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On a new mixed formulation of Kirchhoff
plates on curvilinear polygonal domains

Katharina Rafetseder and Walter Zulehner

Johannes Kepler University Linz, Institute of Computational Mathematics,
Altenberger Straße 69, 4040 Linz, Austria
{rafetseder,zulehner}@numa.uni-linz.ac.at

Abstract. For Kirchhoff plate bending problems on domains whose boundaries
are curvilinear polygons a discretization method based on the consecutive solution
of three second-order problems is presented.

In Rafetseder and Zulehner (preprint, arXiv:1703.07962) a new mixed varia-
tional formulation of this problem is introduced using a nonstandard Sobolev space
(and an associated regular decomposition) for the bending moments. In case of a
polygonal domain the coupling condition for the two components in the decom-
position can be interpreted as standard boundary conditions, which allows for an
equivalent reformulation as a system of three (consecutively to solve) second-order
elliptic problems.

The extension of this approach to curvilinear polygonal domains poses severe
difficulties. Therefore, we propose in this paper an alternative approach based on
Lagrange multipliers.

1 The Kirchhoff plate bending problem

We consider the Kirchhoff plate bending problem, where the undeformed
mid-surface is described by a domain Ω ⊂ R2 with a Lipschitz boundary Γ .
The plate is considered to be clamped on a part Γc ⊂ Γ , simply supported
on Γs ⊂ Γ , and free on Γf ⊂ Γ with Γ = Γc ∪ Γs ∪ Γf . Furthermore,
n = (n1, n2)T and t = (−n2, n1)T represent the unit outer normal vector and
the unit counterclockwise tangent vector to Γ , respectively.

Then the problem reads: For given load f , find a deflection w such that

div Div
(
C∇2w

)
= f in Ω, (1)

where div denotes the standard divergence of a vector-valued function, Div
the row-wise divergence of a matrix-valued function, ∇2 the Hessian, and C
a fourth-order material tensor. The boundary conditions are given by

w = 0, ∂nw = 0 on Γc,

w = 0, Mn ·n = 0 on Γs,

Mn ·n = 0, ∂t(Mn · t) + DivM ·n = 0 on Γf ,

and the corner conditions

JMntKx = (Mn1 · t1)(x)− (Mn2 · t2)(x) = 0 for all x ∈ VΓ,f ,
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where M denotes the bending moment tensor, given by M = −C∇2w, and
VΓ,f denotes the set of corner points whose two adjacent edges (with corre-
sponding normal and tangent vectors n1, t1 and n2, t2) belong to Γf .

As an example, the material tensor C for isotropic materials is given by

CN = D
(
(1− ν)N + ν tr(N)I

)
, (2)

for matrices N , where ν is the Poisson ration, D > 0 depends on ν, Young’s
modulus, and the thickness of the plate, I is the identity matrix, and tr is
the trace operator for matrices.

A standard (primal) variational formulation of (1) is given as follows:
Find w ∈W such that∫

Ω

C∇2w : ∇2v dx = 〈F, v〉 for all v ∈W, (3)

with the Frobenius inner product A : B =
∑
i,jAijBij for matrices A,B,

the right-hand side 〈F, v〉 =
∫
Ω
f v dx, and the function space

W = {v ∈ H2(Ω) : v = 0, ∂nv = 0 on Γc, v = 0 on Γs}. (4)

Here and throughout the paper L2(Ω) and Hm(Ω) denote the standard
Lebesgue and Sobolev spaces of functions on Ω with corresponding norms
‖.‖0 and ‖.‖m for positive integers m. Moreover, H1

0,Γ ′(Ω) denotes the set

of function in H1(Ω) which vanish on a part Γ ′ of Γ . The L2-inner product
on Ω and Γ ′ are always denoted by (., .) and (., .)Γ ′ , respectively, no matter
whether it is used for scalar, vector-valued, or matrix-valued functions. We
use H∗ to denote the dual of a Hilbert space H and 〈., .〉 for the duality
product on H∗ ×H.

