WS 2006/2007

<u>TUTORIAL</u>

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

T III Monday, 6 November 2006 (Time: 13:45 - 15:15, Room: P 004)

1.3 FEM for BVPs of Second-order ODEs

Let $\Omega = (0, 1)$, $\Gamma = \partial \Omega = \{0, 1\} = \Gamma_D \cup \Gamma_N$ with $\Gamma_D \cap \Gamma_N = \emptyset$. Consider the one-dimensional boundary value problem: find u(x) such that

$$\begin{aligned}
-u''(x) &= f(x) & x \in \Omega \\
u(x) &= g_D(x) & x \in \Gamma_D \\
u'(x) &= \alpha(x)(g_R(x) - u(x)) & x \in \Gamma_R.
\end{aligned}$$
(1.18)

We discretize the problem using the finite element method with Courant elements. We consider the nodes $0 = x_0 < x_1 < \cdots < x_{N_h-1} < x_{N_h} = 1$ which define a mesh \mathcal{T}_h of Ω made of subintervals $T_k = (x_{k-1}, x_k), k = 1, \ldots, N_h$. We introduce the finite element space:

$$V_h = \{ v_h \in \mathcal{C}(\overline{\Omega}) | v_{h|T_k} \in \mathbb{P}_1 \text{ for all } T_k \in \mathcal{T}_h \}$$

whose basis is given by the nodal functions φ_i $(i = 0, ..., N_h)$, with $\varphi_i(x_j) = \delta_{ij}$ $(i, j = 0, ..., N_h)$.

In the following exercises we start developing a program that will allow us to compute the finite element approximation u_h of the solution u of (1.18).

We denote the input parameters of the functions by \downarrow and the output parameters by \uparrow .

13 Write a function ElementStiffnessMatrix($\downarrow xa, \downarrow xb, \uparrow$ element_matrix) that for $xa = x_{k-1}$ and $xb = x_k$ returns the 2×2 local stiffness matrix element_matrix= $K_h^{(k)}$ on the element T_k :

$$K_h^{(k)} = \begin{pmatrix} \int_{T_k} (\varphi'_{k-1}(x))^2 dx & \int_{T_k} \varphi'_{k-1}(x)\varphi'_k(x)dx \\ \int_{T_k} \varphi'_k(x)\varphi'_{k-1}(x)dx & \int_{T_k} (\varphi'_k(x))^2 dx \end{pmatrix}$$

1

14 Write a function ElementLoadVector(\downarrow (*f)(x), \downarrow xa, \downarrow xb, \uparrow element_vector) that for xa= x_{k-1} and xb= x_k returns the 2 × 1 local load vector element_vector= $f_h^{(k)}$ on the element T_k :

$$f_h^{(k)} = \left(\begin{array}{c} \int_{T_k} f(x)\varphi_{k-1}(x)dx \\ \int_{T_k} f(x)\varphi_k(x)dx \end{array} \right)$$

Use the trapezoidal rule to approximate the integrals:

$$\int_{a}^{b} g(x)dx \simeq \frac{b-a}{2} [g(a) + g(b)] .$$

15 Define a data type Mesh which contains all the information about the mesh \mathcal{T}_h .

Hint: use struct in C or class in C++.

16 Define an efficient data type Matrix for the stiffness matrices K_h exploiting the fact that K_h is tridiagonal.

Hint: use struct in C or class in C++.

Consider now $\Gamma_D = \emptyset$, $\Gamma_R = \{0, 1\}$ and $\alpha(x) = 0$ (pure homogenous Neumann case).

17 Write a function StiffnessMatrix($\downarrow mesh$, $\uparrow matrix$) that assembles the global $(N_h + 1) \times (N_h + 1)$ stiffness matrix matrix= K_h for a given subdivision mesh= \mathcal{T}_h of Ω .

Hint: set $K_h = 0$, then start with $K_h^{(0)}$ and use a loop over all the elements T_k to update the matrix K_h . On each T_k , call the function ElementStiffnessMatrix to compute $K_h^{(k)}$ and pay attention to put the entries of $K_h^{(k)}$ at the correct position in K_h .

18 Write a function LoadVector(\downarrow (*f)(x), \downarrow mesh, \uparrow vector) that assembles the global $(N_h + 1) \times 1$ load vector vector= f_h for a given subdivision mesh= \mathcal{T}_h of Ω .

Hint: set $\underline{f}_h = 0$, then start with $\underline{f}_h^{(0)}$ and use a loop over all the elements T_k to update the vector \underline{f}_h . On each T_k , call the function ElementLoadVector to compute $\underline{f}_h^{(k)}$ and pay attention to add the entries of $\underline{f}_h^{(k)}$ at the correct position in \underline{f}_h .

Test the data types and the functions that you have implemented taking some simple examples, e.g., consider equidistant nodes x_i and simple functions f(x) (f(x) = 1, $f(x) = x \dots$).