b) **Approximation Estimate:** \[\| u \|_{W^2_2(\omega)} \leq \frac{C(u)}{h} \| u \|_{W^2_2(\omega)} \]

by mapping to a reference domain, application of Bramble-Hilbert's Lemma, and return mapping: Under the assumption

- (i) \(u \in W^2_2(\Omega) \),
- \(\Omega \) - regular grid, i.e. \(\mathcal{T}_\Delta \) - regular triangulation,
- and additional smoothness requirements imposed on the data \(\{ a, c, f \} \),

we can prove the estimate

\[|(\mathcal{N}, \mathcal{Z})| \leq C(u) h \| u \|_{W^2_2(\omega)} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

we have

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= L_h u - \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]

Indeed, from the splitting of the approximation error

\[\Psi(x) = L_h u - \bar{f} = 0 \]

\[= \left\{ \begin{array}{c}
\frac{1}{H(x)} \sum_{y \in S(x)} a(y) \frac{\partial u}{\partial n}(y) ds_y + \frac{1}{h(x)} \sum_{x \in S(x)} c(y) dy + \frac{1}{|\Gamma_0(\mathcal{T})|} f(\mathcal{T}) - \bar{f} \end{array} \right\} \]