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An SQP method for mathematical programs with vanishing

constraints with strong convergence properties

Matúš Benko, Helmut Gfrerer∗

Abstract

We propose an SQP algorithm for mathematical programs with vanishing constraints
which solves at each iteration a quadratic program with linear vanishing constraints. The
algorithm is based on the newly developed concept of Q-stationarity [5]. We demonstrate
how QM -stationary solutions of the quadratic program can be obtained. We show that all
limit points of the sequence of iterates generated by the basic SQP method are at least M-
stationary and by some extension of the method we also guarantee the stronger property of
QM -stationarity of the limit points.

Key words: SQPmethod, mathematical programs with vanishing constraints, Q-stationarity,
QM -stationarity

AMS subject classifications: 49M37, 90C26, 90C55

1 Introduction

Consider the following mathematical program with vanishing constraints (MPVC)

min
x∈Rn

f(x)

subject to hi(x) = 0 i ∈ E,
gi(x) ≤ 0 i ∈ I,
Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0 i ∈ V,

(1)

with continuously differentiable functions f , hi, i ∈ E, gi, i ∈ I, Gi, Hi, i ∈ V and finite index sets
E, I and V .

Theoretically, MPVCs can be viewed as standard nonlinear optimization problems, but due to
the vanishing constraints, many of the standard constraint qualifications of nonlinear programming
are violated at any feasible point x̄ with Hi(x̄) = Gi(x̄) = 0 for some i ∈ V . On the other hand, by
introducing slack variables, MPVCs may be reformulated as so-called mathematical programs with
complementarity constraints (MPCCs), see [7]. However, this approach is also not satisfactory as
it has turned out that MPCCs are in fact even more difficult to handle than MPVCs. This
makes it necessary, both from a theoretical and numerical point of view, to consider special
tailored algorithms for solving MPVCs. Recent numerical methods follow different directions.
A smoothing-continuation method and a regularization approach for MPCCs are considered in
[6, 10] and a combination of these techniques, a smoothing-regularization approach for MPVCs is
investigated in [2]. In [8, 3] the relaxation method has been suggested in order to deal with the
inherent difficulties of MPVCs.

In this paper, we carry over a well known SQP method from nonlinear programming to MPVCs.
We proceed in a similar manner as in [4], where SQP method for MPCCs was introduced by Benko
and Gfrerer. The main task of our method is to solve in each iteration step a quadratic program
with linear vanishing constraints, so-called auxiliary problem. Then we compute the next iterate
by reducing a certain merit function along some polygonal line which is given by the solution
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procedure for the auxiliary problem. To solve the auxiliary problem we exploit the new concept of
QM -stationarity introduced in the recent paper by Benko and Gfrerer [5]. QM -stationarity is in
general stronger than M-stationarity and it turns out to be very suitable for a numerical approach
as it allows to handle the program with vanishing constraints without relying on enumeration
techniques. Surprisingly, we compute at least QM -stationary solution of the auxiliary problem
just by means of quadratic programming by solving appropriate convex subproblems.

Next we study the convergence of the SQP method. We show that every limit point of the
generated sequence is at least M-stationary. Moreover, we consider the extended version of our
SQP method, where at each iterate a correction of the iterate is made to prevent the method from
converging to undesired points. Consequently we show that under some additional assumptions
all limit points are at least QM -stationary. Numerical tests indicate that our method behaves very
reliably.

A short outline of this paper is as follows. In section 2 we recall the basic stationarity concepts
for MPVCs as well as the recently developed concepts of Q- and QM -stationarity. In section
3 we describe an algorithm based on quadratic programming for solving the auxiliary problem
occurring in every iteration of our SQP method. We prove the finiteness and summarize some
other properties of this algorithm. In section 4 we propose the basic SQP method. We describe how
the next iterate is computed by means of the solution of the auxiliary problem and we consider
the convergence of the overall algorithm. In section 5 we consider the extended version of the
overall algorithm and we discuss its convergence. Section 6 is a summary of numerical results we
obtained by implementing our basic algorithm in MATLAB and by testing it on a subset of test
problems considered in the thesis of Hoheisel [7].

In what follows we use the following notation. Given a set M we denote by P(M) :=
{(M1,M2) |M1 ∪ M2 = M, M1 ∩ M2 = ∅} the collection of all partitions of M . Further, for
a real number a we use the notation (a)+ := max(0, a), (a)− := min(0, a). For a vector u =
(u1, u2, . . . , um)T ∈ Rm we define |u|, (u)+, (u)− componentwise, i.e. |u| := (|u1|, |u2|, . . . , |um|)T ,
etc. Moreover, for u ∈ Rm and 1 ≤ p ≤ ∞ we denote the `p norm of u by ‖u‖p and we use
the notation ‖u‖ := ‖u‖2 for the standard `2 norm. Finally, given a sequence yk ∈ Rm, a point

y ∈ Rm and an infinite set K ⊂ N we write yk
K→ y instead of limk→∞,k∈K yk = y.

2 Stationary points for MPVCs

Given a point x̄ feasible for (1) we define the following index sets

Ig(x̄) := {i ∈ I | gi(x̄) = 0},
I0+(x̄) := {i ∈ V |Hi(x̄) = 0 < Gi(x̄)},
I0−(x̄) := {i ∈ V |Hi(x̄) = 0 > Gi(x̄)}, (2)

I+0(x̄) := {i ∈ V |Hi(x̄) > 0 = Gi(x̄)},
I00(x̄) := {i ∈ V |Hi(x̄) = 0 = Gi(x̄)},
I+−(x̄) := {i ∈ V |Hi(x̄) > 0 < Gi(x̄)}.

In contrast to nonlinear programming there exist a lot of stationarity concepts for MPVCs.

Definition 2.1. Let x̄ be feasible for (1). Then x̄ is called

1. weakly stationary, if there are multipliers λgi , i ∈ I, λhi , i ∈ E, λGi , λ
H
i , i ∈ V such that

∇f(x̄)T +
∑
i∈E

λhi∇hi(x̄)T +
∑
i∈I

λgi∇gi(x̄)T +
∑
i∈V

(
−λHi ∇Hi(x̄)T + λGi ∇Gi(x̄)T

)
= 0 (3)

and
λgi gi(x̄) = 0, i ∈ I, λHi Hi(x̄) = 0, i ∈ V, λGi Gi(x̄) = 0, i ∈ V,

λgi ≥ 0, i ∈ I, λHi ≥ 0, i ∈ I0−(x̄), λGi ≥ 0, i ∈ I00(x̄) ∪ I+0(x̄).
(4)
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2. M-stationary, if it is weakly stationary and

λHi λ
G
i = 0, i ∈ I00(x̄). (5)

3. Q-stationary with respect to (β1, β2), where (β1, β2) is a given partition of I00(x̄), if there

exist two multipliers λ = (λ
h
, λ
g
, λ
H
, λ
G

) and λ = (λh, λg, λH , λG), both fulfilling (3) and
(4), such that

λ
G

i = 0, λHi , λ
G
i ≥ 0, i ∈ β1; λ

H

i , λ
G

i ≥ 0, λGi = 0, i ∈ β2. (6)

4. Q-stationary, if there is some partition (β1, β2) ∈ P(I00(x̄)) such that x̄ is Q-stationary with
respect to (β1, β2).

5. QM -stationary, if it is Q-stationary and at least one of the multipliers λ and λ fulfills M-
stationarity condition (5).

6. S-stationary, if it is weakly stationary and

λHi ≥ 0, λGi = 0, i ∈ I00(x̄).

The concepts of Q-stationarity and QM -stationarity were introduced in the recent paper by
Benko and Gfrerer [5], whereas the other stationarity concepts are very common in the literature,
see e.g. [1, 7, 8]. The following implications hold:

S-stationarity⇒ Q-stationarity with respect to every (β1, β2) ∈ P(I00(x̄))⇒
Q-stationarity w.r.t. (∅, I00(x̄))⇒ QM -stationarity⇒ M-stationarity⇒ weak stationarity.

The first implication follows from the fact that the multiplier corresponding to S-stationarity fulfills
the requirements for both λ and λ. The third implication holds because for (β1, β2) = (∅, I00(x̄))
the multiplier λ fulfills (5) since λGi = 0 for i ∈ I00(x̄).

Note that the S-stationarity conditions are nothing else than the Karush-Kuhn-Tucker con-
ditions for the problem (1). As we will demonstrate in the next theorems, a local minimizer
is S-stationary only under some comparatively stronger constraint qualification, while it is QM -
stationary under very weak constraint qualifications. Before stating the theorems we recall some
common definitions.

Denoting

Fi(x) := (−Hi(x), Gi(x))T , i ∈ V, P := {(a, b) ∈ R− × R | ab ≥ 0}, (7)

F(x) := (h(x)T , g(x)T , F (x)T )T , D := {0}|E| × R|I|− × P |V |, (8)

we see that problem (1) can be rewritten as

min f(x) subject to x ∈ ΩV := {x ∈ Rn | F(x) ∈ D}.

Recall that the contingent (also tangent) cone to a closed set Ω ⊂ Rm at u ∈ Ω is defined by

TΩ(u) := {d ∈ Rm | ∃(dk)→ d,∃(τk) ↓ 0 : u+ τkdk ∈ Ω ∀k}.

The linearized cone to ΩV at x̄ ∈ ΩV is then defined as T lin
ΩV

(x̄) := {d ∈ Rn | ∇F(x̄)d ∈ TD(F(x̄))}.
Further recall that x̄ ∈ ΩV is called B-stationary if

∇f(x̄)d ≥ 0 ∀d ∈ TΩV (x̄).

Every local minimizer is known to be B-stationary.

Definition 2.2. Let x̄ be feasible for (1), i.e x̄ ∈ ΩV . We say that the generalized Guignard
constraint qualification (GGCQ) holds at x̄, if the polar cone of TΩV (x̄) equals the polar cone of
T lin

ΩV
(x̄).
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Theorem 2.1 (c.f. [5, Theorem 8]). Assume that GGCQ is fulfilled at the point x̄ ∈ ΩV . If x̄ is
B-stationary, then x̄ is Q-stationary for (1) with respect to every partition (β1, β2) ∈ P(I00(x̄))
and it is also QM -stationary.

Theorem 2.2 (c.f. [5, Theorem 8]). If x̄ is Q-stationary with respect to a partition (β1, β2) ∈
P(I00(x̄)), such that for every j ∈ β1 there exists some zj fulfilling

∇h(x̄)zj = 0,
∇gi(x̄)zj = 0, i ∈ Ig(x̄),
∇Gi(x̄)zj = 0, i ∈ I+0(x̄),

∇Gi(x̄)zj
{
≥ 0, i ∈ β1,
≤ 0, i ∈ β2,

∇Hi(x̄)zj = 0, i ∈ I0−(x̄) ∪ I00(x̄) ∪ I0+(x̄) \ {j},
∇Hj(x̄)zj = −1

(9)

and there is some z̄ such that

∇h(x̄)z̄ = 0,
∇gi(x̄)z̄ = 0, i ∈ Ig(x̄),
∇Gi(x̄)z̄ = 0, i ∈ I+0(x̄),

∇Gi(x̄)z̄

{
≥ 0, i ∈ β1,
≤ −1, i ∈ β2,

∇Hi(x̄)z̄ = 0, i ∈ I0−(x̄) ∪ I00(x̄) ∪ I0+(x̄),

(10)

then x̄ is S-stationary and consequently also B-stationary.

Note that these two theorems together also imply that a local minimizer x̄ ∈ ΩV is S-stationary
provided GGCQ is fulfilled at x̄ and there exists a partition (β1, β2) ∈ P(I00(x̄)), such that for
every j ∈ β1 there exists zj fulfilling (9) and z̄ fulfilling (10).

