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On the Best Uniform Approximation by Low-Rank
Matrices

Irina Georgieva∗ Clemens Hofreither†

December 7, 2016

Abstract

We study the problem of best approximation, in the elementwise maximum norm, of a
given matrix by another matrix of lower rank. We generalize a recent result by Pinkus that
describes the best approximation error in a class of low-rank approximation problems and
give an elementary proof for it. Based on this result, we describe the best approximation
error and the error matrix in the case of approximation by a matrix of rank one less than
the original one. For the case of approximation by matrices with arbitrary rank, we give
lower and upper bounds for the best approximation error in terms of certain submatrices of
maximal volume. We illustrate our results using 2 × 2 matrices as examples, for which we
also give a simple closed form of the best approximation error.

1 Introduction
We consider the problem of approximating a given matrix as closely as possible by a matrix
of the same size, but lower rank. When measuring the approximation error in the spectral or
Frobenius norms, a full description of the best approximation and its error is given in terms
of the singular value decomposition [10, 3]. In different matrix norms, very little was known
about this approximation problem until a recent article by Pinkus [8], where approximation by
a class of elementwise norms, and there in particular `1-like norms, was studied. Pinkus derives
expressions for the best approximation error in such norms and, in particular cases, shows that
a best approximating matrix matches the original matrix in a number of rows and columns.

In the present paper, we derive analogues of several of Pinkus’ results for the case of approx-
imation in the elementwise maximum norm. In the process, we generalize one core result from
[8] and prove it using only known basic results on best approximation, whereas the proof of the
original result relied heavily on the theory of n-widths. Building on this result, we obtain an
expression for the best approximation error of a matrix by another one with rank one less, as
well as a characterization of the matrix of best approximation.

For approximation where the difference in ranks is greater than one, we have no closed
formula for the best approximation error, but give lower and upper bounds for it involving
certain submatrices of maximal volumes, that is, with greatest modulus of their determinants.
These results are similar to some given by Babaev [1] in the continuous setting. The relevance of
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submatrices of maximal volume to the problem of low-rank approximation was first established
by Goreinov and Tyrtyshnikov [4].

The remainder of the paper is structured as follows. In Section 2, we state the low-rank
approximation problem and prove a result on the best approximation error which generalizes
a result by Pinkus. In Section 3, we focus on the case of approximating a matrix by another
matrix of rank one less, where the best approximation error can be described quite closely and we
obtain an equioscillation result for the error matrix. In Section 4, we deal with approximations
of arbitrary rank and give lower and upper bounds for the best approximation error in terms of
certain submatrices of maximal volume. Finally, in Section 5, we illustrate some of our results
in the simple case of 2× 2-matrices, where we are also able to give a simple closed form for the
best approximation error.

2 Approximation with low-rank matrices

2.1 Problem statement
Let A ∈ Rm×n and p, q ∈ [1,∞]. We define the entrywise matrix norm

|A|p,q :=

 m∑
i=1

 n∑
j=1

|aij |q
p/q


1/p

,

where as usual p = ∞ or q = ∞ means the maximum norm in the corresponding direction.
The two most common special cases are the entrywise maximum (or Chebyshev) norm and the
Frobenius norm,

|A|max := |A|∞,∞ = max
i,j
|aij |, |A|F := |A|2,2 =

∑
i,j

a2ij

1/2

.

For vectors, we denote by ‖ · ‖p the usual `p-vector norm.

Definition 1. For p, q ∈ [1,∞] and k ∈ N0, we define the best approximation error

Ekp,q(A) := inf
rankG≤k

|A−G|p,q,

where G runs over all m× n matrices of rank at most k.

