WS 2006/2007

<u>TUTORIAL</u>

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

T IX Monday, 8 January 2007 (Time: 13:45 - 15:15, Room: P 004)

1.9 FEM for BVPs of Second-order ODEs

44 Consider the elliptic problem: find u(x) such that

$$\begin{array}{rcl}
-u''(x) &=& 8 & x \in (0,1), \\
u(x) &=& -1 & x = 0, \\
u(x) + u'(x) &=& -5 & x = 1.
\end{array} \tag{1.23}$$

1. Write the variational formulation of (1.23):

find
$$u \in V_0$$
: $a(u, v) = \langle F, v \rangle \quad \forall v \in V_0$. (1.24)

Specify the functional space V_0 , the definition of the bilinear form $a(\cdot, \cdot)$ and of the linear functional F.

2. Consider a finite element discretization of (1.24) based on Courant elements, to give the linear system

$$K_h \underline{u}_h = \underline{f}_h \,. \tag{1.25}$$

Suppose to use first a grid with $h_1 = 0.1$ and then another finer grid with $h_2 = 0.05$. Solve the linear system (1.25) by the preconditioned conjugate gradient method, adopting the following preconditioning strategies:

- a) without preconditioner (C = I);
- b) with Jacobi preconditioner $C = \operatorname{diag}(K_h)$;
- c) with MDS preconditioner with 2 grids \mathcal{T}_1 , \mathcal{T}_2 (L = 2);
- d) with MDS preconditioner with 4 grids $\mathcal{T}_1, \ldots, \mathcal{T}_4$ (L = 4).

Fill in the following tables:

Number of iterations								
		C = I	Jacobi	MDS $(L=2)$	MDS $(L=4)$			
$h_1 = 0.1$	1							
$h_2 = 0.0$)5							

CPU time								
	C = I	Jacobi	MDS $(L=2)$	MDS $(L=4)$				
$h_1 = 0.1$								
$h_2 = 0.05$								

How do the number of iterations and the CPU time depend on the mesh size h and on the number of unknowns?