NuPDE (Numerical Methods for Partial Differential Equations) WS 2006/2007

TUTORIAL

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T IV| Monday, 13 November 2006 (Time: 13:45 - 15:15, Room: P 004)

1.4 FEM for BVPs of Second-order ODEs

We consider the same setting as in (1.18) of Tutorial III.

In the following, we denote the input parameters of the functions by |, the output pa-
rameters by 1, and input/output parameters by .

Write a function ImplementRobinBC(|i,|g,|alpha, [matrix,[vector) to imple-
ment the Robin boundary condition

u'(2;) = a(x;)(gr(w:) — u(z;))

for given values g=gr(z;), alpha=a(x;) at the boundary node z; identified by the
index i=¢. The function ImplementRobinBC will update the input matrix=Kj) and
the input vector= f previously computed by StiffnessMatrix and LoadVector,
respectively, in the case of homogeneous Neumann conditions.

Write a function ImplementDirichletBC(|i, |g, [matrix,]vector) to implement
the Dirichlet boundary condition

u(z;) = gp(z:)

for a given value g=gp(z;) at the boundary node z; identified by the index i=i. The
function ImplementDirichletBC will update the input matrix=Kj) and the input
vector= f previously computed by StiffnessMatrix and LoadVector, respec-
tively, in the case of homogeneous Neumann conditions, and by ImplementRobinBC.

Hint: assume that the following linear system is obtained after applying
StiffnessMatrix, LoadVector and ImplementRobinBC:

Ko Ko Koo Ug fo
Ky Kin Ko uy | = fl)
Ky Ko Ko U2 f2

and that we want to impose ug = u(zg) = gp(zo) = go. Then, we can replace the
first equation by Kgug = Koogo and substitute ug by go in the other equations.
This would result in the modified linear system:

Ko O 0 Ug Koogo
0 Kun Kip ur | = | fi — Kiogo
0 Ko Ky Uy fo— K290

Write a function Mult(|matrix, |vector, Jproduct) which computes the matrix-
vector product Ku (product) of a given tridiagonal matrix K (matrix), imple-
mented by the data type Matrix (see Exercise 16 in Tutorial IIT), and of a given
vector u (vector).

(In C++ this can be done by writing an appropriate member function for the class
Matrix, or by overloading the operator *.)

Using class in C++, define a data type Preconditioner which implements the
Jacobi preconditioner C}, = D), = diag(K}).

Write a function (or a member function of the class Preconditioner) to solve the
linear system
Chwy, = 14,

for C}, = Dy, (diagonal) and for a given vector ry,.
Write a function Richardson(|A, %, |b,|C, |tau, Jmax_iter, tol) to solve the lin-

ear system
Ax=b

by the preconditioned Richardson method:
with stopping criterion
e e, < ellblles

where A = A, x = 2(© in input and x = 2™ in output, b = b, C = C, tau = 7,
max_iter is the maximal number of iterations as input and max_iter = n is the
number of iterations needed to satisfy the stopping criterion as output, and tol =
€.

Hint: use the template Richardson.h.

Richardson.h

// Iterative template routine -- Preconditioned Richardson

//

// RICHARDSON solves the linear system Ax=b using

// preconditioned Richardson iterations

// The returned value indicates convergence within max_iter iterations (0)
// or non convergence within max_iter iterations (1)

// Upon successful return, the output arguments have the following values:
// x: computed solution

// max_iter: number of iterations to satisfy the stopping criterion

// tol: residual after the final iteration

template < class Matrix, class Vector, class Preconditioner, class Real >
int
RICHARDSON (const Matrix &A, Vector &x, const Vector &b,
const Preconditioner &M, int &max_iter, Real &tol)
{
Real resid;
Vector z;

Real normb = norm(b);
Vector r = b - Axx;

if (normb == 0.0)
normb = 1;

if ((resid = norm(r) / normb) <= tol)
{

tol = resid;

max_iter = 0;

return O;

b

for (int i = 1; i <= max_iter; i++)
{

z = M.solve(r);

X += z;

r = b - A*xx;

if ((resid = norm(r) / normb) <= tol)
{
tol = resid;
max_iter = 1i;
return O;
}
}

tol = resid;
return 1;

10

