
NuPDE (Numerical Methods for Partial Differential Equations) WS 2006/2007

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T VIII Thursday, 14 December 2006 (Time: 8:30 - 10:00, Room: HS 13)

1.8 FEM for BVPs of Second-order ODEs

37 Write a function CG(↓A,lx,↓b,↓C,lmax_iter,ltol) to solve the linear system
Ax = b by the preconditioned conjugate gradient (PCG) method with stopping
rule

‖r(n)‖ℓ2 ≤ ε‖b‖ℓ2 .

The arguments of the function are to be understood as follows: A= A, x= x(0)

as input and x= x(n) as output, b= b, C is the preconditioner C, max_iter is the
maximal number of iterations as input while, as output, it is equal to the number
of iterations n needed to satisfy the stopping criterion, and tol= ε.

Use the template cg.h.

We consider now the MDS (Multilevel Diagonal Scaling) preconditioner.

Let Tl be a subdivision of the interval Ω = (0, 1) given by the nodes:

0 = xl,0 < xl,1 < . . . < xl,Nl
= 1 .

Let Tl+1 be a refined subdivision of Ω obtaining by halving the elements of Tl. Considering
a numbering of the nodes from left to right, the nodes xl+1,i of Tl+1 are

xl+1,2i = xl,i, xl+1,2i+1 =
1

2
(xl,i + xl,i+1) .

Thus, we can derive the following relation between the nodal basis functions of the Courant
element with respect to the grids Tl and Tl+1:

ϕl,i(x) =
1

2
ϕl+1,2i−1(x) + ϕl+1,2i(x) +

1

2
ϕl+1,2i+1(x), 0 < i < Nl .

38 Let wl be a finite element function on the coarse grid Tl:

wl(x) =

Nl∑

i=0

wl,iϕl,i(x) .

Find a representation of wl using the basis functions associated to the fine grid Tl+1,
i.e., compute the coefficients wl+1,i such that

wl(x) =

Nl+1∑

i=0

wl+1,iϕl+1,i(x) .

16

Represent the relation between the coefficient vectors wl+1 = {wl+1,i}i=0,...,Nl+1
and

wl = {wl,i}i=0,...,Nl
in the form

wl+1 = I l+1
l wl ,

for an appropriate Nl+1 × Nl matrix I l+1
l .

39 Let R : H1(0, 1) → R be a continuous linear functional, such that, given a finite
element function vl+1 on the fine grid Tl+1,

〈R, vl+1〉 =

Nl+1∑

i=0

rl+1,ivl+1,i = (rl+1, vl+1)ℓ2 ,

where rl+1 = {rl+1,i}i=0,...,Nl+1
and rl+1,i = 〈R, ϕl+1,i〉. Find a representation of the

evaluation of this functional for a finite element function vl defined on the coarse
grid Tl:

〈R, vl〉 =

Nl∑

i=0

rl,ivl,i = (rl, vl)ℓ2 .

Show the following relation between the coefficient vectors rl+1 = {rl+1,i}i=0,...,Nl+1

and rl = {rl,i}i=0,...,Nl
:

rl = I l
l+1rl+1 , with I l

l+1 = (I l+1
l)T .

Hint:

(rl, vl)ℓ2 = 〈R, vl〉 = (rl+1, vl+1)ℓ2 = (rl+1, I
l+1
l vl)ℓ2 .

40 Let Kl and Kl+1 be the stiffness matrices on the grid Tl and Tl+1, respectively. Show
that there holds:

Kl = I l
l+1Kl+1I

l+1
l = (I l+1

l)T Kl+1I
l+1
l .

Hint: Given two finite element functions wh and vh, on the coarse grid Tl we have

a(wh, vh) = (Klwl, vl)ℓ2 ,

while on the fine grid Tl+1 we have

a(wh, vh) = (Kl+1wl+1, vl+1)ℓ2 .

41 Write a function RefineUniform(↓coarsemesh,↑finemesh), which computes the
refined grid Tl+1 (finemesh) starting from the coarse mesh Tl (coarsemesh) as
described above.

42 Write a function Prolongate(↓coarsevector,↑finevector) to compute wl+1 =
I l+1
l wl, where coarsevector= wl and finevector= wl+1.

Write a function Restrict(↓coarsevector,↑finevector) to compute wl =
I l
l+1wl+1, where coarsevector= wl and finevector= wl+1.

43 Implement the MDS preconditioner for a hierarchy of grids T1, . . . , TL:

1. if we have only one grid T1 (L = 1), then the MDS preconditioner coincides
with the Jacobi preconditioner

w1 = D−1
1 r1 .

17

2. for a hierarchy of two grids T1, T2 (L = 2), the correction w2 obtained by MDS
for a given residual r2 is given by the sum of the correction obtained by the
Jacobi preconditioner on the fine grid for the residual r2, and the (prolongated)
correction obtained by the Jacobi preconditioner on the coarse grid for the
(restricted) residual r1:

w2 = D−1
2 r2 + I2

1w1

with
w1 = D−1

1 r1 for r1 = I1
2r2 .

3. for a hierarchy of L grids T1, . . . , TL, the correction wL obtained by MDS for a
given residual rL is given by the sum of the correction obtained by the Jacobi
preconditioner on the fine grid TL for the residual rL, and the (prolongated)
correction obtained by the Jacobi preconditioner on the coarse grid TL−1 for
the (restricted) residual rL−1:

wL = C−1
L rL = D−1

L rL + IL
L−1wL ,

with
wL−1 = C−1

L−1rL−1 for rL−1 = IL−1
L rL .

Hint: Use a recursive function like

MDS(l,r,w) {

...

if (l == 1)

w = JacobiPreconditioner.solve(l,r);

else {

w = JacobiPreconditioner.solve(l,r);

Restrict(r,r_coarse);

MDS(l-1,r_coarse,w_coarse);

Prolongate(w_coarse,w_fine);

w += w_fine;

}

}

18

//***

// Iterative template routine -- CG

// CG solves the symmetric positive definite linear

// system Ax=b using the Conjugate Gradient method.

// CG follows the algorithm described on p. 15 in the

// SIAM Templates book.

// The return value indicates convergence within max_iter (input)

// iterations (0), or no convergence within max_iter iterations (1).

// Upon successful return, output arguments have the following values:

// x -- approximate solution to Ax = b

// max_iter -- the number of iterations performed before the

// tolerance was reached

// tol -- the residual after the final iteration

//***

template < class Matrix, class Vector, class Preconditioner, class Real >

int

CG(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)

{

Real resid;

Vector p, z, q;

Vector alpha(1), beta(1), rho(1), rho_1(1);

Real normb = norm(b);

Vector r = b - A*x;

if (normb == 0.0)

normb = 1;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = 0;

return 0;

}

for (int i = 1; i <= max_iter; i++) {

z = M.solve(r);

rho(0) = dot(r, z);

if (i == 1)

p = z;

else {

beta(0) = rho(0) / rho_1(0);

p = z + beta(0) * p;

}

19

q = A*p;

alpha(0) = rho(0) / dot(p, q);

x += alpha(0) * p;

r -= alpha(0) * q;

if ((resid = norm(r) / normb) <= tol) {

tol = resid;

max_iter = i;

return 0;

}

rho_1(0) = rho(0);

}

tol = resid;

return 1;

}

20