Moreover, note that (9) and (10) are fulfilled for every partition (β1, β2) ∈ P(I00(x̄)) e.g. if
the gradients of active constraints are linearly independent. On the other hand, in the special case
of partition (∅, I00(x̄)) ∈ P(I00(x̄)), this conditions read as the requirement that the system

∇h(x̄)z̄ = 0,
∇gi(x̄)z̄ = 0, i ∈ Ig(x̄),
∇Gi(x̄)z̄ = 0, i ∈ I+0(x̄),
∇Gi(x̄)z̄ ≤ −1, i ∈ I00(x̄),
∇Hi(x̄)z̄ = 0, i ∈ I0−(x̄) ∪ I00(x̄) ∪ I0+(x̄)

has a solution, which resembles the well-known Mangasarian-Fromovitz constraint qualification
(MFCQ) of nonlinear programming and it seems to be a rather weak and possibly often fulfilled
assumption.

Finally, we recall the definitions of normal cones. The regular normal cone to a closed set
Ω ⊂ Rm at u ∈ Ω can be defined as the polar cone to the tangent cone by

N̂Ω(u) := (TΩ(u))◦ = {z ∈ Rm | (z, d) ≤ 0 ∀d ∈ TΩ(u)}.

The limiting normal cone to a closed set Ω ⊂ Rm at u ∈ Ω is given by

NΩ(u) := {z ∈ Rm | ∃uk → u, zk → z with uk ∈ Ω, zk ∈ N̂Ω(uk)∀k}. (11)

In case when Ω is a convex set, regular and limiting normal cone coincide with the classical normal
cone of convex analysis, i.e.

N̂Ω(u) = NΩ(u) = {z ∈ Rm | (z, u− v) ≤ 0 ∀v ∈ Ω}. (12)

Well-known is also the following description of the limiting normal cone

NΩ(u) := {z ∈ Rm | ∃uk → u, zk → z with uk ∈ Ω, zk ∈ NΩ(uk)∀k}. (13)
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We conclude this section by the following characterization of M- and Q-stationarity via limiting
normal cone. Straightforward calculations yield that

NP (Fi(x̄)) =


R+ × {0} if i ∈ I0−(x̄),
R× {0} ∪ {0} × R+ if i ∈ I00(x̄),
R× {0} if i ∈ I0+(x̄),
{0} × R+ if i ∈ I+0(x̄),
{0} × {0} if i ∈ I+−(x̄),

NP 1(Fi(x̄)) = R× {0} if i ∈ I0+(x̄) ∪ I00(x̄) ∪ I0−(x̄),

NP 2(Fi(x̄)) =

{
R+ × R+ if i ∈ I00(x̄),
NP (Fi(x̄)) if i ∈ I0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄)

and hence the M-stationarity conditions (4) and (5) can be replaced by

(λh, λg, λH , λG) ∈ ND(F(x̄)) = R|E| × {u ∈ R|E|+ | (u, g(x̄)) = 0} ×NP |V |(F (x̄)) (14)

and the Q-stationarity conditions (4) and (6) can be replaced by

(λ
h
, λ
g
, λ
H
, λ
G

) ∈ R|E| × {u ∈ R|E|+ | (u, g(x̄)) = 0} ×
∏
i∈V

νβ
1,β2

i (x̄), (15)

(λh, λg, λH , λG) ∈ R|E| × {u ∈ R|E|+ | (u, g(x̄)) = 0} ×
∏
i∈V

νβ
2,β1

i (x̄), (16)

where for (β1, β2) ∈ P(I00(x̄)) we define

νβ
1,β2

i (x̄) :=

{
NP 1(Fi(x̄)) if i ∈ I0+(x̄) ∪ β1,
NP 2(Fi(x̄)) if i ∈ I0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄) ∪ β2.

Note also that for every i ∈ V we have

ν
I00(x̄),∅
i (x̄) ⊂ NP (Fi(x̄)). (17)

3 Solving the auxiliary problem

In this section, we describe an algorithm for solving quadratic problems with vanishing constraints
of the type

QPV C(ρ) min
(s,δ)∈Rn+1

1
2s
TBs+∇fs+ ρ( 1

2δ
2 + δ)

subject to (1− δ)hi +∇his = 0 i ∈ E,
(1− θgi δ)gi +∇gis ≤ 0 i ∈ I,
(1− θHi δ)Hi +∇His ≥ 0,(
(1− θGi δ)Gi +∇Gis

) (
(1− θHi δ)Hi +∇His

)
≤ 0 i ∈ V,

−δ ≤ 0.

(18)

Here the vector θ = (θg, θG, θH) ∈ {0, 1}|I|+2|V | =: B is chosen at the beginning of the algorithm
such that some feasible point is known in advance, e.g. (s, δ) = (0, 1). The parameter ρ has to be
chosen sufficiently large and acts like a penalty parameter forcing δ to be near zero at the solution.
B is a symmetric positive definite n× n matrix, ∇f , ∇hi, ∇gi, ∇Gi, ∇Hi denote row vectors in
Rn and hi, gi, Gi, Hi are real numbers. Note that this problem is a special case of problem (1) and
consequently the definition of Q− and QM− stationarity as well as the definition of index sets (2)
remain valid.

It turns out to be much more convenient to operate with a more general notation. Let us
denote by Fi := (−Hi, Gi)

T a vector in R2, by ∇Fi := (−∇HT
i ,∇GTi )T a 2-by-n matrix and by
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P 1 := {0} × R and P 2 := R2
− two subsets of R2. Note that for P given by (7) it holds that

P = P 1 ∪ P 2. The problem (18) can now be equivalently rewritten in a form

QPV C(ρ) min
(s,δ)∈Rn+1

1
2s
TBs+∇fs+ ρ( 1

2δ
2 + δ)

subject to (1− δ)hi +∇his = 0 i ∈ E,
(1− θgi δ)gi +∇gis ≤ 0 i ∈ I,
δ(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P i ∈ V,
−δ ≤ 0.

(19)

For a given feasible point (s, δ) for the problem QPV C(ρ) we define the following index sets

I1(s, δ) := {i ∈ V | δ(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 1 \ P 2} = I0+(s, δ),

I2(s, δ) := {i ∈ V | δ(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 2 \ P 1} = I+0(s, δ) ∪ I+−(s, δ),

I0(s, δ) := {i ∈ V | δ(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 1 ∩ P 2} = I0−(s, δ) ∪ I00(s, δ),

where the index sets I0+(s, δ), I+0(s, δ), I+−(s, δ), I0−(s, δ), I00(s, δ) are given by (2).
Further, consider the distance function d defined by

d(x,A) := inf
y∈A
‖x− y‖1,

for x ∈ R2 and A ⊂ R2. The following proposition summarizes some well-known properties of d.

Proposition 3.1. Let x ∈ R2 and A ⊂ R2.

1. Let B ⊂ R2, then
d(x,A ∪B) = min{d(x,A), d(x,B)}. (20)

In particular,

d(x, P 1) = (x1)+ + (−x1)+, d(x, P 2) = (x1)+ + (x2)+, d(x, P ) = (x1)+ + (min{−x1, x2})+.
(21)

2. d(·, A) : R2 → R+ is Lipschitz continuous with Lipschitz modulus L = 1 and consequently

d(x,A) ≤ d(x+ y,A) + ‖y‖1. (22)

3. d(·, A) : R2 → R+ is convex, provided A is convex.

Due to the disjunctive structure of the auxiliary problem we can subdivide it into several
QP-pieces. For every partition (V1, V2) ∈ P(V ) we define the convex quadratic problem

QP (ρ, V1) min
(s,δ)∈Rn+1

1
2s
TBs+∇fs+ ρ( 1

2δ
2 + δ)

subject to (1− δ)hi +∇his = 0 i ∈ E,
(1− θgi δ)gi +∇gis ≤ 0 i ∈ I,
δ(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 1 i ∈ V1,
δ(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 2 i ∈ V2,
−δ ≤ 0.

(23)

Since (V1, V2) form a partition of V it is sufficient to define V1 since V2 is given by V2 = V \ V1.
At the solution (s, δ) ofQP (ρ, V1) there is a corresponding multiplier λ(ρ, V1) = (λh, λg, λH , λG)

and a number λδ ≥ 0 with λδδ = 0 fulfilling the KKT conditions:

Bs+∇fT +
∑
i∈E

λhi∇hTi +
∑
i∈I

λgi∇g
T
i +

∑
i∈V
∇FTi λFi = 0, (24)

ρ(δ + 1)− λδ −
∑
i∈E

λhi hi −
∑
i∈I

λgi θ
g
i gi +

∑
i∈V

(θHi Hi,−θGi Gi)λFi = 0, (25)

λgi ((1− θ
g
i δ)gi +∇gis) = 0, λgi ≥ 0, i ∈ I, (26)

λFi ∈ NP 1(δ(θHi Hi,−θGi Gi)T + Fi +∇Fis), i ∈ V1, (27)

λFi ∈ NP 2(δ(θHi Hi,−θGi Gi)T + Fi +∇Fis), i ∈ V2, (28)
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where λFi := (λHi , λ
G
i )T for i ∈ V . Since P 1 and P 2 are convex sets, the above normal cones are

given by (12).
The definition of the problem QP (ρ, V1) allows the following interpretation of Q-stationarity,

which is a direct consequence of (15) and (16).

Lemma 3.1. A point (s, δ) is Q-stationary with respect to (β1, β2) ∈ P(I00(s, δ)) for (19) if and
only if it is the solution of the convex problems QP (ρ, I1(s, δ) ∪ β1) and QP (ρ, I1(s, δ) ∪ β2).

Moreover, since for V1 = I1(s, δ)∪I00(s, δ) the conditions (27),(28) read as λFi ∈ ν
I00(s,δ),∅
i (s, δ),

it follows from (17) that if a point (s, δ) is the solution of QP (ρ, I1(s, δ) ∪ I00(s, δ)) then it is M-
stationary for (19).

Finally, let us denote by δ̄(V1) the objective value at a solution of the problem

min
(s,δ)∈Rn+1

δ subject to the constraints of (23). (29)

An outline of the algorithm for solving QPV C(ρ) is as follows.

Algorithm 3.1 (Solving the QPVC).
Let ζ ∈ (0, 1), ρ̄ > 1 and ρ > 0 be given.

1: Initialize:
Set the starting point (s0, δ0) := (0, 1), define the vector θ by

θgi :=

{
1 if gi > 0,
0 if gi ≤ 0,

(θHi , θ
G
i ) :=

 (0, 0) if d(Fi, P ) = 0,
(1, 0) if 0 < d(Fi, P

1) ≤ d(Fi, P
2),

(0, 1) if 0 < d(Fi, P
2) < d(Fi, P

1)
(30)

and set the partition V 1
1 := I1(s0, δ0) and the counter of pieces t := 0.

Compute (s1, δ1) as the solution and λ1 as the corresponding multiplier
of the convex problem QP (ρ, V 1

1 ) and set t := 1.
If δ1 > δ0, perform a restart: set ρ := ρρ̄ and go to step 1.

2: Improvement step:
while (st, δt) is not a solution of the following four convex problems:

QP (ρ, V t1 ∩ (I1(st, δt) ∪ I00(st, δt))), QP (ρ, (I00(st, δt) \ V t1 ) ∪ I1(st, δt)), (31)

QP (ρ, I1(st, δt)), QP (ρ, I1(st, δt) ∪ I00(st, δt)). (32)

Compute (st+1, δt+1) as the solution and λt+1 as the corresponding multiplier
of the first problem with (st+1, δt+1) 6= (st, δt), set V t+1

1 to the
corresponding index set and increase the counter t of pieces by 1.

If δt > δt−1, perform a restart: set ρ := ρρ̄ and go to step 1.
3: Check the degeneracy:

If δt < ζ set N := t, stop the algorithm and return.
Else if the non-degeneracy condition

min{δ̄(I1(st, δt)), δ̄(I1(st, δt) ∪ I00(st, δt))} < ζ (33)

is fulfilled, perform a restart: set ρ := ρρ̄ and go to step 1.
Else stop the algorithm because of degeneracy.