2 New mixed formulation

In our previous work [4] a new mixed variational formulation for the Kirchhoff
plate bending problem with the bending moment tensor M as additional un-
known is derived. The new mixed formulation satisfies Brezzi’s conditions and
is equivalent to the original problem without additional convexity assump-
tion on Ω. These important properties come at the expense of an appropriate
nonstandard Sobolev space for M . In order to make this space computation-
ally accessible, we show in [4, Theorem 4.2] a regular decomposition of it,
which provides the following representation of the solution M

M = pI + symCurlφ,

with p ∈ Q = H1
0,Γc∪Γs

(Ω) and φ ∈ (H1(Ω))2 satisfying the coupling condi-
tion

〈∂tφ,∇v〉Γ = −
∫
Γ

p ∂nv ds for all v ∈W, (5)
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where ∂tφ = (Curlφ)n ∈ (H−
1
2 (Γ ))2 with H−

1
2 (Γ ) = (H

1
2 (Γ ))∗. Here the

symmetric Curl is defined as symCurlψ = 1
2 (Curlψ + (Curlψ)T ) with

Curlψ =

(
∂2ψ1 −∂1ψ1

∂2ψ2 −∂1ψ2

)
.

The analogous representation for the test functions associated to M in
the mixed formulation leads to the following equivalent formulation of (3):
For F ∈ Q∗, find (p, φ) ∈ V and w ∈ Q such that

(pI + symCurlφ, qI + symCurlψ)C−1 − (∇w,∇q) = 0,

− (∇p,∇v) = −〈F, v〉,
(6)

for all v ∈ Q = H1
0,Γc∪Γs

(Ω) and (q, ψ) ∈ V , where the function space V is

given as the subset of (q, ψ) ∈ Q× (H1(Ω))2 satisfying

〈∂tψ,∇v〉Γ = −
∫
Γ

q ∂nv ds for all v ∈W. (7)

Here, we use the notation (M ,N)C−1 = (C−1M ,N).

2.1 Coupling condition as standard boundary conditions for φ

In [4] we obtain for polygonal domains Ω an equivalent formulation of the
Kirchhoff plate bending problem (3) in terms of three (consecutively to solve)
second-order elliptic problems:

1. The p-problem: Find p ∈ Q such that

(∇p,∇v) = 〈F, v〉 for all v ∈ Q.

2. The φ-problem: For given p ∈ Q, find φ ∈ Ψp = ψ[p] + Ψ0 such that

(symCurlφ, symCurlψ0)C−1 = −(pI, symCurlψ0)C−1 for all ψ0 ∈ Ψ0.

3. The w-problem: For given M = pI + symCurlφ, find w ∈ Q such that

(∇w,∇q) = (M , qI + symCurlψ[q])C−1 for all q ∈ Q.

The second and the third problem require the construction of a particular
function ψ[q] satisfying the coupling condition (7) for given q ∈ Q, for details
see [4]. The space Ψ0 consists of all functions in (H1(Ω))2 satisfying (7) for
q = 0.

The approach presented in [4] is to characterize Ψ0 as space of functions
ψ with standard boundary conditions available in (H1(Ω))2. Originally, the
boundary conditions for ψ ∈ Ψ0 are, roughly speaking, conditions for tangen-
tial derivatives of ψ of the form

∂tψ ·n = 0 on Γs, (8)

∂2t ψ · t = 0, ∂tψ ·n = 0 on Γf . (9)
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For polygonal domains we obtain from (9) a Dirichlet boundary condition for
ψ. Moreover, (8) yields a Dirichlet boundary condition for the normal com-
ponent ψ ·n. However, the considerations heavily rely on a polygonal domain
and it is not clear how to obtain standard boundary conditions in the curved
case. This is our main motivation to investigate an alternative approach to
incorporate the coupling condition (7) based on Lagrange multipliers, which
we introduce in the next section.

