TUTORIAL

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

Monday, 13 November 2006 (Time: 13:45 - 15:15, Room: P 004)

1.4 FEM for BVPs of Second-order ODEs

We consider the same setting as in (1.18) of Tutorial III.

T IV

In the following, we denote the input parameters of the functions by \downarrow , the output parameters by \uparrow , and input/output parameters by \uparrow .

19 Write a function ImplementRobinBC(\i,\g,\alpha,\matrix,\vector) to implement the Robin boundary condition

$$u'(x_i) = \alpha(x_i)(g_R(x_i) - u(x_i))$$

for given values $g=g_R(x_i)$, $alpha=\alpha(x_i)$ at the boundary node x_i identified by the index i=i. The function ImplementRobinBC will update the input matrix= K_h and the input vector= \underline{f}_h , previously computed by StiffnessMatrix and LoadVector, respectively, in the case of homogeneous Neumann conditions.

20 Write a function ImplementDirichletBC(\i,\g,\matrix,\vector) to implement the Dirichlet boundary condition

$$u(x_i) = g_D(x_i)$$

for a given value $g=g_D(x_i)$ at the boundary node x_i identified by the index i=i. The function ImplementDirichletBC will update the input matrix= K_h and the input vector= \underline{f}_h , previously computed by StiffnessMatrix and LoadVector, respectively, in the case of homogeneous Neumann conditions, and by ImplementRobinBC.

Hint: assume that the following linear system is obtained after applying StiffnessMatrix, LoadVector and ImplementRobinBC:

$$\begin{pmatrix} K_{00} & K_{01} & K_{02} \\ K_{10} & K_{11} & K_{12} \\ K_{20} & K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \end{pmatrix} ,$$

and that we want to impose $u_0 = u(x_0) = g_D(x_0) = g_0$. Then, we can replace the first equation by $K_{00}u_0 = K_{00}g_0$ and substitute u_0 by g_0 in the other equations. This would result in the modified linear system:

$$\begin{pmatrix} K_{00} & 0 & 0 \\ 0 & K_{11} & K_{12} \\ 0 & K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} K_{00}g_0 \\ f_1 - K_{10}g_0 \\ f_2 - K_{20}g_0 \end{pmatrix} .$$

21 Write a function Mult(\downarrow matrix, \downarrow vector, \uparrow product) which computes the matrixvector product Ku (product) of a given tridiagonal matrix K (matrix), implemented by the data type Matrix (see Exercise 16 in Tutorial III), and of a given vector u (vector).

(In C++ this can be done by writing an appropriate member function for the class Matrix, or by overloading the operator *.)

- 22 Using class in C++, define a data type Preconditioner which implements the Jacobi preconditioner $C_h = D_h = \text{diag}(K_h)$.
- 23 Write a function (or a member function of the class **Preconditioner**) to solve the linear system

$$C_h \underline{w}_h = \underline{r}_h,$$

for $C_h = D_h$ (diagonal) and for a given vector \underline{r}_h .

24 Write a function Richardson(↓A, ↑x, ↓b, ↓C, ↓tau, ↑max_iter, ↑tol) to solve the linear system

 $A\underline{x} = \underline{b}$

by the preconditioned Richardson method:

$$\underline{x}^{(n+1)} = \underline{x}^{(n)} + \tau C^{-1}(\underline{b} - A\underline{x}^{(n)})$$

with stopping criterion

$$\|\underline{r}^{(n)}\|_{\ell_2} \leq \epsilon \|\underline{b}\|_{\ell_2} ,$$

where $\mathbf{A} = A$, $\mathbf{x} = \underline{x}^{(0)}$ in input and $\mathbf{x} = x^{(n)}$ in output, $\mathbf{b} = \underline{b}$, $\mathbf{C} = C$, $\mathbf{tau} = \tau$, $\mathbf{max_iter}$ is the maximal number of iterations as input and $\mathbf{max_iter} = n$ is the number of iterations needed to satisfy the stopping criterion as output, and $\mathbf{tol} = \epsilon$.

Hint: use the template Richardson.h.

Richardson.h

```
// Iterative template routine -- Preconditioned Richardson
11
// RICHARDSON solves the linear system Ax=b using
// preconditioned Richardson iterations
// The returned value indicates convergence within max_iter iterations (0)
// or non convergence within max_iter iterations (1)
// Upon successful return, the output arguments have the following values:
11
          x: computed solution
// max_iter: number of iterations to satisfy the stopping criterion
       tol: residual after the final iteration
11
template < class Matrix, class Vector, class Preconditioner, class Real >
int
RICHARDSON(const Matrix &A, Vector &x, const Vector &b,
           const Preconditioner &M, int &max_iter, Real &tol)
{
  Real resid;
  Vector z;
 Real normb = norm(b);
  Vector r = b - A * x;
  if (normb == 0.0)
   normb = 1;
  if ((resid = norm(r) / normb) <= tol)</pre>
   {
   tol = resid;
   max_iter = 0;
   return 0;
   }
  for (int i = 1; i <= max_iter; i++)</pre>
   {
   z = M.solve(r);
   x += z;
    r = b - A*x;
    if ((resid = norm(r) / normb) <= tol)</pre>
     {
     tol = resid;
     max_iter = i;
     return 0;
     }
   }
  tol = resid;
  return 1;
}
```

```
10
```