We first summarize some consequences of the Initialization step.

Proposition 3.2. 1. Vector θ is chosen in a way that for all i ∈ V it holds that

‖(θHi Hi,−θGi Gi)T ‖1 = d(Fi, P ). (34)
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2. Partition (V 1
1 , V

1
2 ) is chosen in a way that for j = 1, 2 it holds that

i ∈ V 1
j implies d(Fi, P ) = d(Fi, P

j). (35)

Proof. 1. If d(Fi, P ) = 0 we have (θHi , θ
G
i ) = (0, 0) and (34) obviously holds. If 0 < d(Fi, P

1) ≤
d(Fi, P

2) we have (θHi , θ
G
i ) = (1, 0) and we obtain

‖(θHi Hi,−θGi Gi)T ‖1 = |Hi| = d(Fi, P
1) = d(Fi, P )

by (21) and (20). Finally, if 0 < d(Fi, P
2) < d(Fi, P

1) we have Hi < 0 < Gi, (θHi , θ
G
i ) = (0, 1)

and thus
‖(θHi Hi,−θGi Gi)T ‖1 = |Gi| = (Hi)

+ + (Gi)
+ = d(Fi, P

2) = d(Fi, P )

follows again by (21) and (20).
2. If (θHi Hi,−θGi Gi)T + Fi ∈ P j for some i ∈ V and j = 1, 2, by (22) and (34) we obtain

d(Fi, P
j) ≤ ‖(θHi Hi,−θGi Gi)T ‖1 = d(Fi, P )

and consequently d(Fi, P
j) = d(Fi, P ), because of (20). Hence we conclude that i ∈ (Ij(s0, δ0) ∪

I0(s0, δ0)) implies d(Fi, P
j) = d(Fi, P ) for j = 1, 2 and the statement now follows from the fact

that V 1
1 = I1(s0, δ0) and V 1

2 = I2(s0, δ0) ∪ I0(s0, δ0).

The following lemma plays a crucial part in proving the finiteness of the Algorithm 3.1.

Lemma 3.2. For each partition (V1, V2) ∈ P(V ) there exists a positive constant Cρ(V1) such that
for every ρ ≥ Cρ(V1) the solution (s, δ) of QP (ρ, V1) fulfills δ = δ̄(V1).

Proof. Let (s(V1), δ(V1)) denote a solution of (29). Since δ(V1) = δ̄(V1), it follows that the problem

min
s∈Rn

1
2s
TBs+∇fs

subject to (1− δ̄(V1))hi +∇his = 0 i ∈ E,
(1− θgi δ̄(V1))gi +∇gis ≤ 0 i ∈ I,
δ̄(V1)(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 1 i ∈ V1,
δ̄(V1)(θHi Hi,−θGi Gi)T + Fi +∇Fis ∈ P 2 i ∈ V2.

(36)

is feasible and by s̄(V1) we denote the solution of this problem and by λ̄(V1) the corresponding
multiplier. Further, (s̄(V1), δ̄(V1)) is a solution of (29) and by λ(V1) we denote the corresponding
multiplier.

Then, triple (s̄(V1), δ̄(V1)) and λ̄(V1) fulfills (24) and (26)-(28). Moreover, triple (s̄(V1), δ̄(V1))
and λ(V1) fulfills (26)-(28) and∑

i∈E
λ(V1)hi∇hTi +

∑
i∈I

λ(V1)gi∇g
T
i +

∑
i∈V
∇FTi λ(V1)Fi = 0, (37)

1− λδ −
∑
i∈E

λ(V1)hi hi −
∑
i∈I

λ(V1)gi θ
g
i gi +

∑
i∈V

(θHi Hi,−θGi Gi)λ(V1)Fi = 0. (38)

for some λδ ≥ 0 with λδ δ̄(V1) = 0.
Let Cρ(V1) be a positive constant such that for all ρ ≥ Cρ(V1) we have

α := ρ(δ̄(V1) + 1)−
∑
i∈E

λ̄(V1)hi hi −
∑
i∈I

λ̄(V1)gi θ
g
i gi +

∑
i∈V

(θHi Hi,−θGi Gi)T λ̄(V1)Fi ≥ 0

and set λ̃δ := αλδ ≥ 0 and λ̃ := λ̄(V1) + αλ(V1). We will now show that for such ρ it holds that
(s̄(V1), δ̄(V1)) is the solution of QP (ρ, V1).

Clearly, λ̃δ δ̄(V1) = αλδ δ̄(V1) = 0 and the triple (s̄(V1), δ̄(V1)) and λ̃ also fulfills (24) due to (37)
and it fulfills (26)-(28) due to the convexity of the normal cones. Moreover, taking into account
the definitions of α, λ̃δ and λ̃ together with (38), we obtain

ρ(δ̄(V1) + 1)− λ̃δ −
∑
i∈E

λ̃hi hi −
∑
i∈I

λ̃gi θ
g
i gi +

∑
i∈V

(θHi Hi,−θGi Gi)T λ̃Fi = α− αλδ − α(1− λδ) = 0,

showing also (25). Hence (s̄(V1), δ̄(V1)) is the solution of QP (ρ, V1) and the proof is complete.
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We now formulate the main theorem of this section.

Theorem 3.1. 1. Algorithm 3.1 is finite.

2. If the Algorithm 3.1 is not terminated because of degeneracy, then (sN , δN ) is QM -stationary
for the problem (19) and δN < ζ.

Proof. 1. The algorithm is obviously finite unless we perform a restart and hence increase ρ. Thus
we can assume that ρ is sufficiently large, say

ρ ≥ Cρ := max
(V1,V2)∈P(V )

Cρ(V1),

with Cρ(V1) given by the previous lemma. However this means, taking into account also Proposi-
tion 3.3 (1.), that (st−1, δt−1) is feasible for the problem QP (ρ, V t1 ) for all t, hence δt−1 ≥ δ̄(V t1 )
and (st, δt) is the solution of QP (ρ, V t1 ), implying δt = δ̄(V t1 ) and consequently δt ≤ δt−1. There-
fore we do not perform a restart in step 1 or step 2. On the other hand, since we enter step 3 with
δt = δ̄(I1(st, δt)) = δ̄(I1(st, δt) ∪ I00(st, δt)), we either terminate the algorithm with δt < ζ if the
non-degeneracy condition (33) is fulfilled or we terminate the algorithm because of degeneracy.
This finishes the proof.

2. The statement regarding stationarity follows easily from the fact that we enter step 3 of the
algorithm only when (s, δ) is a solution of problems (32) and this means that it is also Q-stationary
with respect to (∅, I00(sN , δN )) by Lemma 3.1. Thus, (s, δ) is also QM -stationary for problem
(19). The claim about δ follows from the assumption that the Algorithm 3.1 is not terminated
because of degeneracy.

We conclude this section with the following proposition that brings together the basic properties
of the Algorithm 3.1.

Proposition 3.3. If the Algorithm 3.1 is not terminated because of degeneracy, then the following
properties hold:

1. For all t = 1, . . . , N the points (st−1, δt−1) and (st, δt) are feasible for the problem QP (ρ, V t1 )
and the point (st, δt) is also the solution of the convex problem QP (ρ, V t1 ).

2. For all t = 1, . . . , N it holds that

0 ≤ δt ≤ δt−1 ≤ 1. (39)

3. There exists a constant Ct, dependent only on the number of constraints, such that

N ≤ Ct. (40)

Proof. 1. By definitions of the problems QPV C(ρ) and QP (ρ, V1) it follows that a point (s, δ),
feasible for QPV C(ρ), is feasible for QP (ρ, V1) if and only if

I1(s, δ) ⊂ V1 ⊂ I1(s, δ) ∪ I0(s, δ). (41)

The point (s0, δ0) is clearly feasible for QP (ρ, V 1
1 ) and hence as an induction hypothesis we assume

that (st−1, δt−1) is feasible for QP (ρ, V t1 ). But then (st, δt) is also feasible for QP (ρ, V t1 ) and
consequently also for QPV C(ρ) by its definition. Thus we obtain that (41) holds true with
(s, δ) = (st, δt) and V1 = V t1 and it remains to show that (41) also holds true with (s, δ) = (st, δt)
and V1 = V t+1

1 .
Since V t+1

1 is defined by one of the index sets of (31)-(32), in case V t+1
1 := V t1 ∩ (I1(s, δ) ∪

I00(s, δ)) we use (41) with (s, δ) = (st, δt) and V1 = V t1 to conclude that

I1(st, δt) ⊂ V t1 ∩ (I1(s, δ) ∪ I00(s, δ)) = V t+1
1 ⊂ V t1 ⊂ I1(st, δt) ∪ I0(st, δt)
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while in three remaining cases this follows directly. The induction now completes the argument.
Obviously (st, δt) is the solution of QP (ρ, V t1 ) by definition.
2. Statement follows from δ0 = 1, from the fact that we perform a restart whenever δt > δt−1

occurs and from the constraint −δ ≤ 0.
3. Since whenever the parameter ρ is increased the algorithm goes to the step 1 and thus the

counter t of the pieces is reset to 0, it follows that after the last time the algorithm enters step 1
we keep ρ constant. It is obvious that all the index sets V t1 are pairwise different implying that
the maximum of switches to a new piece is 2|V |.

4 The basic SQP algorithm for MPVC

An outline of the basic algorithm is as follows.

Algorithm 4.1 (Solving the MPVC).
1: Initialization:

Select a starting point x0 ∈ Rn together with a positive definite n× n matrix B0,
a parameter ρ0 > 0 and constants ζ ∈ (0, 1) and ρ̄ > 1.

Select positive penalty parameters σ−1 = (σh−1, σ
g
−1, σ

F
−1).

Set the iteration counter k := 0.
2: Solve the Auxiliary problem:

Run Algorithm 3.1 with data ζ, ρ̄, ρ := ρk, B := Bk,∇f := ∇f(xk),
hi := hi(xk),∇hi := ∇hi(xk), i ∈ E, etc.

If the Algorithm 3.1 stops because of degeneracy,
stop the Algorithm 4.1 with an error message.

If the final iterate sN is zero, stop the Algorithm 4.1 and return xk as a solution.
3: Next iterate:

Compute new penalty parameters σk.
Set xk+1 := xk + sk where sk is a point on the polygonal line connecting the points

s0, s1, . . . , sN such that an appropriate merit function depending on σk
is decreased.

Set ρk+1 := ρ, the final value of ρ in Algorithm 3.1.
Update Bk to get positive definite matrix Bk+1.
Set k := k + 1 and go to step 2.

Remark 4.1. We terminate the Algorithm 4.1 only in the following two cases. In the first case
no sufficient reduction of the violation of the constraints can be achieved. The second case will
be satisfied only by chance when the current iterate is a QM -stationary solution. Normally, this
algorithm produces an infinite sequence of iterates and we must include a stopping criterion for
convergence. Such a criterion could be that the violation of the constraints at some iterate is
sufficiently small,

max{max
i∈E
|hi(xk)|,max

i∈I
(gi(xk))+,max

i∈V
d(Fi(xk), P )} ≤ εC ,

where Fi is given by (7) and the expected decrease in our merit function is sufficiently small,

(sNkk )TBks
Nk
k ≤ ε1,

see Proposition 4.1 below.