The only completely solved instance of the above best approximation problem is in the Frobe-
nius norm | · |F = | · |2,2 (and the spectral norm, which however does not fall into our class of
elementwise norms) [10, 3]. In this case, given the singular value decomposition

A = UΣV >, U ∈ Rm×K , Σ = diag(σ1, . . . , σK), V ∈ Rn×K ,

where K = rankA, both U and V have mutually orthonormal columns, and σ1 ≥ . . . ≥ σK > 0
are the singular values of A, the best approximation of rank k ≤ K is given by the truncated
singular value decomposition

Ak = U diag(σ1, . . . , σk, 0, . . . , 0)V >

and the best approximation error is given by

|A−Ak|2F = σ2
k+1 + . . .+ σ2

K .
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2.2 Characterization of the best approximation error
The following theorem yields an expression for the best low-rank approximation error in arbitrary
elementwise norms. Here and in what follows, for q ∈ [1,∞], we denote its Hölder conjugate by
q′ such that 1/q + 1/q′ = 1.

Theorem 1. Let A ∈ Rm×n with rows (ai)
m
i=1 be of rank n and p, q ∈ [1,∞]. Then the best

approximation error by a matrix of rank k ∈ {0, . . . , n} in the | · |p,q-norm is given by

Ekp,q(A) = inf
Un−k

∥∥∥∥∥∥∥
 max
h∈Un−k
‖h‖q′=1

|h · ai|


i=1,...,m

∥∥∥∥∥∥∥
p

,

where the infimum runs over all subspaces Un−k ⊂ Rn of dimension n− k.
For k = n− 1, we have

En−1p,q (A) = min
h6=0

‖Ah‖p
‖h‖q′

. (1)

Remark 1. The statement for the case k = n−1 of the above theorem is already given by Pinkus
in [8, Corollary 2.3]. However, whereas Pinkus arrived at this result via the theory of n-widths,
we give below a more direct proof which relies only on a fundamental result from approximation
theory and allows us to cover also the case k < n− 1. However, our approach does not yield the
result on n-widths which is also a part of [8, Corollary 2.3].

For the proof of Theorem 1, we make use of the following classical characterization of best
approximation by duality.

Theorem 2 ([12, 2]). Let (X, ‖ · ‖) a normed linear space and U ⊂ X a closed subspace. Then
u ∈ U is a best approximant in U to x ∈ X \ U if and only if there exists a

h ∈ U⊥ := {h ∈ X∗ : 〈h, u〉 = 0 ∀u ∈ U}

with the properties

‖h‖∗ = 1,

〈h, x− u〉 = ‖x− u‖.

Furthermore, the best approximation error is given by

inf
u∈U
‖x− u‖ = sup

h∈U⊥
‖h‖∗=1

〈h, x〉.

Here, X∗ denotes the continuous dual, ‖ · ‖∗ the dual norm and 〈·, ·〉 the duality product.
Applying this result to the space (Rn, ‖ · ‖p), p ∈ [1,∞], which has dual space (Rn, ‖ · ‖p′),

1/p+ 1/p′ = 1, we immediately obtain the following statements.

Corollary 1. For x ∈ Rn and Uk ⊂ Rn a k-dimensional subspace, let U⊥k ⊂ Rn denote the
orthogonal complement to Uk. Then

inf
u∈Uk

‖x− u‖p = max
h∈U⊥k
‖h‖p′=1

|h · x|. (2)

For x ∈ Rn and Un−1 ⊂ Rn a (n − 1)-dimensional subspace, let h ∈ Rn orthogonal to Un−1
with ‖h‖p′ = 1. Then

inf
u∈Un−1

‖x− u‖p = |h · x|. (3)
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By treating the low-rank matrix approximation problem as a simultaneous approximation
problem for the rows of the matrix, we obtain the following proof.

Proof of Theorem 1. The problem of rank k approximation is equivalent to finding a k-dimensional
subspace Uk ⊂ Rn and approximating each row in Uk with error

ei := inf
u∈Uk

‖ai − u‖q, i = 1, . . . ,m. (4)

The total error is then given by
‖(e1, . . . , em)‖p.

