TUTORIAL

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

T I Monday, 16 October 2006 (Time: 10:15 - 11:45, Room: T 041)

1 Elliptic Differential Equations

1.1 BVPs for Second-order ODEs

- 01 Find the variational formulations $(V = ?, V_0 = ?, V_g = ?, a(., .) = ?, \langle F, . \rangle = ?)$ for the following boundary value problems:
 - $-u''(x) = f(x), \quad x \in (0,1),$ (a) $u(0) = g_0,$ $u(1) = g_1.$ $-u''(x) = f(x), \quad x \in (0,1),$ (b) $u'(0) = g_0,$ $-u'(1) = g_1.$ $-u''(x) = f(x), \quad x \in (0,1),$
 - (c) $u'(0) = \alpha_0 u(0) \beta_0 g_0,$ $-u'(1) = \alpha_1 u(1) - \beta_1 g_1.$
- $\boxed{02}$ Find the variational formulations $(V=?,V_0=?,V_g=?,a(.,.)=?,\langle F,.\rangle=?)$ for the following boundary value problem:

$$-\bar{a}(x)u''(x) + \bar{b}(x)u'(x) + \bar{c}(x)u(x) = f(x) + \delta(x - y) \quad x \in (0, 1), \quad (1.1)$$

$$u'(0) = \alpha_0(u(0) - g_0), \tag{1.2}$$

$$-u'(1) = \alpha_1(u(1) - g_1), \tag{1.3}$$

where $\bar{a}(.), \bar{b}(.), \bar{c}(.), f(x)$ are given sufficiently smooth functions and $\delta(.)$ denotes the delta-function with given $y \in (0,1)$, and $\alpha_0, \alpha_1, g_0, g_1 \in \mathbb{R}$ are also given. Hint: Rewrite first the differential operator of the differential equation (??) in the so-called divergence form -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x)!

- $\boxed{03}$ Show for the variational formulation of the Neumann boundary value problem (b) of Exercise $\boxed{01}$:
 - (a) If u is a solution, then, for any constant $c \in \mathbb{R}$, u + c is also a solution!
 - (b) If the boundary value problem has a solution u, then

$$\langle F, c \rangle = 0, \quad \forall c \in \mathbb{R}.$$
 (1.4)

O4 Show that the variational problem: find $u \in V = V_g = V_0 = H^1(0,1)$ such that

$$\int_0^1 u'(x)v'(x) \, dx + \left(\int_0^1 u(x) \, dx\right) \left(\int_0^1 v(x) \, dx\right) = \int_0^1 f(x)v(x) \, dx =: \langle F, v \rangle, \quad (1.5)$$

for all $v \in V$, has a unique solution for given $f(.) \in L_2(0,1)$! Furthermore, prove that if the right-hand side fulfills the solvability condition (??) of the Neumann problem, the solution u of (??) also solves the Neumann problem (b) of Exercise $\boxed{01}$ with $g_0 = g_1 = 0$, and satisfies the orthogonality condition

$$\int_0^1 u(x) \, dx = 0. \tag{1.6}$$

Hints: Use the Lax-Milgram Theorem and Poincare's inequality!

Show that the variational problem: find $u \in V = V_g = V_0 = H^1(0,1)$ such that

$$\int_0^1 (a(x)u'(x)v'(x) + b(x)u'(x)v(x) + c(x)u(x)v(x))dx = \int_0^1 f(x)v(x) dx, \quad (1.7)$$

for all $v \in V$, has a unique solution provided that the following assumptions are fulfilled:

- 1. $a(.) \in L_{\infty}(0,1)$ and $a(x) \ge a_0 = const > 0$ for almost all $x \in (0,1)$,
- 2. $b(x) \equiv b = const \in \mathbb{R}$,
- 3. $c(.) \in L_{\infty}(0,1)$ and $c(x) \ge 0$ for almost all $x \in (0,1)$,
- 4. $f(.) \in L_2(0,1)$.

Hint: Use the identity $u'u = \frac{1}{2}(u^2)'$!

Due to the Corollary 1.8, the solution of the variational problem (??) can be approximated by the fixed point iteration (18)=(19) given in the lectures. Give the classical formulation of this fixed point iteration for the variational problem (??)!

