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Abstract

We propose a geometric multigrid algorithm for the solution of the linear systems which arise when using hi-
erarchical spline spaces for isogeometric discretizations of elliptic partial differential equations. In particular,
we focus on the use of hierarchical B-spline (HB) and truncated hierarchical B-spline (THB) bases to imple-
ment adaptively refined isogeometric discretizations. We describe an approach for constructing the nested
sequences of hierarchical spline spaces which are required for our geometric multigrid solver. Furthermore,
we give an algorithm for the computation of the so-called prolongation matrices which map coarser-space
functions to their finer-space representations for both HB- and THB-spline bases.

In several numerical experiments, we study two-dimensional Poisson problems with singularities and
employ a posteriori error estimators for the adaptive refinement of the hierarchical spline spaces. Using
standard multigrid smoothers, we observe that using THB-spline bases consistently confers a dramatic
advantage in terms of iteration numbers over the use of HB-spline bases, in particular for higher spline
degrees.

Keywords: isogeometric analysis, multigrid, hierarchical splines, truncated hierarchical B-splines, adaptive
refinement

1. Introduction

Isogeometric analysis (IgA), which was introduced by Hughes [20], is a novel framework for numerical
simulation that aims at the close integration of geometry representations from Computer Aided Geometric
Design into the analysis process, thereby avoiding the otherwise necessary and expensive data exchange
between the FEA and CAD software. However, the tensor product B-spline and NURBS spaces which are
most commonly used in geometric design and isogeometric analysis do not provide the possibility of local
refinement. Due to their construction, any refinement propagates over the entire domain. To address this
issue, other spline spaces which permit local adaptive refinement have been utilized in isogeometric analysis.
These include T-splines [1, 9, 28], hierarchical B-splines [2, 26, 27, 30], LR (locally refined) B-splines in [21]
and polynomial splines over hierarchical T-meshes [25, 31].

In the present work, we focus on the hierarchical approach to the adaptive refinement of B-splines, which
can be traced back to [11]. The key idea of the construction of the hierarchical basis, which was introduced
by Kraft [24], consists in a suitable selection of standard tensor-product B-spline functions from a sequence
of nested B-spline bases, guided by a sequence of nested subdomains.

The hierarchical B-spline (HB-spline) basis inherits several desirable properties of B-splines such as linear
independence, local support and non-negativity. However, it does not possess the partition of unity property
and is only weakly stable with respect to the supremum norm.
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To overcome these drawbacks, the truncated hierarchical B-splines have been recently introduced in [14].
The additional truncation step, which is applied during the construction of the truncated hierarchical basis,
ensures that the basis possesses the partition of unity property. In addition, it also improves the stability
properties of the basis, see [15], and significantly reduces the overlap between the basis functions from
different refinement levels.

For the efficient solution of the large, sparse linear systems arising in isogeometric discretizations, multi-
grid methods are an attractive approach. Multigrid solvers for uniformly refined tensor product spline
spaces have been studied by several researchers. In particular, geometric multigrid has been considered in
[12, 18, 17, 19], and an additive multilevel scheme was proposed in [4]. A symbol-based approach has been
taken in [6, 7, 8]. Finally, a local refinement strategy based on full multigrid ideas has been developed in [5].

In the present work, we investigate geometric multigrid solvers for isogeometric discretizations based on
adaptively refined hierarchical spline spaces. In particular, we describe how to construct nested sequences
of hierarchical spline spaces starting from a coarse tensor product spline space, or from an initial coarse
basis used to describe the geometry which may already be hierarchical. We also address the topic of how
to compute the necessary prolongation matrices between nested hierarchical spline spaces in both the HB-
and the THB-spline bases. As the smoother for the multigrid algorithm, we use a standard Gauss-Seidel
method throughout.

We perform several numerical examples and compare the performance of V-cycle multigrid for discretiza-
tions based on hierarchical B-spline bases and on truncated hierarchical B-spline bases. Our numerical
experiments indicate that using THB-spline bases leads to significantly reduced iteration numbers in the
multigrid algorithm compared to using HB-spline bases, especially for higher spline degrees.