In [4] we propose a discretization method for the above introduced for-
mulation using a Nitsche method to incorporate the boundary conditions in
the φ-problem and present a numerical analysis of the method.

3 Coupling condition via Lagrange multipliers

We consider a domain Ω, whose boundary is a curvilinear polygon of class
C∞. This means that Γ =

⋃K
k=1Ek, where the edges Ek are C∞ curves for

k = 1, 2, . . . ,K and Ek denotes the closure of Ek. The edges are numbered
consecutively in counterclockwise direction. We denote the vertex at the end-
point of Ek by ak and the interior angle at ak by ωk. Note, since we consider
a closed boundary curve, the index k = 0 is in the following always identified
with k = K.

Furthermore, we assume that each edge Ek is contained in exactly one of
the sets Γc, Γs, Γf , and the edges are maximal in the sense that two edges
with the same boundary condition do not meet at an angle of π.

By using the representation ∇v = (∂nv)n+ (∂tv) t and incorporating the
boundary conditions for v ∈W , the coupling condition (5) reads

(∂tφ ·n+ p, ∂nv)Γs∪Γf
+ (∂tφ · t, ∂tv)Γf

= 0 for all v ∈W,

provided ∂tφ ∈ L2(Γ ). We can rewrite the condition as follows∑
Ek⊂Γs∪Γf

(∂tφ ·n + p, µkn)Ek
+
∑

Ek⊂Γf

(∂tφ · t, µkt )Ek
= 0, (10)

for all µ = ((µ1
t , µ

2
t , . . . , µ

K
t ), (µ1

n, µ
2
n, . . . , µ

K
n )) ∈ Λ where

Λ = {(∂tv, ∂nv) : for v ∈W},

with

∂tv = (∂tv|E1
, ∂tv|E2

, . . . , ∂tv|EK
), ∂nv = (∂nv|E1

, ∂nv|E2
, . . . , ∂nv|EK

).

We view the original formulation (6) as optimality system with constraint
(∇p,∇v) = 〈F, v〉 and replace the space V by Q × (H1(Ω))2 and add (10)
as additional constraint. The corresponding optimality system is the starting
point for the discretization method we introduce in Sect. 3.2.
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3.1 Characterization of Λ

In this subsection we provide an explicit characterization of Λ. Let us consider
µ = ((µ1

t , µ
2
t , . . . , µ

K
t ), (µ1

n, µ
2
n, . . . , µ

K
n )), where µkt and µkn for k = 1, 2, . . . ,K

are Lipschitz continuous functions on Ek. Then µ ∈ Λ if and only if the
following three conditions are satisfied:

1. The boundary conditions µkt = 0 on edges Ek ⊂ Γs ∪ Γc and µkn = 0 on
edges Ek ⊂ Γc have to hold.

2. On each connected component C of Γf the compatibility condition∑
Ek⊂C

∫
Ek

µkt ds = 0

has to be satisfied.
3. The four corner values µk−1t (ak), µkt (ak), µk−1n (ak), µkn(ak) have to be cou-

pled appropriately. For the case ωk 6= π, the conditions are given by

µk−1t (ak) + cosωk µ
k
t (ak)− sinωk µ

k
n(ak) = 0,

cosωk µ
k−1
t (ak) + sinωk µ

k−1
n (ak) + µkt (ak) = 0,

(11)

for all k = 1, 2, . . . ,K. These conditions follow as special case from [3,
Theorem 1.5.2.8].

Remark 1. In order to describe a change of boundary condition we may
also consider an interior angle ωk of π. A corresponding adaption of the
conditions (11) can be found in [3].