TUTORIAL

"Numerical Methods for Solving Partial Differential Equations"

to the Lectures on NuPDE

T I Monday, 16 October 2006 (Time: 10:15 - 11:45, Room: T 041)

2 Elliptic Differential Equations

2.1 BVPs for Second-order ODEs

- 01 Find the variational formulations $(V = ?, V_0 = ?, V_g = ?, a(., .) = ?, \langle F, . \rangle = ?)$ for the following boundary value problems:
 - $-u''(x) = f(x), \quad x \in (0,1),$ (a) $u(0) = g_0,$ $u(1) = g_1.$ $-u''(x) = f(x), \quad x \in (0,1),$ (b) $u'(0) = g_0,$ $-u'(1) = g_1.$ $-u''(x) = f(x), \quad x \in (0,1),$ (c) u'(0) = g(x)
 - (c) $u'(0) = \alpha_0 u(0) \beta_0 g_0,$ $-u'(1) = \alpha_1 u(1) - \beta_1 g_1.$
- $\boxed{02}$ Find the variational formulations $(V=?,V_0=?,V_g=?,a(.,.)=?,\langle F,.\rangle=?)$ for the following boundary value problem:

$$-\bar{a}(x)u''(x) + \bar{b}(x)u'(x) + \bar{c}(x)u(x) = f(x) + \delta(x - y) \quad x \in (0, 1), \quad (2.1)$$

$$u'(0) = \alpha_0(u(0) - g_0), \tag{2.2}$$

$$-u'(1) = \alpha_1(u(1) - g_1), \tag{2.3}$$

where $\bar{a}(.), \bar{b}(.), \bar{c}(.), f(x)$ are given sufficiently smooth functions and $\delta(.)$ denotes the delta-function with given $y \in (0,1)$, and $\alpha_0, \alpha_1, g_0, g_1 \in \mathbb{R}$ are also given. Hint: Rewrite first the differential operator of the differential equation (??) in the so-called divergence form -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x)!

- $\boxed{03}$ Show for the variational formulation of the Neumann boundary value problem (b) of Exercise $\boxed{01}$:
 - (a) If u is a solution, then, for any constant $c \in \mathbb{R}$, u + c is also a solution!
 - (b) If the boundary value problem has a solution u, then

$$\langle F, c \rangle = 0, \quad \forall c \in \mathbb{R}.$$
 (2.4)

O4 Show that the variational problem: find $u \in V = V_g = V_0 = H^1(0,1)$ such that

$$\int_0^1 u'(x)v'(x) \, dx + \left(\int_0^1 u(x) \, dx\right) \left(\int_0^1 v(x) \, dx\right) = \int_0^1 f(x)v(x) \, dx =: \langle F, v \rangle, \quad (2.5)$$

for all $v \in V$, has a unique solution for given $f(.) \in L_2(0,1)$! Furthermore, prove that if the right-hand side fulfills the solvability condition (??) of the Neumann problem, the solution u of (??) also solves the Neumann problem (b) of Exercise $\boxed{01}$ with $g_0 = g_1 = 0$, and satisfies the orthogonality condition

$$\int_0^1 u(x) \, dx = 0. \tag{2.6}$$

Hints: Use the Lax-Milgram Theorem and Poincare's inequality!

Show that the variational problem: find $u \in V = V_g = V_0 = H^1(0,1)$ such that

$$\int_0^1 (a(x)u'(x)v'(x) + b(x)u'(x)v(x) + c(x)u(x)v(x))dx = \int_0^1 f(x)v(x) dx, \quad (2.7)$$

for all $v \in V$, has a unique solution provided that the following assumptions are fulfilled:

- 1. $a(.) \in L_{\infty}(0,1)$ and $a(x) \ge a_0 = const > 0$ for almost all $x \in (0,1)$,
- 2. $b(x) \equiv b = const \in \mathbb{R}$,
- 3. $c(.) \in L_{\infty}(0,1)$ and $c(x) \ge 0$ for almost all $x \in (0,1)$,
- 4. $f(.) \in L_2(0,1)$.

Hint: Use the identity $u'u = \frac{1}{2}(u^2)'$!

Due to the Corollary 1.8, the solution of the variational problem (??) can be approximated by the fixed point iteration (18)=(19) given in the lectures. Give the classical formulation of this fixed point iteration for the variational problem (??)!