Thus the first statement follows by using the identity (2) to represent the errors (4).
For k = n− 1, we can identify each subspace Un−1 with a vector h ∈ Rn, ‖h‖q′ = 1, which is

orthogonal to Un−1. Thus, from (3) we obtain

En−1p,q (A) = min
‖h‖q′=1

‖(|h · ai|)i=1,...,m‖p .

Since the vector (h · ai)i=1,...,m is nothing but Ah, the second statement follows.

3 Approximation with rank reduced by one
Due to the simple form of the best approximation error (1) given in the case k = n − 1 in
Theorem 1, much more can be said for approximation of a matrix of rank n by one of rank at
most n− 1.

3.1 Description of the best approximation error
We introduce, for any square matrix B of size n, a quantity αp,q(B) which we will show to be
a lower bound for the best approximation error in the | · |p,q norm by a matrix of rank at most
n− 1. As we will see, in certain cases this quantity coincides with the best approximation error.

Definition 2. For any square matrix B ∈ Rn×n and any p, q ∈ [1,∞], we let

αp,q(B) :=


1

|B−1|p,q
, detB 6= 0,

0, detB = 0.

In the following, we let 〈n〉 := {1, . . . , n}. For a matrix A ∈ Rm×n and vectors of indices
I ⊂ 〈m〉, J ⊂ 〈n〉, we write AI,J ∈ R|I|×|J| for the submatrix of A formed by taking the rows
from the index vector I and the columns from the index vector J . We denote the set of all square
submatrices of A with size k by

Sk(A) := {AI,J : I ⊂ 〈m〉, J ⊂ 〈n〉, |I| = |J | = k}.

The rank of a nonzero matrix can be characterized as

rank(A) = max{k ∈ N : ∃Bk ∈ Sk(A) : detBk 6= 0}.

In addition to the entrywise matrix norms | · |p,q, we will also make use of the operator norms

‖A‖p,q := max
x6=0

‖Ax‖p
‖x‖q

= max
‖x‖q=1

‖Ax‖p.

The following simple lemma gives a relation between these two classes of norms. It is not
new, but we prove it here for the sake of completeness.
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Lemma 1. For any matrix B ∈ Rm×n and p, q ∈ [1,∞], we have

‖B‖q,p = max
‖x‖p=1

‖Bx‖q ≤ |B|q,p′ .

Proof. Assume ‖x‖p = 1. Using Hölder’s inequality, we estimate

‖Bx‖qq =

m∑
i=1

∣∣∣∣∣∣
n∑
j=1

Bijxj

∣∣∣∣∣∣
q

≤
m∑
i=1

 n∑
j=1

|Bijxj |

q

≤
m∑
i=1

(‖Bi∗‖p′‖x‖p)q =

m∑
i=1

‖Bi∗‖qp′ ,

where by Bi∗ we mean the i-th row of B. It follows

‖Bx‖q ≤

(
m∑
i=1

‖Bi∗‖qp′

)1/q

=

 m∑
i=1

 n∑
j=1

|Bij |p
′

q/p′


1/q

= |B|q,p′ .

Using the above lemma, we can now bound the best approximation error from below.

Lemma 2. For any square matrix A ∈ Rn×n and p, q ∈ [1,∞], we have

En−1p,q (A) ≥ αq′,p′(A). (5)

Proof. Due to Theorem 1, we have

En−1p,q (A) = min
x 6=0

‖Ax‖p
‖x‖q′

.

If A is singular, the statement is trivial. Hence let A be nonsingular. We have

min
x6=0

‖Ax‖p
‖x‖q′

= 1/max
x 6=0

‖x‖q′
‖Ax‖p

= 1/max
y 6=0

‖A−1y‖q′
‖y‖p

=
1

‖A−1‖q′,p
.

With Lemma 1, it follows that

min
x 6=0

‖Ax‖p
‖x‖q′

≥ 1

|A−1|q′,p′
,

which is the desired result.

