMatrix to
compute K

(k)
h and pay attention to put the entries of K

(k)
h at the correct positions in

Kh.

18 Write a function AssembleLoadVector(↓(*f)(x), ↓mesh, ↑vector) that assem-
bles the global (Nh + 1)-dimensional load vector vector = f

h
for a given mesh Th

of Ω.

Hint: Set f
h

= 0, then start with f (0)

h
and loop over all elements Tk to update the

vector f
h
. On each element Tk, use the function ElementLoadVector to compute

f (k)

h
and pay attention to add the entries in the right place.

Test the implemented data types and functions using some simple examples, e. g.,
consider equidistant nodes xi for different values of Nh, and simple functions f(x) = 1,
f(x) = x, etc.

6


