<u>TUTORIAL</u>

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

T X Monday, 22 January 2007 (Time: 13:45 - 15:15, Room: P 004)

1.10 Runge-Kutta methods for IVPs of ODEs

45 If to evaluate the integral

$$\int_{t}^{t+\tau} f(s, u(s)) ds$$

we apply the trapezoidal rule (TR):

$$\int_{t}^{t+\tau} f(s, u(s)) ds \stackrel{\text{TR}}{\approx} \frac{\tau}{2} \left[f(t, u(t)) + f(t+\tau, u(t+\tau)) \right],$$

and we approximate $u(t + \tau) \approx u(t) + \tau f(t, u(t))$ according to the forward Euler method, we obtain the so-called Heun method:

$$g_1 = u$$

$$g_2 = u + \tau f(t, u)$$

We can associate to the Heun method the following table:

$$\begin{array}{c|c} 0 \\ 1 \\ 1 \\ 1/2 \\ 1/2 \end{array}$$

which shows that the Heun method is a 2-step Runge-Kutta method, and it holds

$$u(t+\tau) = u(t) + \frac{\tau}{2} [f(t,u) + f(t+\tau, u+\tau f(t,u))].$$

Considering a Taylor expansion of the local error $u(t + \tau) - u_{\tau}(t + \tau)$, show that the Heun method has order of consistency equal to 2.

46 Consider the initial-value problem

$$\begin{cases} u'(t) = B(u+A), & 0 < t < 1, \\ u(0) = 0, \end{cases}$$
(1.26)

with B = 3 and $A = e^B - 1$.

- a) Compute analitically the exact solution u of (1.26).
- b) Consider the discretization steps $\tau_i = 2^{-i}$ for i = 0, ..., 4, and compute the numerical approximation u_{τ} of u using the following explicit Runge-Kutta methods:

- the (explicit) Forward Euler method (FE)
- the Heun method (H)
- the classical fourth-order Runke-Kutta method (RK4):

1

Plot the exact and the numerical solution obtained for each τ_i .

c) Fill in the following table reporting the approximation $u_{\tau}(1)$ of u(1):

	au						
Method \setminus		1	1/2	1/4	1/8	1/16	u(1)
FE	(*)						
1 11	(E)					_	
н	(*)						
11	(E)					_	
$\mathbf{B}\mathbf{K}4$	(*)						
11174	(E)					—	

Notice that

- (*) denotes the 'original' method
- (E) corresponds to a post-processing of the computed values using a global extrapolation strategy considering the formula:

$$\hat{u}_{\tau}(t) = u_{\tau/2}(t) + \frac{u_{\tau/2}(t) - u_{\tau}(t)}{2p - 1},$$

p being the order of the considered method.

47 Consider the following initial-value problem

$$\begin{cases} u'(t) = -50(u(t) - \cos(t)), & 0 < t < 1.5, \\ u(0) = 0. \end{cases}$$
(1.28)

- a) Compute analitically the exact solution u of (1.28).
- b) Consider the discretization steps $\tau = \frac{1}{20}, \frac{3}{80}, \frac{1}{30}, \frac{1}{40}$, and compute the numerical approximation u_{τ} of u using the following explicit Runge-Kutta methods:
 - the (explicit) Forward Euler method (FE)
 - the Heun method (H)
 - the (implicit) Backward Euler method (BE).

Compare graphically the exact and the computed numerical solutions. Moreover, fill in the following table with the approximation $u_{\tau}(1.5)$ of the exact solution u at t = 1.5:

τ					
Method \setminus	1/20	3/80	1/30	1/40	u(1.5)
FE					
Н					
BE					

- c) Start the explicit Forward Euler method from $t_0 = 1/2$ using the exact solution $u(t_0) = u(1/2)$ and the discretization step $\tau = 1/20$. Compare graphically the exact and the numerical solution obtained in this case. Which value of τ must be considered in order to guarantee that the method is stable?
- d) Compute the solution of (1.28) considering the (implicit) Backward Euler method and the discretization step $\tau = 1/2$. Compare graphically the computed solution and the exact one.
- 48 The orbit of a satellite in the plane of the Earth-Moon system can be modeled by the following second-order ODEs system:

$$y_1'' = y_1 + 2y_2' - (1-\mu)\frac{y_1 + \mu}{D_1} - \mu \frac{y_1 - (1-\mu)}{D_2}, \quad 0 < t < T,$$

$$y_2'' = y_2 - 2y_1' - (1-\mu)\frac{y_2}{D_1} - \mu \frac{y_2}{D_2}, \quad 0 < t < T,$$

$$y_1(0) = 0.994,$$

$$y_2(0) = 0,$$

$$y_1'(0) = 0,$$

$$y_2'(0) = -2.001\,585\,106\,379\,082\,522\,405\,378\,622\,24,$$

(1.29)

where

$$D_1 = [(y_1 + \mu)^2 + y_2^2]^{3/2},$$

$$D_2 = [(y_1 - (1 - \mu))^2 + y_2^2]^{3/2},$$

$$\mu = 0.012277471.$$

For the given data, the system has a solution whose period is

 $t_{per} = t = \frac{17.065\,216\,560\,157\,96}{2\,558\,891\,720\,6249}\,.$

- a) Rewrite (1.29) in an equivalent form as a system of first-order ODEs.
- b) Solve (1.29) numerically considering
 - the classical fourth-order Runge-Kutta method (1.27), with $\tau = T/m$ for m = 6000 and another suitable choice of m
 - another suitably chosen method.
- c) Plot the computed trajectory $(y_{1\tau}(t), y_{2\tau}(t))$, considering a linear interpolation of the computed positions.