Remark 2. For a special case of the above result, Pinkus [8, Theorem 2.5] has proved equality.
In particular, he shows that for A ∈ Rn×n of full rank, it holds that

En−11,1 (A) = 1/|A−1|∞,∞ = α∞,∞(A)

(where the second equality is merely a rewriting in our notation). What is more, he proves that
there exists a best rank n − 1 approximation which agrees with A on n − 1 rows and n − 1
columns. Note that this result only holds for the | · |1,1-norm and the approximation by a matrix
of rank n−1. In the case of uniform approximation, an additional condition is necessary for this
equality to hold, as we show below.

Definition 3. We say that a matrix B ∈ Rm×n has rank 1 sign pattern if there exist

σi, ρj ∈ {−1, 1}, i = 1, . . . ,m, j = 1, . . . , n,

such that
σiBijρj ≥ 0 ∀i = 1, . . . ,m, j = 1, . . . , n.

That is, B can be made nonnegative by flipping the sign of an arbitrary number of rows and
columns.
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For this class of matrices and the maximum norm, the inequality in Lemma 2 becomes an
equality, giving us a characterization of the best approximation error. This is the statement of
the following theorem. Here and in the sequel we write Ekmax for Ek∞,∞.

Theorem 3. For A ∈ Rn×n of full rank whose inverse has rank 1 sign pattern, we have

En−1max (A) = α1,1(A).

Proof. As in the proof of Lemma 2, we have

En−1max (A) = 1/‖A−1‖1,∞.

For convenience, denote B := A−1. Its norm is given by

‖B‖1,∞ = max
‖x‖∞=1

‖Bx‖1 = max
‖x‖∞=1

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

Bijxj

∣∣∣∣∣∣ . (6)

By assumption, we have σi, ρj ∈ {−1, 1} such that, for fixed i, the products Bijρj are either
nonnegative or nonpositive for all j. Therefore, the maximum in (6) is clearly attained for the
choice xj := ρj , and it follows

‖B‖1,∞ =

n∑
i=1

n∑
j=1

|Bij | = |B|1,1 = 1/α1,1(A).

Remark 3. By inspection of the proof, it becomes clear that A−1 having rank 1 sign pattern
is both a sufficient and a necessary condition for (5) to become an equality when using the
maximum norm.

3.2 Properties of the error matrix
We now derive some properties of the error matrix between A and its best approximation with
lower rank. For this, we first prove a characterization of minimizers of the type of expressions
appearing in (1).

Lemma 3. Let A ∈ Rn×n of full rank. Let p ∈ {1,∞} and q ∈ [1,∞]. There exists a minimizer
h∗ ∈ Rn for

min
h 6=0

‖Ah‖p
‖h‖q

with ‖h∗‖q = 1 and the following properties.

• For p = 1, it satisfies Ah∗ = ±cej for some j = 1, . . . , n, where c > 0 and ej denotes the
unit vector in the positive direction of the j-th coordinate axis.

• For p =∞, it satisfies Ah∗ = c(±1, . . . ,±1) for some c > 0.

Proof. Since
‖Ah‖p
‖h‖q

=

(
‖A−1(Ah)‖q
‖Ah‖p

)−1
,

the minimum for ‖Ah‖p‖h‖q is attained at h∗ ∈ Rn \ {0} if and only if the maximum for ‖A
−1g‖q
‖g‖p is

attained at g∗ = Ah∗. Therefore we can equivalently consider

max
‖g‖p≤1

‖A−1g‖q.
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We note that ‖A−1g‖q is a convex function of g for all q ∈ [1,∞]. Therefore, its maximum over
the bounded, convex polytope {‖g‖p ≤ 1} is attained at an extreme point of that polytope (see,
e.g., [9, Corollary 32.3.4]). Therefore, for p = 1, the maximizing argument has the form g∗ = ±ej
for some j = 1, . . . , n. For p =∞, it has the form g∗ = (±1, . . . ,±1) ∈ Rn. The minimum in the
original expression is attained at h∗ = A−1g∗, i.e.,

min
h6=0

‖Ah‖p
‖h‖q

=
‖g∗‖p
‖A−1g∗‖q

.