4.1 The next iterate

Denote the outcome of Algorithm 3.1 at the k−th iterate by

(stk, δ
t
k), λtk, (V

t
1,k, V

t
2,k) for t = 0, . . . , Nk and θk, λ

Nk
k , λ

Nk
k .
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The new penalty parameters are computed by

σhi,k =

{
ξ2λ̃

h
i,k if σhi,k−1 < ξ1λ̃

h
i,k,

σhi,k−1 else,
σgi,k =

{
ξ2λ̃

g
i,k if σgi,k−1 < ξ1λ̃

g
i,k,

σgi,k−1 else,
(42)

σFi,k =

{
ξ2λ̃

F
i,k if σFi,k−1 < ξ1λ̃

F
i,k−1,

σFi,k−1 else,

where
λ̃hi,k = max |λh,ti,k |, λ̃gi,k = max |λg,ti,k|, λ̃Fi,k = max ‖λF,ti,k ‖∞, (43)

with maximum being taken over t ∈ {1, . . . , Nk}and 1 < ξ1 < ξ2. Note that this choice of σk
ensures

σhk ≥ λ̃hk , σ
g
k ≥ λ̃

g
k, σ

F
k ≥ λ̃Fk . (44)

4.1.1 The merit function

We are looking for the next iterate at the polygonal line connecting the points s0
k, s

1
k, . . . , s

Nk
k .

For each line segment [st−1
k , stk] := {(1 − α)st−1

k + αstk |α ∈ [0, 1]}, t = 1, . . . , Nk we consider the
functions

φtk(α) := f(xk + s) +
∑
i∈E

σhi,k|hi(xk + s)|+
∑
i∈I

σgi,k(gi(xk + s))+

+
∑
i∈V t1,k

σFi,kd(Fi(xk + s), P 1) +
∑
i∈V t2,k

σFi,kd(Fi(xk + s), P 2),

φ̂tk(α) := f +∇fs+
1

2
sTBks+

∑
i∈E

σhi,k|hi +∇his|+
∑
i∈I

σgi,k(gi +∇gis)+

+
∑
i∈V t1,k

σFi,kd(Fi +∇Fis, P 1) +
∑
i∈V t2,k

σFi,kd(Fi +∇Fis, P 2),

where s = (1 − α)st−1
k + αstk and f = f(xk), ∇f = ∇f(xk), hi = hi(xk),∇hi = ∇hi(xk), i ∈ E,

etc. and we further denote

rtk,0 := φ̂tk(0)− φ̂1
k(0), rtk,1 := φ̂tk(1)− φ̂1

k(0). (45)

Lemma 4.1. 1. For every t ∈ {1, . . . , Nk} the function φ̂tk is convex.

2. For every t ∈ {1, . . . , Nk} the function φ̂tk is a first order approximation of φtk, that is

|φtk(α)− φ̂tk(α)| = o(‖s‖),

where s = (1− α)st−1
k + αstk.

Proof. 1. By convexity of P 1 and P 2, φ̂tk is convex because it is sum of convex functions.
2. By Lipschitz continuity of distance function with Lipschitz modulus L = 1 we conclude

|φtk(α)− φ̂tk(α)| ≤ |f(xk + s)− f −∇fs− 1

2
sTBks|+

∑
i∈E

σhi,k|hi(xk + s)− hi −∇his|∑
i∈I

σgi,k|gi(xk + s)− gi −∇gis|+
∑
i∈V

σFi,k‖Fi(xk + s)− Fi −∇Fis‖1

and hence the assertion follows.

We state now the main result of this subsection. For the sake of simplicity we omit the iteration
index k in this part.
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Proposition 4.1. For every t ∈ {1, . . . , Nk}

φ̂t(0)− φ̂1(0) ≤ −
t−1∑
τ=1

1

2
(sτ − sτ−1)TB(sτ − sτ−1) ≤ 0, (46)

φ̂t(1)− φ̂1(0) ≤ −
t∑

τ=1

1

2
(sτ − sτ−1)TB(sτ − sτ−1) ≤ 0. (47)

Proof. Fix t ∈ {1, . . . , Nk} and note that

1/2(st)TBst +∇fst = 1/2(st)TBst +∇fst − 1/2(s0)TBs0 −∇fs0

=

t∑
τ=1

1/2(sτ )TBsτ − 1/2(sτ−1)TBsτ−1 +∇f(sτ − sτ−1),

because of s0 = 0. For j = 0, 1 consider rt+j1−j defined by (45). We obtain

rt+j1−j =

t∑
τ=1

(
1

2
(sτ )TBsτ − 1

2
(sτ−1)TBsτ−1 +∇f(sτ − sτ−1)

)
(48)

+
∑
i∈E

σhi
(
|hi +∇hist| − |hi|

)
+
∑
i∈I

σgi
(
(gi +∇gist)+ − (gi)

+
)

+
∑

i∈V t+j1

σFi d(Fi +∇Fist, P 1) +
∑

i∈V t+j2

σFi d(Fi +∇Fist, P 2)

−
∑
i∈V 1

1

σFi d(Fi, P
1)−

∑
i∈V 1

2

σFi d(Fi, P
2).

Using that sτ is the solution of QP (ρ, V τ1 ) and multiplying the first order optimality condition
(24) by (sτ − sτ−1)T yields

(sτ − sτ−1)T

(
Bsτ +∇fT +

∑
i∈E

λh,τi ∇h
T
i +

∑
i∈I

λg,τi ∇g
T
i +

∑
i∈V
∇FTi λ

F,τ
i

)
= 0. (49)

Summing up the expression on the left hand side from τ = 1 to t, subtracting it from the right
hand side of (48) and taking into account the identity

1/2(sτ )TBsτ − 1/2(sτ−1)TBsτ−1 − (sτ − sτ−1)TBsτ = −1/2(sτ − sτ−1)TB(sτ − sτ−1)

we obtain for j = 0, 1

rt+j1−j = −
t∑

τ=1

1

2
(sτ − sτ−1)TB(sτ − sτ−1) (50)

+
∑
i∈E

(
σhi (|hi +∇hist| − |hi|)−

t∑
τ=1

λh,τi ∇hi(s
τ − sτ−1)

)

+
∑
i∈I

(
σgi ((gi +∇gist)+ − (gi)

+)−
t∑

τ=1

λg,τi ∇gi(s
τ − sτ−1)

)
+
∑

i∈V t+j1

σFi d(Fi +∇Fist, P 1) +
∑

i∈V t+j2

σFi d(Fi +∇Fist, P 2)

−
∑
i∈V 1

1

σFi d(Fi, P
1)−

∑
i∈V 1

2

σFi d(Fi, P
2)−

∑
i∈V

t∑
τ=1

(λF,τi )T∇Fi(sτ − sτ−1).
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First, we claim that

−
∑
i∈V

t∑
τ=1

(λF,τi )T∇Fi(sτ − sτ−1) ≤
∑
i∈V

λ̃Fi (1− δt)d(Fi, P ). (51)

Consider i ∈ V and τ ∈ {1, . . . , t} with i ∈ V τ1 . By the feasibility of (sτ , δτ ) and (sτ−1, δτ−1) for
QP (ρ, V τ1 ) it follows that

δτ (θHi Hi,−θGi Gi)T + Fi +∇Fisτ ∈ P 1, δτ−1(θHi Hi,−θGi Gi)T + Fi +∇Fisτ−1 ∈ P 1

and hence from (27) and (12) we conclude

−(λF,τi )T
(
∇Fi(sτ − sτ−1) + (δτ − δτ−1)(θHi Hi,−θGi Gi)T

)
≤ 0

and consequently

−(λF,τi )T∇Fi(sτ − sτ−1) ≤ (λF,τi )T (δτ − δτ−1)(θHi Hi,−θGi Gi)T ≤ λ̃Fi (δτ−1 − δτ )d(Fi, P ) (52)

follows by the Hölder inequality and (34).
Analogous argumentation yields (52) also for i, τ with i ∈ V τ2 and since V τ1 , V

τ
2 form a partition

of V , the claimed inequality (51) follows.
Further, we claim that for j = 0, 1 it holds that∑

i∈V t+j1

σFi d(Fi +∇Fist, P 1) +
∑

i∈V t+j2

σFi d(Fi +∇Fist, P 2) ≤
∑
i∈V

σFi δ
td(Fi, P ). (53)

From feasibility of (st, δt) for either QP (ρ, V t1 ) or QP (ρ, V t+1
1 ) for i ∈ V t1 ∪ V t+1

1 it follows that

δt(θHi Hi,−θGi Gi)T + Fi +∇Fist ∈ P 1

and hence, using (34) and (22),

σFi d(Fi +∇Fist, P 1) ≤ σFi ‖δt(θHi Hi,−θGi Gi)T ‖1 = σFi δ
td(Fi, P ). (54)

Again, for i ∈ V t2 or i ∈ V t+1
2 it holds that σFi d(Fi +∇Fist, P 2) ≤ σFi δtd(Fi, P ) by analogous

argumentation and since V t1 , V
t
2 and V t+1

1 , V t+1
2 form a partition of V , the claimed inequality (53)

follows.
Finally, we have

−
∑
i∈V 1

1

σFi d(Fi, P
1)−

∑
i∈V 1

2

σFi d(Fi, P
2) = −

∑
i∈V

σFi d(Fi, P ), (55)

due to the fact that V 1
1 , V

1
2 form a partition of V and (35).

Similar arguments as above show

σhi (|hi +∇hist| − |hi|)−
t∑

τ=1

λh,τi ∇hi(s
τ − sτ−1) ≤ (σhi − λ̃hi )(δt − 1)|hi|, i ∈ E,

σgi ((gi +∇gist)+ − (gi)
+)−

t∑
τ=1

λg,τi ∇gi(s
τ − sτ−1) ≤ (σgi − λ̃

g
i )(δ

t − 1)(gi)
+, i ∈ I.

Taking this into account and putting together (50), (51), (53) and (55) we obtain for j = 0, 1

rt+j1−j ≤ −
t∑

τ=1

1

2
(sτ − sτ−1)TB(sτ − sτ−1)

−
∑
i∈V

(σFi − λ̃Fi )(1− δt)d(Fi, P )−
∑
i∈E

(σhi − λ̃hi )(1− δt)|hi| −
∑
i∈I

(σgi − λ̃
g
i )(1− δ

t)(gi)
+

and hence (46) and (47) follow by monotonicity of δ and (44). This completes the proof.
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4.1.2 Searching for the next iterate

We choose the next iterate as a point from the polygonal line connecting the points s0
k, . . . , s

Nk
k .

First we parametrize this line by its length as a curve ŝk : [0, 1] → Rn in the following way.
We define tk(1) := Nk, for every γ ∈ [0, 1) we denote by tk(γ) the smallest number t such that
Stk > γSNkk and we set αk(1) := 1,

αk(γ) :=
γSNkk − Stk(γ)−1

k

S
tk(γ)
k − Stk(γ)−1

k

, γ ∈ [0, 1),

where S0
k := 0, Stk :=

∑t
τ=1 ‖sτk − s

τ−1
k ‖ for t = 1, . . . , Nk. Then we define

ŝk(γ) = s
tk(γ)−1
k + αk(γ)(s

tk(γ)
k − stk(γ)−1

k ).

Note that ‖ŝk(γ)‖ ≤ γSNkk . Further for γ ∈ [0, 1] we consider the following line search functions

Yk(γ) := φ
tk(γ)
k (αk(γ)), Ŷk(γ) := φ̂

tk(γ)
k (αk(γ)),

Zk(γ) := (1− αk(γ))φ̂
tk(γ)
k (0) + αk(γ)φ̂

tk(γ)
k (1).

(56)

Now consider some sequence of positive numbers γk1 = 1, γk2 , γ
k
3 , . . . with 1 > γ̄ ≥ γkj+1/γ

k
j ≥

γ > 0 for all j ∈ N. Consider the smallest j, denoted by j(k) such that for some given constant
ξ ∈ (0, 1) one has

Yk(γkj )− Yk(0) ≤ ξ
(
Zk(γkj )− Zk(0)

)
. (57)

Then the new iterate is given by
xk+1 := xk + ŝk(γkj(k)).