In the following we fix a corner ak and work out the relation implied by
the corresponding boundary conditions and the conditions (11) for the four
involved quantities µk−1t (ak), µkt (ak), µk−1n (ak), µkn(ak), where we skip in
the following the argument ak for better readability. We distinguish three
situations:

1. Let ak be an interior corner point of Γf . Then the conditions (11) lead
to

µk−1n = − 1

sinwk
(coswk µ

k−1
t + µkt ), µkn =

1

sinwk
(µk−1t + coswk µ

k
t ),

for arbitrary µk−1t and µkt .
2. Let ak be a corner point on the interface of Ek−1 ⊂ Γs and Ek ⊂ Γf .

Then the conditions (11) provide

µk−1t = 0, µk−1n = − 1

sinwk
µkt , µkn =

1

sinwk
coswk µ

k
t ,

where µkt can be freely chosen. For the reverse case Ek−1 ⊂ Γf and
Ek ⊂ Γs an analogous result holds.

3. In all other cases, we obtain µk−1t = µkt = µk−1n = µkn = 0.
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3.2 The discretization method

Let Sh(Ω) be a finite dimensional subspace of H1(Ω) of piecewise polyno-
mials (with respect to a subdivision of Ω) and we set Sh,0(Ω) = Sh(Ω) ∩
H1

0,Γc∪Γs
(Ω). The restriction of functions from Sh(Ω) to Ek is defined as

Sh(Ek) = {v|Ek
: v ∈ Sh(Ω)}.

The discrete space Λh consists of all µh = ((µ1
t , µ

2
t , . . . , µ

K
t ), (µ1

n, µ
2
n, . . . , µ

K
n )),

where µkt ∈ Sh(Ek) and µkn ∈ Sh(Ek) for k = 1, 2, . . . ,K, subject to the con-
straints derived in Sect. 3.1.

In the discrete setting the original formulation (6) is equivalent to three
(consecutively to solve) second-order problems:

1. The discrete p-problem: Find ph ∈ Sh,0(Ω) such that

(∇ph,∇vh) = 〈F, vh〉 for all vh ∈ Sh,0(Ω).

2. The discrete (φ, λ)-problem:
For given ph ∈ Sh,0(Ω), find φh ∈ (Sh(Ω))2/RT0 and λh ∈ Λh such that

(symCurlφh, symCurlψh)C−1 + lφ(ψh, λh) = −(phI, symCurlψh)C−1

lφ(φh, µh) = −lp(ph, µh),

for all ψh ∈ (Sh(Ω))2/RT0 and µh ∈ Λh, where

lφ(φ, µ) =
∑

Ek⊂Γs∪Γf

(∂tφ ·n, µkn)Ek
+
∑

Ek⊂Γf

(∂tφ · t, µkt )Ek
,

lp(p, µ) =
∑

Ek⊂Γf

(p, µkn)Ek
,

for µ = ((µ1
t , µ

2
t , . . . , µ

K
t ), (µ1

n, µ
2
n, . . . , µ

K
n )). Here, we use the notation

RT0 = {ax+ b : a ∈ R, b ∈ R2}.
3. The discrete w-problem: For given Mh = phI+symCurlφh and λh ∈ Λh,

find wh ∈ Sh,0(Ω) such that

(∇wh,∇qh) = (Mh, qhI)C−1 + lp(qh, λh) for all qh ∈ Sh,0(Ω).

In comparison with the decoupled formulation in Sect. 2.1, here the second
problem, the (φ, λ)-problem, is a saddle point problem.

4 Numerical tests

As discretization space Sh(Ω) we consider B-splines of degree p ≥ 1 with
maximum smoothness; see, e.g, [2,6] for more information on this space in
the context of isogeometric analysis (IGA). A sparse direct solver is used for
each of the three sub-problems. The implementation is done in the frame-
work of the object-oriented C++ library G+Smo (”Geometry + Simulation
Modules”) 1.

