
NuPDE (Numerical Methods for Partial Differential Equations) WS 2006/2007

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T IV Monday, 13 November 2006 (Time: 13:45 - 15:15, Room: P 004)

1.4 FEM for BVPs of Second-order ODEs

We consider the same setting as in (1.18) of Tutorial III.

In the following, we denote the input parameters of the functions by ↓, the output pa-
rameters by ↑, and input/output parameters by l.

19 Write a function ImplementRobinBC(↓i,↓g,↓alpha,lmatrix,lvector) to imple-
ment the Robin boundary condition

u′(xi) = α(xi)(gR(xi) − u(xi))

for given values g=gR(xi), alpha=α(xi) at the boundary node xi identified by the
index i=i. The function ImplementRobinBC will update the input matrix=Kh and
the input vector=f

h
, previously computed by StiffnessMatrix and LoadVector,

respectively, in the case of homogeneous Neumann conditions.

20 Write a function ImplementDirichletBC(↓i,↓g,lmatrix,lvector) to implement
the Dirichlet boundary condition

u(xi) = gD(xi)

for a given value g=gD(xi) at the boundary node xi identified by the index i=i. The
function ImplementDirichletBC will update the input matrix=Kh and the input
vector=f

h
, previously computed by StiffnessMatrix and LoadVector, respec-

tively, in the case of homogeneous Neumann conditions, and by ImplementRobinBC.

Hint: assume that the following linear system is obtained after applying
StiffnessMatrix, LoadVector and ImplementRobinBC:





K00 K01 K02

K10 K11 K12

K20 K21 K22









u0

u1

u2



 =





f0

f1

f2



 ,

and that we want to impose u0 = u(x0) = gD(x0) = g0. Then, we can replace the
first equation by K00u0 = K00g0 and substitute u0 by g0 in the other equations.
This would result in the modified linear system:





K00 0 0
0 K11 K12

0 K21 K22









u0

u1

u2



 =





K00g0

f1 − K10g0

f2 − K20g0



 .

8



21 Write a function Mult(↓matrix,↓vector,↑product) which computes the matrix-
vector product Ku (product) of a given tridiagonal matrix K (matrix), imple-
mented by the data type Matrix (see Exercise 16 in Tutorial III), and of a given
vector u (vector).

(In C++ this can be done by writing an appropriate member function for the class
Matrix, or by overloading the operator *.)

22 Using class in C++, define a data type Preconditioner which implements the
Jacobi preconditioner Ch = Dh = diag(Kh).

23 Write a function (or a member function of the class Preconditioner) to solve the
linear system

Chwh = rh,

for Ch = Dh (diagonal) and for a given vector rh.

24 Write a function Richardson(↓A,lx,↓b,↓C,↓tau,lmax_iter,ltol) to solve the lin-
ear system

Ax = b

by the preconditioned Richardson method:

x(n+1) = x(n) + τC−1(b − Ax(n))

with stopping criterion
‖r(n)‖ℓ2 ≤ ǫ‖b‖ℓ2 ,

where A = A, x = x(0) in input and x = x(n) in output, b = b, C = C, tau = τ ,
max_iter is the maximal number of iterations as input and max_iter = n is the
number of iterations needed to satisfy the stopping criterion as output, and tol =
ǫ.

Hint: use the template Richardson.h.

9



Richardson.h

// Iterative template routine -- Preconditioned Richardson

//

// RICHARDSON solves the linear system Ax=b using

// preconditioned Richardson iterations

// The returned value indicates convergence within max_iter iterations (0)

// or non convergence within max_iter iterations (1)

// Upon successful return, the output arguments have the following values:

// x: computed solution

// max_iter: number of iterations to satisfy the stopping criterion

// tol: residual after the final iteration

template < class Matrix, class Vector, class Preconditioner, class Real >

int

RICHARDSON(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)

{

Real resid;

Vector z;

Real normb = norm(b);

Vector r = b - A*x;

if (normb == 0.0)

normb = 1;

if ((resid = norm(r) / normb) <= tol)

{

tol = resid;

max_iter = 0;

return 0;

}

for (int i = 1; i <= max_iter; i++)

{

z = M.solve(r);

x += z;

r = b - A*x;

if ((resid = norm(r) / normb) <= tol)

{

tol = resid;

max_iter = i;

return 0;

}

}

tol = resid;

return 1;

}

10