The remainder of the paper is structured as follows. In Section 2, we recall some preliminaries on
hierarchical spline spaces, truncated hierarchical B-spline bases, and isogeometric analysis. In Section 3, we
describe the construction of nested hierarchical spline spaces and a multigrid algorithm over such nested
spaces. In Section 4, we give several numerical experiments for adaptively refined discretizations of the
Poisson equation. In Section 5, we end with some concluding remarks.

2. Preliminaries

2.1. Bases for hierarchical spline spaces
We consider a sequence

S0 ⊂ S1 ⊂ . . . ⊂ SΛ−1 ⊂ SΛ

of nested tensor-product spline spaces of degree p = (p1, . . . , pd) over the parameter domain D = (0, 1)d,
where every space Sλ, λ = 0, . . . ,Λ is spanned by normalized B-splines Bλ and the positive integer Λ specifies
the number of levels. (We use Greek characters for the levels in the spline hierarchy in order to keep the
Latin ones for the multigrid levels.) Additionally let

Ω = (Ωλ)λ∈N0

be a sequence of inversely nested subdomains satisfying

D = Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩΛ = ∅. (1)

The first subdomain Ω0 is the entire parameter domain D. The higher level subdomains represent the
regions that are selected for refinement to the level λ.

Each tensor-product spline space Sλ is defined by d knot vectors, one for coordinate direction in the
parameter space. These knot vectors are also nested, since this implies the required inclusions of the spline
spaces. The knot hyperplanes (knot lines for d = 2) determine a segmentation of the domain into cells, and
we asssume that each subdomain is a collection of cells of the same level. Fig. 1 shows such a hierarchy in
the bivariate case for degree p = (2, 2), as indicated by the three-fold boundary knots, with three levels of
refinement.
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Figure 1: Subdomain structure Ω with 3 hierarchical levels highlighted by black, blue and red for levels 0, 1, 2 respectively.

The hierarchical basis K, which has been introduced by Kraft [24], with respect to a given subdomain
hierarchy Ω is obtained by selecting the active B-splines from all levels. A basis function βλ ∈ Bλ is said to
be active if

Ωλ+1 6⊇ suppβλ ⊆ Ωλ,

thus
K =

⋃
λ=0,...,Λ−1

{βλ ∈ Bλ : Ωλ+1 6⊇ suppβλ ⊆ Ωλ}.

The basis functions collected in K will be denoted as HB-splines. Fig. 2 shows the construction of the
HB-splines for the domain hierarchy shown in Fig. 1.

The HB-splines inherit some of the main properties of the B-splines such as non-negativity, local support
and linear independence, as shown in [30]. The partition of unity property and the convex hull property,
however, are not preserved during the construction. Nevertheless, they may be recovered, under certain
assumptions on the subdomain hierarchy, by a suitable scaling of the basis functions, see [30].

A different approach to restore these properties which does not require any assumptions about the
subdomain hierarchy consists in using the truncated hierarchical B-splines (THB-splines). In addition, this
construction decreases the support overlaps between basis functions from different levels, which will be
beneficial for using the multigrid framework, as observed below.

The construction of the THB-splines T is based on the refinability of B-splines. In fact, any B-spline
β ∈ Bλ of level λ can be represented as a linear combination of the B-splines of level λ + 1 with supports
contained in suppβ, using only non-negative coefficients. Consequently, if a function β of level λ is not
active since it satisfies suppβ ⊆ Ωλ+1, then K contains functions of higher levels that allow to represent it.

The truncation of a function τ ∈ Sλ is defined with the help of its representation

τ =
∑

β∈Bλ+1

cλ+1
β (τ)β, cλ+1

β ∈ R.

with respect to the basis Bλ+1. In order to truncate the function, we simply eliminate the contributions of
all basis functions that are selected at the higher level

truncλ+1τ =
∑

β∈Bλ+1,supp β 6⊆Ωλ+1

cλ+1
β (τ)β.