1 https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart

https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart
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4.1 Square plate with clamped, simply supported and free
boundary

We consider a square plate Ω = (−1, 1)2 with simply supported north and
south boundaries, clamped west boundary and free east boundary. The ma-
terial tensor C is given as in (2) with D = 1, ν = 0 and the load is
f(x, y) = 4π4 sin(πx) sin(πy). The exact solution is written in the form

w(x, y) =
(
(a+ bx) cosh(πx) + (c+ dx) sinh(πx) + sin(πx)

)
sin(πy),

which automatically satisfies the boundary conditions on the simply sup-
ported boundary parts. The constants a, b, c and d are chosen such that
the four remaining boundary conditions (on the clamped and free boundary
parts) are satisfied, for details, see [5]. In Table 1 and Table 2 the discretiza-
tion errors for p = 1, 3 are presented. The first column shows the refinement
level L, the next three pairs of columns show the respective discretization
error and the error reduction relative the previous level. The results show
optimal convergence rates for w and M .

Table 1. Discretization errors for square plate, p = 1

L ‖w − wh‖0 order ‖w − wh‖1 order ‖M −Mh‖0 order
4 2.82 · 10−2 1.909 6.83 · 10−1 0.992 2.83 · 100 0.975
5 7.17 · 10−3 1.976 3.42 · 10−1 0.998 1.42 · 100 0.993
6 1.80 · 10−3 1.994 1.71 · 10−1 0.999 7.13 · 10−1 0.998
7 4.50 · 10−4 1.998 8.55 · 10−2 0.999 3.56 · 10−1 0.999

Table 2. Discretization errors for square plate, p = 3

L ‖w − wh‖0 order ‖w − wh‖1 order ‖M −Mh‖0 order
4 5.47 · 10−5 4.147 2.75 · 10−3 3.070 1.10 · 10−2 3.104
5 3.41 · 10−6 4.001 3.46 · 10−4 2.993 1.38 · 10−3 2.989
6 2.15 · 10−7 3.984 4.37 · 10−5 2.985 1.75 · 10−4 2.978
7 1.35 · 10−8 3.989 5.50 · 10−6 2.989 2.22 · 10−5 2.985

4.2 Circular plate with simply supported boundary

As a second example, we consider the simply supported circular plate with
radius r = 1 and uniform loading f = 1. The material tensor C is given
as in (2) with D = 1 and ν = 0.3. The exact solution is given by w(x) =
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c1 + c2r
2 + c3r

4 where r2 = x21 + x22, c3 = 1/64 and c1, c2 are determined
from the boundary conditions. For this test reproducing the exact geometry is
essential, see the discussion of the so-called Babuška paradox in [1]. Therefore,
we use an exact geometry representation by means of non-uniform rational B-
splines (NURBS). In Table 3 and Table 4 the discretization errors for p = 1, 3
are presented. The results show optimal convergence rates for w and M .

Table 3. Discretization errors for circular plate, p = 1

L ‖w − wh‖0 order ‖w − wh‖1 order ‖M −Mh‖0 order
4 3.58 · 10−4 1.984 8.37 · 10−3 1.002 8.79 · 10−3 1.020
5 8.98 · 10−5 1.996 4.18 · 10−3 1.000 4.38 · 10−3 1.005
6 2.24 · 10−5 1.999 2.09 · 10−3 1.000 2.18 · 10−3 1.001
7 5.62 · 10−6 1.999 1.04 · 10−3 1.000 1.09 · 10−3 1.000

Table 4. Discretization errors for circular plate, p = 3

L ‖w − wh‖0 order ‖w − wh‖1 order ‖M −Mh‖0 order
4 4.05 · 10−7 4.319 1.93 · 10−5 3.163 2.01 · 10−5 3.206
5 2.38 · 10−8 4.083 2.35 · 10−6 3.034 2.42 · 10−6 3.054
6 1.47 · 10−9 4.019 2.93 · 10−7 3.004 3.00 · 10−7 3.013
7 9.17 · 10−11 4.004 3.67 · 10−8 2.999 3.74 · 10−8 3.003
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