The following relations are direct consequences of the properties of φtk and φ̂tk

|Yk(γ)− Ŷk(γ)| = o(γSNkk ), Ŷk(γ) ≤ Zk(γ), Zk(γ)− Zk(0) ≤ 0. (58)

The last property holds due to Proposition 4.1 and

Zk(γ)− Zk(0) = (1− αk(γ))r
tk(γ)
k,0 + αk(γ)r

tk(γ)
k,1 , (59)

which follows from αk(0) = 0, S
tk(0)−1
k = 0 and hence φ̂

tk(0)
k (0) = φ̂1

k(0). We recall that rtk,0 and

rtk,1 are defined by (45).

Lemma 4.2. The new iterate xk+1 is well defined.

Proof. In order to show that the new iterate is well defined, we have to prove the existence of

some j such that (57) is fulfilled. Note that S
tk(0)−1
k = 0 and S

tk(0)
k > 0. There is some δk > 0

such that |Yk(γ) − Ŷk(γ)| ≤ −(1−ξ)rtk(0)

k,1 γS
Nk
k

S
tk(0)

k

, whenever γSNkk ≤ δk. Since limj→∞ γkj = 0, we

can choose j sufficiently large to fulfill γkj S
Nk
k < min{δk, Stk(0)

k } and then tk(γkj ) = tk(0) and

αk(γkj ) = γkj S
Nk
k /S

tk(0)
k , since S

tk(0)−1
k = 0. This yields

Yk(γkj )− Ŷk(γkj ) ≤ −(1− ξ)αk(γkj )r
tk(γkj )

k,1 . (60)

Then by second property of (58), (59), taking into account r
tk(γkj )

k,0 ≤ 0 by Proposition 4.1 and
Yk(0) = Zk(0) we obtain

Yk(γkj )− Yk(0) ≤ Ŷk(γkj )− Yk(0)− (1− ξ)αk(γkj )r
tk(γkj )

k,1

≤ ξ(Zk(γkj )− Zk(0)) + (1− ξ)
(
Zk(γkj )− Zk(0)− αk(γkj )r

tk(γkj )

k,1

)
≤ ξ(Zk(γkj )− Zk(0)) + (1− ξ)(1− αk(γkj ))r

tk(γkj )

k,0 ≤ ξ(Zk(γkj )− Zk(0)).

Thus (57) is fulfilled for this j and the lemma is proved.
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4.2 Convergence of the basic algorithm

We consider the behavior of the Algorithm 4.1 when it does not prematurely stop and it generates
an infinite sequence of iterates

xk, Bk, (s
t
k, δ

t
k), λtk, (V

t
1,k, V

t
2,k), t = 0, . . . , Nk and θk, λ

Nk
k , λ

Nk
k .

Note that δNkk < ζ. We discuss the convergence behavior under the following assumption.

Assumption 1. 1. There exist constants Cx, Cs, Cλ such that

‖xk‖ ≤ Cx, SNkk ≤ Cs, λ̂hk , λ̂
g
k, λ̂

F
k ≤ Cλ

for all k, where λ̂hk := maxi∈E{λ̃hi,k}, λ̂
g
k := maxi∈I{λ̃gi,k}, λ̂Fk := maxi∈V {λ̃Fi,k}.

2. There exist constants C̄B ,CB such that CB ≤ λ(Bk), ‖Bk‖ ≤ C̄B for all k, where λ(Bk)
denotes the smallest eigenvalue of Bk.

For our convergence analysis we need one more merit function

Φk(x) := f(x) +
∑
i∈E

σhi,k|hi(x)|+
∑
i∈I

σgi,k(gi(x))+ +
∑
i∈V

σFi,kd(Fi(x), P ).

Lemma 4.3. For each k and for any γ ∈ [0, 1] it holds that

Φk(xk + ŝk(γ)) ≤ Yk(γ) and Φk(xk) = Yk(0). (61)

Proof. The first claim follows from the definitions of Φk and Yk and the estimate

d(Fi(xk+s), P 1), d(Fi(xk+s), P 2) ≥ min{d(Fi(xk+s), P 1), d(Fi(xk+s), P 2)} = d(Fi(xk+s), P ),

which holds by (20). The second claim follows from (35).

A simple consequence of the way that we define the penalty parameters in (42) is the following
lemma.

Lemma 4.4. Under Assumption 1 there exists some k̄ such that for all k ≥ k̄ the penalty param-
eters remain constant, σ̄ := σk and consequently Φk(x) = Φk̄(x).

Remark 4.2. Note that we do not use Φk for calculating the new iterate because its first order
approximation is in general not convex on the line segments connecting st−1

k and stk due to the
involved min operation.

Lemma 4.5. Assume that Assumption 1 is fulfilled. Then

lim
k→∞

Yk(γkj(k))− Yk(0) = 0. (62)

Proof. Take an existed k̄ from Lemma 4.4. Then we have for k ≥ k̄

Φk+1(xk+1) = Φk̄(xk+1) = Φk̄(xk + ŝk(γkj(k))) = Φk(xk + ŝk(γkj(k))) ≤ Yk(γkj(k)) < Yk(0) = Φk(xk)

and therefore Φk+1(xk+1) − Φk(xk) ≤ Yk(γkj(k)) − Yk(0) < 0. Hence the sequence Φk(xk) is
monotonically decreasing and therefore convergent, because it is bounded below by Assumption
1. Hence

−∞ < lim
k→∞

Φk(xk)− Φk̄(xk̄) =

∞∑
k=k̄

(Φk+1(xk+1)− Φk(xk)) ≤
∞∑
k=k̄

(Yk(γkj(k))− Yk(0))

and the assertion follows.
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Proposition 4.2. Assume that Assumption 1 is fulfilled. Then

lim
k→∞

Ŷk(1)− Ŷk(0) = 0 (63)

and consequently
lim
k→∞

‖sNkk ‖ = 0. (64)

Proof. We prove (63) by contraposition. Assuming on the contrary that (63) does not hold,
by taking into account Ŷk(1) − Ŷk(0) ≤ 0 by Proposition 4.1, there exists a subsequence K =
{k1, k2, . . .} such that Ŷk(1) − Ŷk(0) ≤ r̄ < 0. By passing to a subsequence we can assume that
for all k ∈ K we have k ≥ k̄ with k̄ given by Lemma 4.4 and Nk = N̄ , where we have taken into
account (40). By passing to a subsequence once more we can also assume that

lim
k
K→∞

Stk = S̄t, lim
k
K→∞

rtk,1 = r̄t1, lim
k
K→∞

rtk,0 = r̄t0, ∀t ∈ {1, . . . , N̄},

where rtk,1 and rtk,0 are defined by (45). Note that r̄N̄1 ≤ r̄ < 0.

Let us first consider the case S̄N̄ = 0. There exists δ > 0 such that |Yk(γ) − Ŷk(γ)| ≤ (ξ −
1)r̄N̄1 γS

N̄
k ∀k ∈ K, whenever γSN̄k ≤ δ. Since S̄N̄ = 0 we can assume that SN̄k ≤ min{δ, 1/2} ∀k ∈

K. Then

Yk(1)− Yk(0) ≤ rN̄k,1 + (ξ − 1)r̄N̄1 S
N̄
k ≤ rN̄k,1 + (ξ − 1)rN̄k,1 = ξrN̄k,1 = ξ(Zk(1)− Zk(0)) ≤ ξr̄N̄1

2
< 0

and this implies that for the next iterate we have j(k) = 1 and hence γkj(k) = 1, contradicting (62).

Now consider the case S̄N 6= 0 and let us define the number τ̄ := max{t | S̄t = 0} + 1. Note
that Proposition 4.1 yields

rtk,1, r
t+1
k,0 ≤ −

λ(Bk)

2

t∑
τ=1

‖sτk − sτ−1
k ‖2 ≤ −CB

2

1

t

(
t∑

τ=1

‖sτk − sτ−1
k ‖

)2

= −CB
2

1

t
(Stk)2 (65)

and therefore r̃ := maxt>τ̄ r̄
t < 0, where r̄t := max{r̄t0, r̄t1}. By passing to a subsequence we can

assume that for every t > τ̄ and every k ∈ K we have rtk,0, r
t
k,1 ≤ r̄t

2 .

Now assume that for infinitely many k ∈ K we have γkj(k)S
N̄
k ≥ S τ̄k , i.e. tk(γkj(k)) > τ̄ . Then

we conclude

Yk(γkj(k))−Yk(0) ≤ ξ(Zk(γkj(k))−Zk(0)) = ξ

(
(1− αk(γkj(k)))r

tk(γkj(k))

k,0 + αk(γkj(k))r
tk(γkj(k))

k,1

)
≤ ξr̃

2
< 0

contradicting (62). Hence for all but finitely many k ∈ K, without loss of generality for all k ∈ K,
we have γkj(k)S

N̄
k < S τ̄k .

There exists δ > 0 such that

|Yk(γ)− Ŷk(γ)| ≤
|r̄τ̄ |(1− ξ)γγSN̄k

8S τ̄
∀k ∈ K, (66)

whenever γSN̄k ≤ δ. By eventually choosing δ smaller we can assume δ ≤ S τ̄/2 and by passing to
a subsequence if necessary we can also assume that for all k ∈ K we have

2S τ̄−1
k /γ ≤ δ < S τ̄k ≤ 2S τ̄ . (67)

Now let for each k the index j̃(k) denote the smallest j with γjS
N̄
k ≤ δ. It obviously holds that

γk
j̃(k)−1

SN̄k > δ and by (67) we obtain

S τ̄−1
k ≤ γδ ≤ γγk

j̃(k)−1
SN̄k ≤ γkj̃(k)

SN̄k ≤ δ < S τ̄k
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implying tk(γk
j̃(k)

) = τ̄ and

αk(γk
j̃(k)

) ≥
γδ − S τ̄−1

k

S τ̄k − S
τ̄−1
k

≥
γδ

4S τ̄

by (67).
Taking this into account together with (66) and γk

j̃(k)
SN̄k ≤ δ we conclude

Yk(γk
j̃(k)

)− Ŷk(γk
j̃(k)

) ≤
|r̄τ̄ |(1− ξ)γγk

j̃(k)
SN̄k

8S τ̄
≤ −(1− ξ)

γδ

4S τ̄
rτ̄k,1 ≤ −(1− ξ)αk(γk

j̃(k)
)r
tk(γk

j̃(k)
)

k,1 .

Now we can proceed as in the proof of Lemma 4.2 to show that j̃(k) fulfills (57).
However, this yields j̃(k) ≥ j(k) by definition of j(k) and hence γkj(k)S

N̄
k ≥ γk

j̃(k)
SN̄k ≥ S τ̄−1

k

showing tk(γkj(k)) = tk(γk
j̃(k)

) = τ̄ . But then we also have αk(γkj(k)) ≥ αk(γk
j̃(k)

) ≥ γδ

4S̄τ̄
and from

(57) we obtain

Yk(γkj(k))− Yk(0) ≤ ξ(Zk(γkj(k))− Zk(0)) ≤ ξαk(γkj(k))r
tk(γkj(k))

k,1 ≤
ξγδr̃

8S̄ τ̄
< 0

contradicting (62) and so (63) is proved. Condition (64) now follows from (63) because we conclude

from (65) that Ŷk(1)− Ŷk(0) ≤ −CB

2
1
Nk

(SNkk )2 ≤ −CB

2
1
Nk
‖sNkk ‖2.

Now we are ready to state the main result of this section.

Theorem 4.1. Let Assumption 1 be fulfilled. Then every limit point of the sequence of iterates
xk is at least M-stationary for problem (1).

Proof. Let x̄ denote a limit point of the sequence xk and let K denote a subsequence such that
lim

k
K→∞

xk = x̄. Further let λ be a limit point of the bounded sequence λNkk and assume without

loss of generality that lim
k
K→∞

λNkk = λ. First we show feasibility of x̄ for the problem (1) together

with
λgi ≥ 0 = λgi gi(x̄), i ∈ I and (λH , λG) ∈ NP |V |(F (x̄)). (68)

Consider i ∈ I. For all k it holds that

0 ≥
(

(1− θgi,kδ
Nk
k )gi(xk) +∇gi(xk)sNkk

)
⊥ λg,Nki,k ≥ 0.