It may happen that an omitted function β ∈ Bλ+1 is not active, i.e., not contained in K. This is the case
whenever suppβ ⊆ Ωλ+2. Nevertheless, this function is still contained in the span of all active functions
due to the refinability of B-splines.

We define the THB-splines T by applying the truncation repeatedly to all functions in K,

T =
⋃

λ=0,...,Λ−1

{truncΛ−1(truncΛ−2 . . . (truncλ+1βλ) . . .) : βλ ∈ K ∩ Bλ}.
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(a) Basis functions from B0 (b) Basis functions from B1 (c) Basis functions from B2

(d) Hierarchical basis

Figure 2: The contribution of basis functions from levels 0, 1 and 2 to the hierarchical basis K defined over the subdomain
structure shown in Figure 1.

In addition to preserving the properties of non-negativity, local support and linear independence, the THB-
splines also form a partition of unity [14]. Moreover, the hierarchical spline spaces spanned by K and T are
identical,

spanK = span T . (2)

Fig. 3 shows the THB-splines for the domain hierarchy in Fig. 1, which is another basis for the space spanned
by the HB-splines in Fig. 2.

2.2. Isogeometric analysis
Let

G : D → G(D) ⊂ Rd

denote a bijective geometry mapping which maps the parameter domain D to the computational domain
P = G(D) on which we wish to solve a boundary value problem. In IGA, this mapping is typically given in
terms of spline basis functions, G ∈ (S0)d, but its concrete form is irrelevant to our discussion here.

Let Vh ⊂ H1
0 (G(D)) denote a finite-dimensional space over the computational domain. In isogeometric

analysis, this discretization space is obtained by first fixing a family of basis functions {ψi : D → R} over
the parameter domain D and then mapping them into the computational domain via ϕi(x) := ψi(G

−1(x)),
i.e.,

Vh = span{K ◦G−1} = span{T ◦G−1}. (3)
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(a) Basis functions from B0 (b) Basis functions from B1 (c) Basis functions from B2

(d) Hierarchical basis

Figure 3: The contribution of basis functions from levels 0, 1 and 2 to the truncated hierarchical B-splines T defined over the
subdomain structure shown in Figure 1. The effect of truncation ic clearly visible in the central area of the domain.

Originally, Hughes et al. [20] proposed tensor product B-spline and NURBS bases for {ψi}, and these are
still the most popular choices when uniform refinement of the discretization space is desired. In the present
work, we instead use hierarchical B-spline and THB-spline bases as described in Subsection 2.1, in order to
facilitate local and adaptive refinement of the discretization space.

We now consider an IGA discretization of the Poisson equation with pure Dirichlet boundary conditions:
find uh ∈ Vh such that

a(uh, vh) = 〈F, vh〉 ∀vh ∈ Vh (4)

with the bilinear form and linear functions, respectively,

a(u, v) =

∫
P

∇u · ∇v dx, 〈F, v〉 =

∫
P

fv dx− a(g, v).

Here g ∈ H1(Ω) is a suitable extension of the given Dirichlet data. This discretization results in a large,
sparse, symmetric positive definite linear system. Our aim is to investigate geometric multigrid solvers for
this system.

3. Multigrid Methods for Adaptively Refined Discretizations

We recall the abstract framework of multigrid methods and describe its realization for hierarchical spline
spaces in the isogeometric framework. Special attention is paid to the construction of the prolongation

5



matrices and the creation of the hierarchy by adaptive refinement.

3.1. An abstract multigrid framework
We recall the construction of a geometric multigrid solver in an abstract setting. We provide only an

outline here and refer to the literature [3, 16, 29] for further reading. In later sections, we will flesh out the
components of the multigrid solver for our particular setting.

Let V0 ⊂ H1
0 (G(D)) denote a coarse discretization space over our computational domain. By a suitable

refinement process, we obtain a sequence of nested spaces

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ VL. (5)

On each level ` ∈ {0, . . . , L}, we denote the number of degrees of freedom by n` = dimV`. Given a variational
formulation of a boundary value problem, we derive a Galerkin discretization in V`, resulting in a linear
system

A`u` = f`,

where A` ∈ Rn`×n` is the stiffness matrix, f` ∈ Rn` is the load vector, and u` ∈ Rn` is the coefficient vector
of the discrete solution with respect to a chosen basis for V`.