In both cases, the constant c is determined by c = 1/‖A−1g∗‖q.

Using the above lemma, we can now prove certain properties of the error matrices in best
low-rank approximation. In particular, for p = 1, the error is zero on n − 1 rows, whereas for
p = q = ∞, the error matrix equioscillates elementwise, that is, all of its entries have the same
modulus.

Theorem 4. Let A ∈ Rn×n of full rank. Let p ∈ {1,∞} and q ∈ [1,∞]. There exists a best
approximation matrix G ∈ Rn×n of rank n− 1 satisfying

En−1p,q (A) = |A−G|p,q

with the following properties.

• If p = 1, the matrix G agrees with A on n− 1 rows.

• If p =∞, the row-wise error is constant, i.e., for the rows ai and gi of A and G respectively,
it holds

‖ai − gi‖q = En−1∞,q (A) ∀i = 1, . . . , n. (7)

If in addition q =∞, then the error matrix equioscillates in the sense that

|aij − gij | = En−1∞,∞(A) ∀i, j = 1, . . . , n. (8)

Proof. Let h∗ ∈ Rn be a minimizer as described in Lemma 3 for

‖Ah‖p
‖h‖q′

.

Let G be the best approximation matrix constructed as in the proof of Theorem 1, where each row
gi is the best approximation to ai with respect to the norm ‖·‖q in Un−1 := {x ∈ Rn : x ·h∗ = 0}.
It was shown there that the vector of row-wise errors e ∈ Rn has the components

ei := ‖ai − gi‖q = |[Ah∗]i|, i = 1, . . . , n.

If p = 1, due to Lemma 3, the vector Ah∗ has exactly one non-zero component. This implies
that the error ei is zero in n− 1 rows, which proves the desired statement.

If p = ∞, due to Lemma 3, the components of the vector Ah∗ all have equal magnitude,
which shows that ei is constant, proving (7). If, in addition, q = ∞, recall that each row gi is
chosen as a minimizer of

min
gi∈Un−1

‖ai − gi‖∞.

Due to standard results on best uniform approximation in the linear space Un−1, (see, e.g., [12,
Chapter II, Theorem 1.3]), the error ai − gi equioscillates in the sense that

|aij − gij | = ‖ai − gi‖∞ = En−1∞,∞(A) ∀i, j = 1, . . . , n.

7



Remark 4. The case p = 1 of the above theorem was already proved by Pinkus [8, Proposition
2.4] by different means. Even more, for p = q = 1, he proved that there exists a best approxi-
mation matrix which agrees with A on n − 1 rows and n − 1 columns. The result for p = ∞ is
new.

4 Approximations with arbitrary rank
In the case where the difference in rank between A and its approximation is greater than one,
we cannot give an explicit characterization of the best approximation error; instead, we provide
lower and upper bounds. To this end, we first recall some results from the theory of skeleton
approximations.

4.1 Skeleton approximation
Recall that we denoted 〈n〉 := {1, . . . , n}. Given a matrix A ∈ Rm×n, assume we have row and
column indices I = (i1, . . . , ik) and J = (j1, . . . , jk) such that the submatrix Â := AI,J situated
on rows I and columns J is nonsingular. With the matrices

C := A〈m〉,J ∈ Rm×k, R := AI,〈n〉 ∈ Rk×n

containing k columns and rows of A, respectively, we can define a rank k approximation

CÂ−1R ∈ Rm×n

which agrees with A on the k rows I and the k columns J . If A has rank k, then A = CÂ−1R.
These facts are easily verified by the Schur complement factorization formulae (see, e.g., [7]). A
theoretical framework for skeleton and pseudo-skeleton approximation is given in [6].

We define, for i ∈ 〈m〉, j ∈ 〈n〉, the matrix

Ek(i, j) :=


Ai,j Ai,j1 . . . Ai,jk
Ai1,j Ai1,j1 . . . Ai1,jk
...

