Lecture NuPDE WS 07/08 - Transparency 06a

Remark 1.33: For our model problem (Example 1.2), it can be shown that (mms: cf. Subsection 1.4.1) $\exists c1, c2 = \text{const} > 0$:

(54) $c_1 h^2 D_h \le K_h \le c_2 D_h$,

with $D_h = \operatorname{diag} K_h$. This implies

$$\frac{\nu_2}{\nu_1} = \mathcal{O}(h^{-2})$$

for the **Jacobi** method $(C_h = D_h)$, which is no essential improvement compared to $C_h = I_h$. The same is true for the **Gauss-Seidel** method.

Optimal Preconditioners C_h:

- 1. $\kappa(C_h^{-1} K_h) = \mathcal{O}(1)$ for $h \to \infty$
- 2. $\operatorname{ops}(C_h^{-1} * \underline{d}_h) = \mathcal{O}(N_h)$

can be obtained for **multilevel** splittings of the space V_h : **BPX, MDS, MGM, AMG**, See Example 1.34 and the literature.