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1.10 Runge-Kutta methods for IVPs of ODEs

45 If to evaluate the integral
∫ t+τ

t

f(s, u(s))ds

we apply the trapezoidal rule (TR):

∫ t+τ

t

f(s, u(s))ds
TR

≈
τ

2
[f(t, u(t)) + f(t + τ, u(t + τ))] ,

and we approximate u(t + τ) ≈ u(t) + τf(t, u(t)) according to the forward Euler
method, we obtain the so-called Heun method:

g1 = u

g2 = u + τf(t, u) .

We can associate to the Heun method the following table:

0
1 1

1/2 1/2

which shows that the Heun method is a 2-step Runge-Kutta method, and it holds

u(t + τ) = u(t) +
τ

2
[f(t, u) + f(t + τ, u + τf(t, u))] .

Considering a Taylor expansion of the local error u(t+ τ)−uτ (t+ τ), show that the
Heun method has order of consistency equal to 2.

46 Consider the initial-value problem

{

u′(t) = B(u + A), 0 < t < 1 ,
u(0) = 0 ,

(1.26)

with B = 3 and A = eB − 1.

a) Compute analitically the exact solution u of (1.26).

b) Consider the discretization steps τi = 2−i for i = 0, . . . , 4, and compute the nu-
merical approximation uτ of u using the following explicit Runge-Kutta meth-
ods:

22



– the (explicit) Forward Euler method (FE)

– the Heun method (H)

– the classical fourth-order Runke-Kutta method (RK4):

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(1.27)

Plot the exact and the numerical solution obtained for each τi.

c) Fill in the following table reporting the approximation uτ (1) of u(1):

τ
Method \ 1 1/2 1/4 1/8 1/16 u(1)

(*)
FE

(E) –
(*)

H
(E) –
(*)

RK4
(E) –

Notice that

(*) denotes the ‘original’ method

(E) corresponds to a post-processing of the computed values using a global
extrapolation strategy considering the formula:

ûτ (t) = uτ/2(t) +
uτ/2(t) − uτ (t)

2p − 1
,

p being the order of the considered method.

47 Consider the following initial-value problem

{

u′(t) = −50(u(t) − cos(t)), 0 < t < 1.5,
u(0) = 0.

(1.28)

a) Compute analitically the exact solution u of (1.28).

b) Consider the discretization steps τ = 1

20
, 3

80
, 1

30
, 1

40
, and compute the numerical

approximation uτ of u using the following explicit Runge-Kutta methods:

– the (explicit) Forward Euler method (FE)

– the Heun method (H)

– the (implicit) Backward Euler method (BE).

Compare graphically the exact and the computed numerical solutions. More-
over, fill in the following table with the approximation uτ(1.5) of the exact
solution u at t = 1.5:

τ
Method \ 1/20 3/80 1/30 1/40 u(1.5)

FE
H
BE
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c) Start the explicit Forward Euler method from t0 = 1/2 using the exact solution
u(t0) = u(1/2) and the discretization step τ = 1/20. Compare graphically the
exact and the numerical solution obtained in this case. Which value of τ must
be considered in order to guarantee that the method is stable?

d) Compute the solution of (1.28) considering the (implicit) Backward Euler
method and the discretization step τ = 1/2. Compare graphically the com-
puted solution and the exact one.

48 The orbit of a satellite in the plane of the Earth-Moon system can be modeled by
the following second-order ODEs system:

y′′

1 = y1 + 2y′

2 − (1 − µ)
y1 + µ

D1

− µ
y1 − (1 − µ)

D2

, 0 < t < T ,

y′′

2 = y2 − 2y′

1 − (1 − µ)
y2

D1

− µ
y2

D2

, 0 < t < T ,

y1(0) = 0.994 ,
y2(0) = 0 ,
y′

1(0) = 0 ,
y′

2(0) = −2.001 585 106 379 082 522 405 378 622 24 ,

(1.29)

where

D1 =
[

(y1 + µ)2 + y2
2

]3/2
,

D2 =
[

(y1 − (1 − µ))2 + y2

2

]3/2
,

µ = 0.012277471 .

For the given data, the system has a solution whose period is

tper = t = 17.065 216 560 157 962 558 891 720 6249 .

a) Rewrite (1.29) in an equivalent form as a system of first-order ODEs.

b) Solve (1.29) numerically considering

– the classical fourth-order Runge-Kutta method (1.27), with τ = T/m for
m = 6000 and another suitable choice of m

– another suitably chosen method.

c) Plot the computed trajectory (y1τ (t), y2τ (t)), considering a linear intepolation
of the computed positions.

6y2

-
y1

−1

1

−1 1

•
−µ

Earth
•

1 − µ

Moon
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