...
. . .

...
Aik,j Aik,j1 . . . Aik,jk

 ∈ R(k+1)×(k+1)

which contains Â in its lower right block. The following representation of the error matrix
resulting from skeleton approximation is the discrete version of an analogous identity for functions
given by Schneider [11].

Lemma 4. Let index vectors I and J be given and assume that AI,J is nonsingular. Then the
entries of the error matrix for the skeleton approximation

E = A−A〈m〉,J(AI,J)−1AI,〈n〉

are given by

Ei,j =
det Ek(i, j)

detAI,J
, i = 1, . . . ,m, j = 1, . . . , n.

Proof. By developing the determinant of Ek(i, j) along the first row and then the resulting de-
terminants along the first column, we obtain

det Ek(i, j) = Aij detAI,J −
k∑

α,β=1

(−1)α+β detB(α, β)Ai,jβAiα,j ,

8



where B(α, β) ∈ R(k−1)×(k−1) denotes the matrix AI,J with the α-th row and the β-th column
removed. Thus we obtain

det Ek(i, j)

detAI,J
= Aij −

k∑
α,β=1

Ai,jβ
(−1)α+β detB(α, β)

detAI,J
Aiα,j .

Since the entries of the inverse matrix are given by the well-known cofactor identity

[A−1I,J ]β,α =
(−1)α+β detB(α, β)

detAI,J
,

the statement follows.

4.2 Upper and lower bounds on the approximation error
Before we derive approximation error bounds, we need the simple result that submatrices can be
approximated at least as well as the whole matrix.

Lemma 5. Let A ∈ Rm×n. For any submatrix B of A, we have

Ekp,q(B) ≤ Ekp,q(A).

Proof. Let GA ∈ Rm×n be a matrix of rank at most k which realizes the best approximation
error to A. Such a matrix always exists since the set of matrices of rank at most k is closed. By
deleting the appropriate rows and columns from GA, we obtain a matrix GB which has the same
size as B and rank at most k. Clearly, Ekp,q(B) ≤ |B −GB |p,q ≤ |A−GA|p,q = Ekp,q(A).

The next result generalizes Lemma 2 to the case of approximation by matrices with arbitrary
rank.

Lemma 6. Let A ∈ Rm×n and p, q ∈ [1,∞]. Then

Ek−1p,q (A) ≥ max
B∈Sk(A)

αq′,p′(B).

Proof. For any submatrix B ∈ Sk(A), using Lemma 2 we have

Ek−1p,q (B) ≥ αq′,p′(B).

The statement then follows from Lemma 5.

Using Lemma 6, we can now prove a lower and upper bound for the best approximation
error with low rank matrices in the maximum norm. The quantity which we use in the lower
and upper bounds involves the maximally achievable modulus of determinants of submatrices of
certain sizes. Goreinov and Tyrtyshnikov [4] use such “maximal volumes” to derive some error
estimates for skeleton approximation of matrices. In the following, we follow their nomenclature
and call the modulus of the determinant the “volume” of a matrix.

Let

βk(A) :=
maxBk∈Sk(A) |detBk|

maxBk−1∈Sk−1(A) |detBk−1|
,

that is, the quotient of the maximal volumes obtainable in a size k and a size k − 1 submatrix,
respectively. If the denominator is zero, then so is the numerator and we set βk(A) := 0 in this
case. If k = 1, the denominator is considered to be 1 so that β1(A) = |A|max.

9



The following result is similar to one obtained by Babaev [1] in the continuous setting using
his technique of exact annihilators. It is possible to employ this proof technique also in our
discrete setting. However, we found that using the approximation result stated in Theorem 1
yields a much shorter proof.

Theorem 5. Let A ∈ Rm×n and k ≤ min{m,n} an integer. We have the bounds

1/k2βk(A) ≤ Ek−1max(A) ≤ βk(A).

