
NuPDE (Numerical Methods for Partial Differential Equations) WS 2007/2008

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T II Monday, 29 October 2007 (Time: 08:30 – 10:00, Room: T 212)

1.2 BVPs for second-order PDEs

07 Let Ω ⊂ Rd be a bounded Lipschitz domain with the boundary Γ = ∂Ω = ΓD∪ΓN ∪
ΓR. Find the variational formulations (V = ?, V0 = ?, Vg = ?, a(·, ·) = ?, 〈F, ·〉 = ?)
for the following boundary value problem: Find u : Ω → R with

−div(a(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f(x) , x ∈ Ω , (1.11)

u(x) = gD(x) , x ∈ ΓD, (1.12)

a(x)
∂u

∂n
(x) = gN(x) , x ∈ ΓN , (1.13)

a(x)
∂u

∂n
(x) = α(x)(gR(x)− u(x)) , x ∈ ΓR . (1.14)

where f , gD, gN , gR and c map to R, and b : Ω → Rd.

08 Show that the variational problem of the BVP (1.11)–(1.14) has a unique solution
provided that the following conditions imposed on the data are fulfilled:

(1) a ∈ L∞(Ω) with 0 < a1 = const ≤ a(x) ≤ a2 = const for almost all x ∈ Ω,

(2) c ∈ L∞(Ω) with 0 < c1 = const ≤ c(x) ≤ c2 = const for almost all x ∈ Ω,

(3) b ≡ 0,

(4) f ∈ L2(Ω),

(5) There exists a function g ∈ H1(Ω) with γDg := g|ΓD
= gD.

(6) gN ∈ L2(ΓN), gR ∈ L2(ΓR),

(7) α ∈ L∞(ΓR) and 0 ≤ α(x) ≤ α2 = const for almost all x ∈ ΓR.

Hint: You will need the trace inequality (lecture notes, section “trace operator”)

08* Show 08 but replacing assumption (3) by

(3*) b ∈ L∞(Ω)d with |b(x)| ≤ b2 = const and there exists ε > 0 such that

a1 −
1

2ε
b2 > 0 and c1 −

ε

2
b2 > 0 .

Hint: For the proof of the V0-ellipticity use the ε-inequality

a b ≤ ε

2
a2 +

1

2ε
b2 ∀a, b ∈ R ∀ε > 0

and the elementary inequality a + b ≤
√

2(a2 + b2) ∀a, b ∈ R.
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09 Due to Corollary 1.8 the solution of the variational problem of the BVP (1.11)–(1.14)
can be approximated by the fixed point iteration (18)=(19) given in the lectures.
Give the classical formulation of this fixed point iteration for the variational problem

derived in Exercise 07 (including the boundary conditions).

10 Show that the variational problem: find u ∈ V = Vg = V0 = H1(Ω) such that∫
Ω

∇u(x) · ∇v(x) dx +
( ∫

Ω

u(x) dx
)( ∫

Ω

v(x) dx
)

=

∫
Ω

f(x)v(x) dx ∀v ∈ V ,

(1.15)
has a unique solution for given f ∈ L2(Ω). Furthermore, if the right-hand side
fulfills the solvability condition

〈F, c〉 :=

∫
Ω

f(x) c dx = 0 ∀c ∈ R, (1.16)

for the Neumann problem

−∆u = f in Ω ,

∂u

∂n
= 0 on Γ ,

(1.17)

then the solution u of (1.15) is also a weak solution of the Neumann problem (1.17),
and satisfies the orthogonality condition∫

Ω

u(x) dx = 0 . (1.18)

11 Let Ω = (0, 1) × (0, 1) and ΓD = [0, 1] × {0}. Show the Friedrichs inequality in a
constructive way, i.e. determine an explicit constant cP > 0 such that

‖v‖0 ≤ cP |v|1 ∀v ∈ V0 = {v ∈ H1(Ω) : v = 0 on ΓD} . (1.19)

12 Let Γ̃ ⊂ Γ = ∂Ω with meas(Γ̃) =
∫eΓ ds > 0. Show the equivalence of the norm

‖v‖∗1 :=

(∫
eΓ(v(x))2ds + |v|21

)1/2

(1.20)

with the standard norm ‖v‖1 in H1(Ω).
Hint: Use Sobolev’s norm equivalence theorem.
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