Since 0 ≤ δNkk ≤ ζ, θgi,k ∈ {0, 1} we have 1 ≥ (1− θgi,kδ
Nk
k ) ≥ 1− ζ and together with sNkk → 0 by

Proposition 4.2 we conclude

0 ≥ lim sup

k
K→∞

(
gi(xk) +

∇gi(xk)sNkk
(1− θgi,kδ

Nk
k )

)
= gi(x̄),

λgi ≥ 0 and

0 = lim
k
K→∞

λg,Nki,k

(
gi(xk) +

∇gi(xk)sNkk
(1− θgi,kδ

Nk
k )

)
= λgi gi(x̄).

Hence λgi ≥ 0 = λgi gi(x̄). Similar arguments show that for every i ∈ E we have

0 = lim
k
K→∞

(
hi(xk) +

∇hi(xk)sNkk
(1− δNkk )

)
= hi(x̄).

Finally consider i ∈ V . Taking into account (22), (34) and δNkk ≤ ζ we obtain

d(Fi(xk), P ) ≤ ‖δNkk (θHi,kHi(xk),−θGi,kGi(xk))T +∇Fi(xk)sNkk ‖1
≤ ζd(Fi(xk), P ) + ‖∇Fi(xk)sNkk ‖1.
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Hence, ∇Fi(xk)sNkk → 0 by Proposition 4.2 implies

(1− ζ)d(Fi(x̄), P ) = lim
k
K→∞

(1− ζ)d(Fi(xk), P ) ≤ lim
k
K→∞
‖∇Fi(xk)sNkk ‖1 = 0,

showing the feasibility of x̄. Moreover, the previous arguments also imply

F̃i(xk, s
Nk
k , δNkk ) := δNkk (θHi,kHi(xk),−θGi,kGi(xk))T + Fi(xk) +∇Fi(xk)sNkk

K→Fi(x̄). (69)

Taking into account (14), the fact that λNkk fulfills M-stationarity conditions at (sNkk , δNkk ) for
(19) yields

(λH,Nkk , λG,Nkk ) ∈ NP |V |(F̃ (xk, s
Nk
k , δNkk )).

However, this together with (λH,Nkk , λG,Nkk )
K→(λH , λG), (69), and (13) yield (λH , λG) ∈ NP |V |(F (x̄))

and consequently (68) follows.
Moreover, by first order optimality condition we have

Bks
Nk
k +∇f(xk)T +

∑
i∈E

λh,Nki,k ∇hi(xk)T +
∑
i∈I

λg,Nki,k ∇gi(xk)T +
∑
i∈V
∇Fi(xk)TλF,Nki,k = 0

for each k and by passing to a limit and by taking into account that Bks
Nk
k → 0 by Proposition

4.2 we obtain

∇f(x̄)T +
∑
i∈E

λhi∇hi(x̄)T +
∑
i∈I

λgi∇gi(x̄)T +
∑
i∈V
∇Fi(x̄)TλFi = 0.

Hence, invoking (14) again, this together with the feasibility of x̄ and (68) implies M-stationarity
of x̄ and the proof is complete.

5 The extended SQP algorithm for MPVC

In this section we investigate what can be done in order to secure QM -stationarity of the limit
points. First, note that to prove M-stationarity of the limit points in Theorem 4.1 we only used that
(λH,Nkk , λG,Nkk ) ∈ NP |V |(F̃ (xk, s

Nk
k , δNkk )), i.e. it is sufficient to exploit only the M-stationarity of

the solutions of auxiliary problems. Further, recalling the comments after Lemma 3.1, the solution
(s, δ) of QP (ρ, I1(s, δ) ∪ I00(s, δ)) is M-stationary for the auxiliary problem. Thus, in Algorithm
3.1 for solving the auxiliary problem, it is sufficient to consider only the last problem of the four
problems (31),(32). Moreover, definition of limiting normal cone (11) reveals that, in general, the
limiting process abolishes any stationarity stronger that M-stationarity, even S-stationarity.

Nevertheless, in practical situations it is likely that some assumption, securing that a stronger
stationarity will be preserved in the limiting process, may be fulfilled. E.g., let x̄ be a limit point
of xk. If we assume that for all k sufficiently large it holds that I00(x̄) = I00(sNkk , δNkk ), then x̄
is at least QM -stationary for (1). This follows easily, since now for all i ∈ I00(x̄) it holds that

λG,Nki,k = 0, λ
H,Nk
i,k , λ

G,Nk
i,k ≥ 0 and consequently

λGi = lim
k→∞

λG,Nki,k = 0, λ
H

i = lim
k→∞

λ
H,Nk
i,k ≥ 0, λ

G

i = lim
k→∞

λ
G,Nk
i,k ≥ 0.

This observation suggests that to obtain a stronger stationarity of a limit point, the key is to
correctly identify the bi-active index set at the limit point and it serves as a motivation for the
extended version of our SQP method. Before we can discuss the extended version, we summarize
some preliminary results.
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5.1 Preliminary results

Let a : Rn → Rp and b : Rn → Rq be continuously differentiable. Given a vector x ∈ Rn we define
the linear problem

LP (x) min
d∈Rn

∇f(x)d

subject to ∇a(x)d = 0,
(b(x))− +∇b(x)d ≤ 0,
−1 ≤ d ≤ 1.

(70)

Note that d = 0 is always feasible for this problem. Next we define a set A by

A := {x ∈ Rn | a(x) = 0, b(x) ≤ 0}. (71)

Let x̄ ∈ A and recall that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at
x̄ if the matrix ∇a(x̄) has full row rank and there exists a vector d ∈ Rn such that

∇a(x̄)d = 0, ∇bi(x̄)d < 0, i ∈ I(x̄) := {i ∈ {1, . . . , q} | bi(x̄) = 0}.

Moreover, for a matrix M we denote by ‖M‖p the norm given by

‖M‖p := sup{‖Mu‖p | ‖u‖∞ ≤ 1} (72)

and we also omit the index p in case p = 2.

Lemma 5.1. Let x̄ ∈ A, let assume that MFCQ holds at x̄ and let d̄ denote the solution of LP (x̄).
Then for every ε > 0 there exists δ > 0 such that if ‖x− x̄‖ ≤ δ then

∇f(x)d ≤ ∇f(x̄)d̄+ ε, (73)

where d denotes the solution of LP (x).

Proof. The classical Robinson’s result (c.f. [9, Corollary 1, Theorem 3]), together with MFCQ at
x̄, yield the existence of κ > 0 and δ̃ > 0 such that for every x with ‖x − x̄‖ ≤ δ̃ there exists d̃,
feasible for LP (x) and fulfilling

‖d̄− d̃‖ ≤ κmax{‖∇a(x)d̄‖, ‖((b(x))− +∇b(x)d̄)+‖}.

Thus, taking into account ∇a(x̄)d̄ = 0, (b(x̄))− +∇b(x̄)d̄ ≤ 0 and ‖d̄‖∞ ≤ 1, we obtain

‖d̄− d̃‖ ≤ κmax{‖∇a(x)−∇a(x̄)‖, ‖b(x)− b(x̄)‖+ ‖∇b(x)−∇b(x̄)‖}.

Hence, given ε > 0, by continuity of objective and constraint functions as well as their derivatives
at x̄ we can define δ ≤ δ̃ such that for all x with ‖x− x̄‖ ≤ δ it holds that

‖∇f(x)−∇f(x̄)‖1 ≤ ε/2 and ‖d̄− d̃‖ ≤ ε

2‖∇f(x)‖
.

Consequently, we obtain

∇f(x)d̃ ≤ ‖∇f(x)‖‖d̃− d̄‖+ ‖∇f(x)−∇f(x̄)‖1‖d̄‖∞ +∇f(x̄)d̄ ≤ ∇f(x̄)d̄+ ε

and since ∇f(x)d ≤ ∇f(x)d̃ by feasibility of d̃ for LP (x), the claim is proved.

Lemma 5.2. Let ν ∈ (0, 1) be a given constant and for a vector of positive parameters ω = (ωE , ωI)
let us define the following function

ϕ(x) := f(x) +
∑

i∈{1,...,p}

ωEi |ai(x)|+
∑

i∈{1,...,q}

ωIi (bi(x))+. (74)

Further assume that there exist ε > 0 and a compact set C such that for all x ∈ C it holds that
∇f(x)d ≤ −ε, where d denotes the solution of LP (x). Then there exists α̃ > 0 such that

ϕ(x+ αd)− ϕ(x) ≤ να∇f(x)d (75)

holds for all x ∈ C and every α ∈ [0, α̃].
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Proof. Definition of ϕ, together with u+ − v+ ≤ (u− v+)+ for u, v ∈ R, yield

ϕ(x+αd)−ϕ(x) ≤ f(x+αd)−f(x)+‖ω‖∞(‖a(x+αd)−a(x)‖1 +‖(b(x+αd)−b(x)+)+‖1). (76)

By uniform continuity of the derivatives of constraint functions and objective function on compact
sets, it follows that there exists α̃ > 0 such that for all x ∈ C and every h with ‖h‖∞ ≤ α̃ we have

‖∇f(x+ h)−∇f(x)‖1, ‖ω‖∞(‖∇a(x+ h)−∇a(x)‖1 + ‖∇b(x+ h)−∇b(x)‖1) ≤ 1− ν
2

ε. (77)

Hence, for all x ∈ C and every α ∈ [0, α̃] we obtain

f(x+ αd)− f(x) = να∇f(x)d+ (1− ν)α∇f(x)d+

∫ 1

0

(∇f(x+ tαd)−∇f(x))αddt

≤ να∇f(x)d− (1− ν)αε+
1− ν

2
αε = να∇f(x)d− 1− ν

2
αε.

On the other hand, taking into account ∇a(x)d = 0, ‖d‖∞ ≤ 1, (77) and

(b(x))− + α∇b(x)d = (1− α)(b(x))− + α((b(x))− +∇b(x)d) ≤ 0

we similarly obtain for all x ∈ C and every α ∈ [0, α̃]

‖ω‖∞(‖a(x+ αd)− a(x)‖1 + ‖(b(x+ αd)− b(x)+)+‖1)

≤ ‖ω‖∞
(
‖

1

∫
0
(∇a(x+ tαd)−∇a(x))αddt‖1 + ‖

1

∫
0
(∇b(x+ tαd)−∇b(x))αddt‖1

)
≤ 1− ν

2
αε.

Consequently, (75) follows from (76) and the proof is complete.

5.2 The extended version of Algorithm 4.1

For every vector x ∈ Rn and every partition (W1,W2) ∈ P(V ) we define the linear problem

LP (x,W1) min
d∈Rn

∇f(x)d

subject to ∇hi(x)d = 0 i ∈ E,
(gi(x))− +∇gi(x)d ≤ 0 i ∈ I,

∇Fi(x)d ∈ P 1 i ∈W1,
(Fi(x))− +∇Fi(x)d ∈ P 2 i ∈W2,
−1 ≤ d ≤ 1.

(78)

Note that d = 0 is always feasible for this problem and that the problem LP (x,W1) coincides with
the problem LP (x) with a, b given by

a := (hi(x), i ∈ E,−Hi(x), i ∈W1)T , b := (gi(x), i ∈ I,−Hi(x), i ∈W2, Gi(x), i ∈W2)T . (79)

The following proposition provides the motivation for introducing the problem LP (x,W1).

Proposition 5.1. Let x̄ be feasible for (1). Then x̄ is Q-stationary with respect to (β1, β2) ∈
P(I00(x̄)) if and only if the solutions d̄1 and d̄2 of the problems LP (x̄, I0+(x̄)∪β1) and LP (x̄, I0+(x̄)∪
β2) fulfill

min{∇f(x̄)d̄1,∇f(x̄)d̄2} = 0. (80)

Proof. Feasibility of d = 0 for LP (x̄, I0+(x̄) ∪ β1) and LP (x̄, I0+(x̄) ∪ β2) implies

min{∇f(x̄)d̄1,∇f(x̄)d̄2} ≤ 0.

