Show the relation

\[
(L_h z, v) = \sum_{x \in \Omega} \bar{a}(x_q) \frac{2(x) - 2(x)}{h(\sigma, x)} \frac{v(\sigma) - v(x)}{h(\sigma, x)} H(x) + \\
+ \sum_{x \in \Omega} \varepsilon(x) \otimes (v(x), v(x)) H(x),
\]

from which and from (27) we immediately see that \(L_h \) (and, therefore, the corresponding matrix \(A_h \)) is symmetric and positive definite!