Proof. We first prove the lower bound. Let Bk ∈ Sk(A) be of maximal volume. From Lemma 6
we have

Ek−1max(A) ≥ α1,1(Bk).

If Bk is singular, then A has rank at most k − 1 and the statement is trivial. Otherwise, using
the cofactor identity for the entries of B−1k , we obtain

α1,1(Bk) =
1

|B−1k |1,1
=

|detBk|∑
C∈Sk−1(Bk)

|detC|
≥ |detBk|
k2 maxC∈Sk−1(Bk) |detC|

≥ |detBk|
k2 maxBk−1∈Sk−1(A) |detBk−1|

= 1/k2βk(A).

To prove the upper bound, we let Bk−1 ∈ Sk−1(A) and Bk ∈ Sk(A) be of maximal volume.
We denote by I = (i1, . . . , ik−1) and J = (j1, . . . , jk−1) the rows and columns on which Bk−1 is
located within A, that is, Bk−1 = AI,J . We construct the skeleton approximation

Ak−1 = A〈m〉,J(Bk−1)−1AI,〈n〉 ∈ Rm×n,

which has rank at most k − 1. Therefore,

Ek−1max(A) ≤ |A−Ak−1|max.

Due to Lemma 4, the entries of the error matrix satisfy

|A−Ak−1|ij =
|det Ek−1(i, j)|
|detBk−1|

(9)

Since Ek−1(i, j) is a submatrix of size k × k of A and Bk is the maximal volume submatrix of
that size, we have

|det Ek−1(i, j)| ≤ |detBk|

and thus
|A−Ak−1|max ≤ βk(A), (10)

which finishes the proof.

Remark 5. The low-rank approximation Ak−1 used in the above proof is just the skeleton ap-
proximation where the skeleton component is chosen as the submatrix Bk−1 of maximal volume,
cf. [6]. Equation (10) thus also gives an error estimate for this approximation method, and by
combining it with the lower bound from Theorem 5 we obtain the quasi-optimality estimate
proven in [5],

|A−Ak−1|max ≤ k2Ek−1max(A).
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5 The case of 2× 2 matrices
We begin by considering some examples of different rank 1 approximation techniques in the case
of 2 × 2 matrices and observe that common techniques (cross approximation, approximation in
the space spanned by one column) do not generally yield best approximations in the maximum
norm. We then give a closed formula for the best uniform approximation error in this setting
and examine the sharpness of our error estimates.

Example 1. Let

A =

(
1 b
b 0

)
with b > 0. We study the maximum entrywise error of various rank 1 approximation strategies.

Approximation matching on one column and one row (Skeleton approximation).
By pivoting on the upper left or upper right matrix entry, respectively, we obtain the rank 1
skeleton approximations

C1 =

(
1 b
b b2

)
, C2 =

(
1 b
0 0

)
which have maximum errors

|A− C1|max = b2, |A− C2|max = b.

Pinkus [8] shows that in the | · |1,1-norm, there always exists a best approximation of this form,
i.e., matching in all but one entry. The same does not hold for the | · |max-norm.

Approximation matching on one column. By approximating the right column by a
scaled version of the left one or vice versa, we obtain the rank 1 approximations(

1 γ
b γb

)
,

(
γb b
0 0

)
, γ ∈ R,

with best achievable approximation errors using γ = b/(b+ 1) and γ = 1/b, respectively,

b2

b+ 1
< min{b2, b} and b.

Pinkus [8] shows that in the | · |p,1-norm for any p ∈ [1,∞], there always exists a best approxi-
mation matching on all but one column; our Theorem 4 makes the analogous statement for the
rows. No such best approximating matrix exists in the | · |max-norm.

Approximation by a constant matrix. By choosing the best possible constant d =
max(1, b)/2, we obtain the error∣∣∣∣A− (d d

d d

)∣∣∣∣
max

=
max(1, b)

2
.