Denote by d̃1 and d̃2 the solutions of LP (x̄, I0+(x̄) ∪ β1) and LP (x̄, I0+(x̄) ∪ β2) without the

constraint −1 ≤ d ≤ 1, and denote these problems by L̃P
1

and L̃P
2
. Clearly, we have

min{∇f(x̄)d̃1,∇f(x̄)d̃2} ≤ min{∇f(x̄)d̄1,∇f(x̄)d̄2}.
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The dual problem of L̃P
j

for j = 1, 2 is given by

max
λ∈Rm

−
∑
i∈I λ

g
i (gi(x̄))− −

∑
i∈W j

2

(
λHi (−Hi(x̄))− + λGi (Gi(x̄))−

)
subject to (3) and λgi ≥ 0, i ∈ I, λHi , λGi ≥ 0, i ∈W j

2 , λ
G
i = 0, i ∈W j

1 ,
(81)

where λ = (λh, λg, λH , λG), m = |E|+ |I|+ 2|V |, W j
1 := I0+(x̄) ∪ βj , W j

2 := V \W j
1 .

Assume first that x̄ is Q-stationary with respect to (β1, β2) ∈ P(I00(x̄)). Then the multipliers

λ, λ from definition of Q-stationarity are feasible for dual problems of L̃P
1

and L̃P
2
, respectively,

both with the objective value equal to zero. Hence, duality theory of linear programming yields
that min{∇f(x̄)d̃1,∇f(x̄)d̃2} ≥ 0 and consequently (80) follows.

On the other hand, if (80) is fulfilled, is follows that min{∇f(x̄)d̃1,∇f(x̄)d̃2} = 0 as well.

Thus, d = 0 is an optimal solution for L̃P
1

and L̃P
2

and duality theory of linear programming
yields that the solutions λ1 and λ2 of the dual problems exist and their objective values are both
zero. However, this implies that for j = 1, 2 we have

λg,ji gi(x̄) = 0, i ∈ I, λH,ji Hi(x̄) = 0, λG,ji Gi(x̄) = 0, i ∈ V

and consequently λ1 fulfills the conditions of λ and λ2 fulfills the conditions of λ, showing that x̄
is indeed Q-stationary with respect to (β1, β2).

Now for each k consider two partitions (W 1
1,k,W

1
2,k), (W 2

1,k,W
2
2,k) ∈ P(V ) and let d1

k and d2
k

denote the solutions of LP (xk,W
1
1,k) and LP (xk,W

2
1,k). Choose dk ∈ {d1

k, d
2
k} such that

∇f(xk)dk = min
d∈{d1

k,d
2
k}
∇f(xk)d (82)

and let (W1,k,W2,k) ∈ {(W 1
1,k,W

1
2,k), (W 2

1,k,W
2
2,k)} denote the corresponding partition. Next, we

define the function ϕk in the following way

ϕk(x) := f(x)+
∑
i∈E

σhi,k|hi(x)|+
∑
i∈I

σgi,k(gi(x))+ +
∑

i∈W1,k

σFi,kd(Fi(x), P 1)+
∑

i∈W2,k

σFi,kd(Fi(x), P 2).

(83)
Note that the function ϕk coincides with ϕ for a, b given by (79) with (W1,W2) := (W1,k,W2,k)
and ω = (ωE , ωI) given by

ωE := (σhi,k, i ∈ E, σFi,k, i ∈W1,k), ωI := (σgi,k, i ∈ I, σ
F
i,k, i ∈W2,k, σ

F
i,k, i ∈W2,k).

Proposition 5.2. For all x ∈ Rn it holds that

0 ≤ ϕk(x)− Φk(x) ≤ ‖σFk ‖∞|V |max{ max
i∈W1,k

d(Fi(x), P 1), max
i∈W2,k

d(Fi(x), P 2)}. (84)

Proof. Non-negativity of the distance function, together with (20) yield for every i ∈ V, j = 1, 2

0 ≤ d(Fi(x), P j)− d(Fi(x), P ) ≤ d(Fi(x), P j).

Hence (84) now follows from∑
j=1,2

∑
i∈Wk,j

σFi,kd(Fi(x), P j) ≤ ‖σFk ‖∞|V |max
j=1,2

max
i∈Wk,j

d(Fi(x), P j).

An outline of the extended algorithm is as follows.
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Algorithm 5.1 (Solving the MPVC*).
1: Initialization:

Select a starting point x0 ∈ Rn together with a positive definite n× n matrix B0,
a parameter ρ0 > 0 and constants ζ ∈ (0, 1), ρ̄ > 1 and µ ∈ (0, 1).

Select positive penalty parameters σ−1 = (σh−1, σ
g
−1, σ

F
−1).

Set the iteration counter k := 0.
2: Correction of the iterate:

Take some (W 1
1,k,W

1
2,k), (W 2

1,k,W
2
2,k) ∈ P(V ), compute d1

k and d2
k

as solutions of LP (xk,W
1
1,k) and LP (xk,W

2
1,k) and let dk be given by (82).

Consider a sequence of numbers α
(1)
k = 1, α

(2)
k , α

(3)
k , . . . with 1 > ᾱ ≥ α(j+1)

k /α
(j)
k ≥ α > 0.

If ∇f(xk)dk < 0, denote by j(k) the smallest j fulfilling either

Φk(xk + α
(j)
k dk)− Φk(xk) ≤ µα

(j)
k ∇f(xk)dk, (85)

or α
(j)
k ≤ Φk(xk)− ϕk(xk)

µ∇f(xk)dk
. (86)

If j(k) fulfill (85), set x̃k := xk + α
j(k)
k dk, otherwise set x̃k := xk.

3: Solve the Auxiliary problem:
Run Algorithm 3.1 with data ζ, ρ̄, ρ := ρk, B := Bk,∇f := ∇f(x̃k),

hi := hi(x̃k),∇hi := ∇hi(x̃k), i ∈ E, etc.
If the Algorithm 3.1 stops because of degeneracy,

stop the Algorithm 4.1 with an error message.
If the final iterate sN is zero, stop the Algorithm 5.1 and return x̃k as a solution.

4: Next iterate:
Compute new penalty parameters σk.
Set xk+1 := x̃k + sk where sk is a point on the polygonal line connecting the points

s0, s1, . . . , sN such that an appropriate merit function depending on σk
is decreased.

Set ρk+1 := ρ, the final value of ρ in Algorithm 3.1.
Update Bk to get positive definite matrix Bk+1.
Set k := k + 1 and go to step 2.

Naturally, Remark 4.1 regarding the stopping criteria for Algorithm 4.1 aplies to this algorithm
as well.

Lemma 5.3. Index j(k) is well defined.

Proof. In order to show that j(k) is well defined, we have to prove the existence of some j such that
either (85) or (86) is fulfilled. By (84) we know that Φk(xk)−ϕk(xk) ≤ 0. In case Φk(xk)−ϕk(xk) <
0 every j sufficiently large clearly fulfills (86). On the other hand, if Φk(xk)− ϕk(xk) = 0, taking
into account (84) we obtain

Φk(xk + αdk)− Φk(xk) ≤ ϕk(xk + αdk)− ϕk(xk).

However, Lemma 5.2 for ν := µ and C := {xk} yields that if ∇f(xk)dk < 0 then there exists some
α̃ such that

ϕk(xk + αdk)− ϕk(xk) ≤ µα∇f(xk)dk

holds for all α ∈ [0, α̃] and thus (85) is fulfilled for every j sufficiently large. This finishes the
proof.
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5.3 Convergence of the extended algorithm

We consider the behavior of the Algorithm 5.1 when it does not prematurely stop and it generates
an infinite sequence of iterates

xk, Bk, θk, λ
Nk
k , λ

Nk
k , (stk, δ

t
k), λtk, (V

t
1,k, V

t
2,k), and x̃k, d

1
k, d

2
k, (W

1
1,k,W

1
2,k), (W 2

1,k,W
2
2,k).

We discuss the convergence behavior under the following assumption.

Assumption 2. 1. Assumption 1 is fulfilled.

2. Mangasarian-Fromovitz constraint qualification (MFCQ) holds at every limit point x̄ of the
sequence of iterates xk.

3. For every limit point x̄ of the sequence of iterates xk there exists a subsequence K(x̄) such
that lim

k
K(x̄)→ ∞

xk = x̄ and

W 1
1,k = I0+(x̄), W 2

1,k = I0+(x̄) ∪ I00(x̄) for all k ∈ K(x̄).

Note that the Next iterate step from Algorithm 5.1 remains almost unchanged compared to the
Next iterate step from Algorithm 4.1, we just consider the point x̃k instead of xk. Consequently,
most of the results from subsections 4.1 and 4.2 remain valid, possibly after replacing xk by x̃k
where needed, e.g. in Lemma 4.3. The only exception is the proof of Lemma 4.5, where we have
to show that the sequence Φk(xk) is monotonically decreasing. This follows now from (85) and
hence Lemma 4.5 remains valid as well.

We state now the main result of this section.

Theorem 5.1. Let Assumption 2 be fulfilled. Then every limit point of the sequence of iterates
xk is at least QM -stationary for problem (1).

Proof. Let x̄ denote a limit point of the sequence xk and let K(x̄) denote a subsequence from
Assumption 2 (3.). Since

‖xk − x̃k−1‖ ≤ S
Nk−1

k−1 → 0

we conclude that lim
k
K(x̄)→ ∞

x̃k−1 = x̄ and by applying Theorem 4.1 to sequence x̃k−1 we obtain

the feasibility of x̄ for problem (1).
Next we consider d̄1, d̄2 as in Proposition 5.1 with β1 := ∅ and without loss of generality we

only consider k ∈ K(x̄), k ≥ k̄, where k̄ is given by Lemma 4.4. We show by contraposition
that the case min{∇f(x̄)d̄1,∇f(x̄)d̄2} < 0 can not occur. Let us assume on the contrary that,
say ∇f(x̄)d̄1 < 0. Assumption 2 (3.) yields that W 1

1,k = I0+(x̄) and feasibility of x̄ for (1)

together with I0+(x̄) ⊂ W 1
1,k ⊂ I0(x̄) imply x̄ ∈ A for A given by (71) and a, b given by (79)

with (W1,W2) := (W 1
1,k,W

1
2,k). Taking into account Assumption 2 (2.), Lemma 5.1 then yields

that for ε := −∇f(x̄)d̄1/2 > 0 there exist δ such that for all ‖xk − x̄‖ ≤ δ we have ∇f(xk)dk ≤
∇f(xk)d1

k ≤ ∇f(x̄)d̄1/2 = −ε, with dk given by (82).

Next, we choose k̂ to be such that for k ≥ k̂ it holds that ‖xk−x̄‖ ≤ δ and we set ν := (1+µ)/2,
C := {x | ‖x− x̄‖ ≤ δ}. From Lemma 5.2 we obtain that

ϕk(xk + αdk)− ϕk(xk) ≤ 1 + µ

2
α∇f(xk)dk (87)

holds for all α ∈ [0, α̃]. Moreover, by choosing k̂ larger if necessary we can assume that for all
i ∈ V we have

‖Fi(xk)− Fi(x̄)‖1 ≤ −min

{
1− µ

2
, µ

}
αα̃∇f(xk)dk
‖σFk ‖∞|V |

. (88)

For the partition (W1,k,W2,k) ∈ {(W 1
1,k,W

1
2,k), (W 2

1,k,W
2
2,k)} corresponding to dk it holds that

I0+(x̄) ⊂ W1,k ⊂ I0(x̄) and this, together with the feasibility of x̄ for (1), imply Fi(x̄) ∈ P j , i ∈
Wk,j for j = 1, 2. Therefore, taking into account (22), we obtain

max{ max
i∈W1,k

d(Fi(xk), P 1), max
i∈W2,k

d(Fi(xk), P 2)} ≤ max
i∈V
‖Fi(xk)− Fi(x̄)‖1.
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Consequently, (84) and (88) yield for all α > αα̃

ϕ(xk)− Φk(xk) < −min

{
1− µ

2
, µ

}
α∇f(xk)dk.

