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1.10 Runge-Kutta methods for IVPs of ODEs
If to evaluate the integral
[ st
we apply the trapezoidal rule (TRt):

TR T

| rsatnds B 1 u) + e+t

and we approximate u(t + 7) ~ u(t) + 7f(t,u(t)) according to the forward Euler
method, we obtain the so-called Heun method:
g = u
g2 = u+T1f(t,u).
We can associate to the Heun method the following table:
0
1] 1
| 1/2 1/2

which shows that the Heun method is a 2-step Runge-Kutta method, and it holds
T

u(t+7) =u(t)+ 5

[t u) + f(E+7u+7f(Eu)]

Considering a Taylor expansion of the local error u(t 4 7) —u,(t+7), show that the
Heun method has order of consistency equal to 2.

Consider the initial-value problem

u'(t) = B(u+ A), 0<t<l1,
{ w(0) = 0, (1.26)
with B =3 and A =e? — 1.
a) Compute analitically the exact solution u of (1.26).
b) Consider the discretization steps 7; = 27 for i = 0, ..., 4, and compute the nu-
merical approximation u, of u using the following explicit Runge-Kutta meth-

ods:
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— the (explicit) Forward Euler method (FE)
— the Heun method (H)

— the classical fourth-order Runke-Kutta method (RK4):

0
1/2 | 1/2
1210 1/2 (1.27)

110 o 1
1/6 1/3 1/3 1/6

Plot the exact and the numerical solution obtained for each ;.

c¢) Fill in the following table reporting the approximation w.,(1) of u(1):

Method \ ' 1]1/2]1/4]|1/8]1/16 || u(1)
e i
. <(E)> -
Rki ) i

Notice that

(*) denotes the ‘original’ method

(E) corresponds to a post-processing of the computed values using a global
extrapolation strategy considering the formula:

Urjo(t) — ur(t)

ATT’: T t )
lt) = we) + 20

p being the order of the considered method.

Consider the following initial-value problem

{ 1;’((53 - (150(71@) —cos(t)),  0<t<L5, (1.28)

a) Compute analitically the exact solution u of (1.28).

b) Consider the discretization steps 7 = 2—10, %, %, %, and compute the numerical

approximation u, of u using the following explicit Runge-Kutta methods:
— the (explicit) Forward Euler method (FE)
— the Heun method (H)
— the (implicit) Backward Euler method (BE).
Compare graphically the exact and the computed numerical solutions. More-

over, fill in the following table with the approximation u.(1.5) of the exact
solution w at t = 1.5:

Method \ 1/20 | 3/80 | 1/30 | 1/40 | u(1.5)
FE
H
BE
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c) Start the explicit Forward Euler method from ty = 1/2 using the exact solution
u(to) = u(1/2) and the discretization step 7 = 1/20. Compare graphically the
exact and the numerical solution obtained in this case. Which value of 7 must
be considered in order to guarantee that the method is stable?

d) Compute the solution of (1.28) considering the (implicit) Backward Euler
method and the discretization step 7 = 1/2. Compare graphically the com-
puted solution and the exact one.

The orbit of a satellite in the plane of the Earth-Moon system can be modeled by
the following second-order ODEs system:

yitp oy —(1—p)

O<t<T
Dl ILL D2 ) )

=1 + 2y, — (1—p)

Vi=y =2 — (1—p) 2 -2 0<t<T,
D, D,
y1(0) = 0.994 (1.29)
¥2(0) =0,
y1(0) =0,
y,(0) = —2.001 585 106 379 082 522 405 378 622 24 ,

where

Dy = [p+m?+ 3],

Dy = [(pn—(1—p)+ 3",
pwo= 0.012277471 .

For the given data, the system has a solution whose period is

lper =t = 17.065216 560 157 962 558 891 720 6249 .

a) Rewrite (1.29) in an equivalent form as a system of first-order ODEs.
b) Solve (1.29) numerically considering

— the classical fourth-order Runge-Kutta method (1.27), with 7 = T'/m for
m = 6000 and another suitable choice of m
— another suitably chosen method.

c¢) Plot the computed trajectory (yi1-(t), ye-(t)), considering a linear intepolation
of the computed positions.
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