Remark 3.1

1. \(u \in V_{d} \cap W_{2}^{1,\lambda}(\Omega) \) ensures an integrable trace of \(\frac{\partial u}{\partial n} = (a Du, n) \) on \(\partial \Omega \) (\(\frac{\partial u}{\partial n} \in L_{1}(\partial \Omega) \)), if \(\lambda > 1/2 \) and if \(a(\cdot) \) and \(\partial \Omega \) are "sufficiently" smooth (Sobolev's embedding theorem on manifolds!).

2. Physical meaning of (3):
The balance equation (3) expresses the equilibrium (balance) of the following quantities:

- Total flux through \(\partial \Omega \setminus \partial \Omega_{d} \) + input into \(\Omega \) via connection + reaction by solution-dependent sources \(cu \) and \(x_{y} \)
- Total intensity of the sources given by the intensities of the volume sources \(f \) in \(\Omega \) and the boundary sources \(g \) on \(\partial \Omega_{d} \) (if \(f \neq 0 \))

3. In Section 3.3, we use the balance equation (3) in discrete points \(x \in \Omega = \Omega_{1} \cup \Omega_{2} \cup \Omega_{3} \) (primary grid) and special boxes \(\Omega(x) \) (= secondary grid) for constructing finite difference schemes on arbitrary triangular, rectangular, and combined meshes.

4. The generalization to 3D is trivial!