Approximation by arbitrary rank 1 matrix. With the rank 1 matrix

G =
1

2b+ 1

(
b+ 1
b

)(
b+ 1 b

)
,

we obtain

|A−G|max =
b2

2b+ 1

11



which is better than all previous approximations. In fact, we have α1,1(A) = b2

2b+1 , and thus it
follows from Lemma 2 that G is the best rank 1 approximation in the | · |max-norm. The error
matrix

A−G =
b2

2b+ 1

(
−1 1
1 −1

)
equioscillates in the sense of Theorem 4.

We point out that an invertible 2×2 matrix, due to the way its inverse is formed, has a rank 1
sign pattern (in the sense of Definition 3) if and only if its inverse has a rank 1 sign pattern. Thus
A satisfies the assumptions of Theorem 3, which is another way to show that α1,1(A) = b2

2b+1 is
its best approximation error.

The following theorem gives a closed formula for the best uniform approximation error of a
2× 2 matrix by a rank 1 matrix.

Theorem 6. A nonsingular real matrix A =

(
a b
c d

)
has uniform best approximation error

E1
max(A) =

|detA|
max{|a+ c|+ |b+ d|, |a− c|+ |b− d|}

by a matrix of rank 1 or less.

Proof. From Theorem 1, we have

E1
max(A) = min

h 6=0

‖Ah‖∞
‖h‖1

.

As in the proof of Lemma 3, it follows that

E1
max(A) = min

g 6=0

‖g‖∞
‖A−1g‖1

=

(
max
g 6=0

‖A−1g‖1
‖g‖∞

)−1
and that the maximum is attained in one of the four corners of [−1, 1]2. Since

A−1 =
1

detA

(
d −b
−c a

)
,

the statement follows by considering the four cases

max
{
‖A−1 ( 1

1 ) ‖1, ‖A−1
(−1

1

)
‖1, ‖A−1

(
1
−1
)
‖1, ‖A−1

(−1
−1
)
‖1
}
,

of which the first and last as well as the second and third have identical values.

Since α1,1(A) = | detA|
|a|+|b|+|c|+|d| as one can compute directly, and recalling that an invertible

2× 2 matrix has a rank 1 sign pattern if and only if its inverse does, Theorem 6 illustrates that
the condition given in Definition 3 is both necessary and sufficient for the statement of Theorem 3
to hold, i.e., for the best approximation error to be equal to α1,1(A), in the 2 × 2 setting. The
following example illustrates a case where the rank 1 sign pattern condition does not hold and
therefore the inequality in Lemma 2 is strict, i.e., the best approximation error is strictly greater
than α1,1(A).

Example 2. Let A =

(
1 1
1 −1

)
. Then α1,1(A) = 1

2 . However, Theorem 6 shows that the best

rank 1 approximation G has |A−G|max = 1 (realized, for instance, by the zero matrix).
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Remark 6. For A =

(
a b
c d

)
of full rank, we have

E1
max(A) =

|detA|
max{|a+ c|+ |b+ d|, |a− c|+ |b− d|}

, β2(A) =
|detA|

max{|a|, |b|, |c|, |d|}
.

In Theorem 5, which holds for approximations with arbitrary ranks, we proved the lower and
upper bounds

1
4β2(A) ≤ E1

max(A) ≤ β2(A).

Without loss of generality, assume that a is the maximum entry of A in modulus. If the upper
bound in the above estimate were to be sharp, we would have

max{|a+ c|+ |b+ d|, |a− c|+ |b− d|} = |a|.

If c 6= 0, the above maximum is greater than |a|. If c = 0, the only way to achieve equality is by
setting b = d = 0, in which case A does not have full rank.

For the lower bound in Theorem 5 to be sharp, we would require

4|a| = max{|a+ c|+ |b+ d|, |a− c|+ |b− d|},

and by similar arguments, one easily sees that this cannot hold if A has full rank.
This shows that, in the case of 2 × 2 matrices of full rank, both the lower and the upper

bounds in Theorem 5 are never sharp, i.e., we have

1
4β2(A) < E1

max(A) < β2(A).
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