
NuPDE (Numerical Methods for Partial Differential Equations) WS 2006/2007

T U T O R I A L

“Numerical Methods for Solving
Partial Differential Equations”

to the Lectures on NuPDE

T III Monday, 6 November 2006 (Time: 13:45 - 15:15, Room: P 004)

1.3 FEM for BVPs of Second-order ODEs

Let Ω = (0, 1), Γ = ∂Ω = {0, 1} = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅.
Consider the one-dimensional boundary value problem: find u(x) such that

−u′′(x) = f(x) x ∈ Ω
u(x) = gD(x) x ∈ ΓD

u′(x) = α(x)(gR(x) − u(x)) x ∈ ΓR.

(1.18)

We discretize the problem using the finite element method with Courant elements.
We consider the nodes 0 = x0 < x1 < · · · < xNh−1 < xNh

= 1 which define a mesh Th of
Ω made of subintervals Tk = (xk−1, xk), k = 1, . . . , Nh.
We introduce the finite element space:

Vh = {vh ∈ C(Ω)| vh|Tk
∈ P1 for all Tk ∈ Th}

whose basis is given by the nodal functions ϕi (i = 0, . . . , Nh), with ϕi(xj) = δij (i, j =
0, . . . , Nh).

In the following exercises we start developing a program that will allow us to compute
the finite element approximation uh of the solution u of (1.18).

We denote the input parameters of the functions by ↓ and the output parameters by ↑.

13 Write a function ElementStiffnessMatrix(↓xa,↓xb,↑element_matrix) that for

xa= xk−1 and xb= xk returns the 2×2 local stiffness matrix element_matrix= K
(k)
h

on the element Tk:

K
(k)
h =









∫

Tk

(ϕ′
k−1(x))2dx

∫

Tk

ϕ′
k−1(x)ϕ′

k(x)dx
∫

Tk

ϕ′
k(x)ϕ′

k−1(x)dx

∫

Tk

(ϕ′
k(x))2dx









.

14 Write a function ElementLoadVector(↓(*f)(x),↓xa,↓xb,↑element_vector) that

for xa= xk−1 and xb= xk returns the 2× 1 local load vector element_vector= f
(k)
h

on the element Tk:

f
(k)
h =









∫

Tk

f(x)ϕk−1(x)dx
∫

Tk

f(x)ϕk(x)dx









.

6

Use the trapezoidal rule to approximate the integrals:

∫ b

a

g(x)dx ≃
b − a

2
[g(a) + g(b)] .

15 Define a data type Mesh which contains all the information about the mesh Th.

Hint: use struct in C or class in C++.

16 Define an efficient data type Matrix for the stiffness matrices Kh exploiting the fact
that Kh is tridiagonal.

Hint: use struct in C or class in C++.

Consider now ΓD = ∅, ΓR = {0, 1} and α(x) = 0 (pure homogenous Neumann case).

17 Write a function StiffnessMatrix(↓mesh,↑matrix) that assembles the global
(Nh + 1) × (Nh + 1) stiffness matrix matrix= Kh for a given subdivision mesh= Th

of Ω.

Hint: set Kh = 0, then start with K
(0)
h and use a loop over all the elements Tk to

update the matrix Kh. On each Tk, call the function ElementStiffnessMatrix to

compute K
(k)
h and pay attention to put the entries of K

(k)
h at the correct position in

Kh.

18 Write a function LoadVector(↓(*f)(x),↓mesh,↑vector) that assembles the global
(Nh + 1) × 1 load vector vector= f

h
for a given subdivision mesh= Th of Ω.

Hint: set f
h

= 0, then start with f (0)

h
and use a loop over all the elements Tk to

update the vector f
h
. On each Tk, call the function ElementLoadVector to compute

f (k)

h
and pay attention to add the entries of f (k)

h
at the correct position in f

h
.

Test the data types and the functions that you have implemented taking some simple
examples, e.g., consider equidistant nodes xi and simple functions f(x) (f(x) = 1, f(x) =
x . . .).

7