Thus, from (87) and (84) we obtain for all α ∈ (αα̃, α̃]

Φk(xk + αdk)− Φk(xk) ≤ ϕ(xk + αdk)− ϕ(xk) + ϕ(xk)− Φk(xk) ≤ µα∇f(xk)dk

and Φk(xk)− ϕ(xk) > µα∇f(xk)dk.

Now consider j with α
(j−1)
k > α̃ ≥ α(j)

k . We see that α
(j)
k ∈ (αα̃, α̃], since α

(j)
k ≥ αα

(j−1)
k > αα̃

and consequently j fulfills (85) and violates (86). However, then we obtain for all k ≥ k̂

Φk(xk+1)− Φk(xk) ≤ µα(j(k))
k ∇f(xk)dk = µαα̃∇f(x̄)d̄/2 < 0,

a contradiction.
Hence it follows that the solutions d̄1, d̄2 fulfill min{∇f(x̄)d̄1,∇f(x̄)d̄2} = 0 and by Proposition

5.1 we conclude that x̄ is Q-stationary with respect to (∅, I00(x̄)) and consequently also QM -
stationary for problem (1).

Finally, we discuss how to choose the partitions W 1
1,k and W 2

1,k such that Assumption 2 (3.)
will be fulfilled. Let us consider a sequence of nonnegative numbers εk such that for every limit
point x̄ with lim

k
K→∞

xk = x̄ it holds that

lim
k
K→∞

εk
‖xk − x̄‖∞

→∞ (89)

and let us define

Ĩ0+
k := {i ∈ V | |Hi(xk)| ≤ εk < Gi(xk)},
Ĩ00
k := {i ∈ V | |Hi(xk)| ≤ εk ≥ |Gi(xk)|},

Ĩ0−
k := {i ∈ V | |Hi(xk)| ≤ εk < −Gi(xk)},
Ĩ+0
k := {i ∈ V |Hi(xk) > εk ≥ |Gi(xk)|},

Ĩ+−
k := {i ∈ V |Hi(xk) > εk < −Gi(xk)}.

Proposition 5.3. For W 1
1,k and W 2

1,k defined by W 1
1,k := Ĩ0+

k and W 1
1,k := Ĩ0+

k ∪ Ĩ00
k the Assump-

tion 2 (3.) is fulfilled.

Proof. Let x̄ be a limit point of the sequence xk such that lim
k
K→∞

xk = x̄. Recall that F is given

by (8) and let us set L := max‖x−x̄‖∞≤1 ‖∇F(x)‖∞, where ‖∇F(x)‖∞ is given by (72). Further,

taking into account (89), consider k̂ such that for all k ≥ k̂ it holds that ‖xk−x̄‖∞ ≤ min {εk/L, 1}.
Hence, for all k ∈ K with k ≥ k̂ we conclude

‖F(xk)−F(x̄)‖∞ ≤
∫ 1

0

‖∇F(x̄+ t(xk − x̄))‖∞‖xk − x̄‖∞dt ≤ εk. (90)

Now consider i ∈ I0+(x̄), i.e. Hi(x̄) = 0 < Gi(x̄). By choosing k̂ larger if necessary we can assume

that for all k ≥ k̂ it holds that εk < Gi(x̄)/2 and consequently, taking into account (90), for all

k ∈ {k ∈ K | k ≥ k̂} we have

|Hi(xk)| = |Hi(xk)−Hi(x̄)| ≤ εk < Gi(x̄)− εk ≤ Gi(xk),

showing i ∈ Ĩ0+
k . By similar argumentation and by increasing k̂ if necessary we obtain that for all

k ∈ {k ∈ K | k ≥ k̂} =: K(x̄) it holds that

I0+(x̄) ⊂ Ĩ0+
k , I00(x̄) ⊂ Ĩ00

k , I
0−(x̄) ⊂ Ĩ0−

k , I+0(x̄) ⊂ Ĩ+0
k , I+−(x̄) ⊂ Ĩ+−

k . (91)
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However, feasibility of x̄ for (1) yields

V = I0+(x̄) ∪ I00(x̄) ∪ I0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄)

and the index sets Ĩ0+
k , Ĩ00

k , Ĩ
0−
k , Ĩ+0

k , Ĩ+−
k are pairwise disjoint subsets of V by definition. Hence

we claim that (91) must in fact hold with equalities. Indeed, e.g.

Ĩ0+
k ⊂ V \ (Ĩ00

k ∪ Ĩ0−
k ∪ Ĩ

+0
k ∪ Ĩ

+−
k ) ⊂ V \ (I00(x̄) ∪ I0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄)) = I0+(x̄).

This finishes the proof.

Note that if we assume that there exist a constant L > 0, a number N ∈ N and a limit point
x̄ such that for all k ≥ N it holds that

‖xk+1 − x̄‖∞ ≤ L‖xk+1 − xk‖∞,

by setting εk :=
√
‖xk − xk−1‖∞ we obtain (89), since√
‖xk − xk−1‖∞
‖xk − x̄‖∞

≥
√
‖xk − x̄‖∞√
L‖xk − x̄‖∞

=
1√

L‖xk − x̄‖∞
→∞.

6 Numerical results

Algorithm 4.1 was implemented in MATLAB. To perform numerical tests we used a subset of test
problems considered in the thesis of Hoheisel [7].

First we considered the so-called academic example

min
x∈R2

4x1 + 2x2

subject to x1 ≥ 0,
x2 ≥ 0,

(5
√

2− x1 − x2)x1 ≤ 0,
(5− x1 − x2)x2 ≤ 0.

(92)

As in [7], we tested 289 different starting points x0 with x0
1, x

0
2 ∈ {−5,−4, . . . , 10, 20}. For 84

starting points our algorithm found a global minimizer (0, 0) with objective value 0, while for the
remaining 205 starting points a local minimizer (0, 5) with objective value 10 was found. Hence,
convergence to the perfidious candidate (0, 5

√
2), which is not a local minimizer, did not occur

(see [7]).
Expectantly, after adding constraint 3− x1 − x2 ≤ 0 to the model (92), to artificially exclude

the point (0, 0), unsuitable for the practical application, we reached the point (0, 5), now a global
minimizer. For more detailed information about the problem we refer the reader to [7] and [2].

Next we solved 2 examples in truss topology optimization, the so called Ten-bar Truss and
Cantilever Arm. The underlying model for both of them is as follows:

min
(a,u)∈RN×Rd

V :=
∑N
i=1 `iai

subject to K(a)u = f,
fu ≤ c,
ai ≤ āi i ∈ {1, 2, . . . , N},
ai ≥ 0 i ∈ {1, 2, . . . , N},
(σi(a, u)2 − σ̄2)ai ≤ 0 i ∈ {1, 2, . . . , N}.

(93)

Here the matrix K(a) denotes the global stiffness matrix of the structure a and the vector f ∈ Rd
contains the external forces applying at the nodal points. Further, for each i the function σi(a, u)
denotes the stress of the i−th potential bar and c, āi, σ̄ are positive constants. Again, for more
background of the model and the following truss topology optimization problems we refer to [7].
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Figure 1: Ten-bar Truss example

Figure 2: Cantilever Arm example

In Ten-bar Truss example we consider the ground structure depicted in Figure 1(a) consisting
of N = 10 potential bars and 6 nodal points. We consider a load which applies at the bottom
right hand node pulling vertically to the ground with force ‖f‖ = 1. The two left hand nodes are
fixed, and hence the structure has d = 8 degrees of freedom for displacements.

We set c := 10, ā := 100 and σ̄ := 1 as in [7] and the resulting structure consisting of 5 bars is
shown in Figure 1(b) and is the same as the one in [7]. For comparison, in the following table we
show the full data containing also the stress values.

i a∗i σi(a
∗, u∗) u∗i

1 0 1.029700000000000 -1.000000000000000
2 1.000000000000000 1.000000000000000 1.000000000000000
3 0 1.119550000000000 -2.000000000000000
4 1.000000000000000 1.000000000000000 1.302400000000000
5 0 0.485150000000000 -1.970300000000000
6 1.414213562373095 1.000000000000000 -3.000000000000000
7 0 0.302400000000000 -8.000000000000000
8 1.414213562373095 1.000000000000000 -6.511800000000000
9 2.000000000000000 1.000000000000000 fTu∗ = 8
10 0 1.488200000000000 V ∗ = 8.000000000000002

We can see that although our final structure and optimal volume are the same as the final
structure and the optimal volume in [7], the solution (a∗, u∗) is different. For instance, since
fTu∗ = 8 < 10 = c, our solution does not reach the maximal compliance. Similarly as in [7], we
observe the effect of vanishing constraints since the stress values from the table show that

σ∗max := max
1≤i≤N

|σi(a∗, u∗)| = 1.4882 > σ̂∗ := max
1≤i≤N :a∗i>0

|σi(a∗, u∗)| = 1 = σ̄.

In Cantilever Arm example we consider the ground structure depicted in Figure 2(a) consisting
of N = 224 potential bars and 27 nodal points. Again, we consider a load acting at the bottom
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right hand node pulling vertically to the ground with force ‖f‖ = 1. Now the three left hand
nodes are fixed, and hence d = 48.

We proceed as in [7] and we first set c := 100, ā := 1 and σ̄ := 100. The resulting structure
consisting of only 24 bars (compared to 38 bars in [7]) is shown in Figure 2(b). Similarly as in [7],
we have max1≤i≤N a

∗1
i = ā and fu∗1 = c. On the other hand, our optimal volume V ∗1 = 23.4407

is a bit larger than the optimal volume 23.1399 in [7]. Also, analysis of our stress values shows
that

σ∗1max := max
1≤i≤N

|σi(a∗1, u∗1)| = 60.4294 >> σ̂∗1 := max
1≤i≤N :a∗1i >0

|σi(a∗1, u∗1)| = 2.6000

and hence, although it holds true that both absolute stresses as well as absolute ”fictitious stresses”
(i.e., for zero bars) are small compared to σ̄ as in [7], the difference is that in our case they are
not the same.

The situation becomes more interesting when we change the stress bound to σ̄ = 2.2. The
obtained structure consisting again of only 25 bars (compared to 37 or 31 bars in [7]) is shown
in Figure 2(c). As before we have max1≤i≤N a

∗2
i = ā and fu∗2 = c. Our optimal volume V ∗2 =

23.6982 is now much closer to the optimal volumes 23.6608 and 23.6633 in [7]. Similarly as in [7],
we clearly observe the effect of vanishing constraints since our stress values show

σ∗2max := max
1≤i≤N

|σi(a∗2, u∗2)| = 24.1669 >> σ̂∗2 := max
1≤i≤N :a∗2i >0

|σi(a∗2, u∗2)| = 2.2 = σ̄.

Finally, we obtained 32 bars (in contrast to 24 bars in [7]) satisfying both

a∗2i < 0.005 = 0.005ā and |σi(a∗2, u∗2)| > 2.2 = σ̄.
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2016-05 Matúš Benko and Helmut Gfrerer
An SQP Method for Mathematical Programs with Vanishing Constraints with
Strong Convergence Properties

August 2016

From 1998 to 2008 reports were published by SFB013. Please see
http://www.sfb013.uni-linz.ac.at/index.php?id=reports

From 2004 on reports were also published by RICAM. Please see
http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see
http://www.numa.uni-linz.ac.at/Publications/List/

http://www.sfb013.uni-linz.ac.at/index.php?id=reports
http://www.ricam.oeaw.ac.at/publications/list/
http://www.numa.uni-linz.ac.at/Publications/List/