Our aim is to solve the fine-space equation (` = L) in an efficient manner. The core idea of multigrid is
to use an iterative procedure which efficiently reduces (or “smoothes”) the high-frequency components of the
error, while the low-frequency components of the error are treated by projecting the residual equation to a
coarser space. Some of the low-frequency components in the fine space turn into high-frequency components
when viewed in the coarser space and can again be efficiently smoothed there. This idea is applied recursively
all the way to the coarsest level V0, where the linear system is small enough to solve by a direct method.

Since the spaces are nested, an arbitrary function in V` can always be represented on any finer level
Vk, k > `. Let P` ∈ Rn`×n`−1 denote the prolongation matrix which maps the coefficients of a function
represented in the basis of V`−1 to the coefficients of the same function represented in the basis of V`. In
other words, P` realizes the canonical embedding

V`−1 → V` : v 7→ v

with respect to the particular choice of bases. The transpose of the prolongation matrix P>` is called the
restriction matrix and maps from the fine to the coarse space. It is easy to show that, when using Galerkin
discretizations, the coarse-space stiffness matrix can be obtained via A`−1 = P>` A`P`.

As an important ingredient in the multigrid algorithm, we need so-called smoothers. On each level except
the coarsest, ` ∈ {1, . . . , L}, we choose a smoother S` ∈ Rn`×n` . This matrix must be easier to invert than
the stiffness matrix A`. Standard choices are the Jacobi smoother, where S` is chosen as a scalar multiple
of the diagonal of A`, and the Gauss-Seidel smoother, where S` is chosen as the lower triangular part of A`.
We then define the smoothing operator

S`(v, b) := v + S−1
` (b−A`v)

for arbitrary vectors and right-hand sides v, b ∈ Rn` . Analogously, we define the transposed smoothing
operator S>` (v, b) where the matrix S` is replaced by its transpose S>` in the definition.

The iterative procedure vj 7→ vj+1 := S`(vj , b) must converge to the solution of the linear system A`v = b.
Typically, it does so very slowly. However, to obtain an efficient multigrid algorithm it is only required that
the smoothing iteration efficiently reduces the components of the error which can not be represented in the
coarser space V`−1, i.e., the high-frequency error.

We now have the components in place to define the multigrid algorithm in a recursive fashion. On the
coarsest level, we define the multigrid operator as the exact solution of the coarse-space problem, i.e.,

MG0(v, b) := A−1
0 b.

6



On every level ` > 0, we define the V-cycle multigrid operatorMG`(v, b) by the sequence of operations

v(1) := S`(v, b),
v(2) := v(1) + P`MG`−1(0, P>` (b−A`v(1))),

MG`(v, b) := v(3) := S>` (v(2), b).

These three steps are called pre-smoothing, coarse-grid correction, and post-smoothing, respectively. The
V-cycle iteration for the fine-grid problem is given, for an arbitrary initial guess u0 ∈ RnL , by the procedure

uj+1 :=MGL(uj , fL) ∀j = 0, 1, 2, . . .

It is called the V-cycle because in each iteration, the method starts with some fine-level approximation
vj ∈ RnL , proceeds by smoothing and restriction through all levels to the coarsest space, and then by
prolongation and smoothing back to the finest space, obtaining a new approximation vj+1 ∈ RnL . This
pattern can be visualized as a V-shape as in Figure 4.

` = 0

` = 1

` = 2 uj uj+1

Figure 4: Visualization of one iteration of the multigrid V-cycle algorithm with three nested spaces. Circles correspond to
smoothing operations or, on the coarsest level ` = 0, the exact solve. Downward arrows correspond to restriction and upward
arrows to prolongation operations.

3.2. Nested sequences of hierarchical spline spaces
The sequence of nested spaces (5) will be generated by performing an isogeometric discretization (with

a given geometry mapping) based on nested hierarchical spline spaces (2), which are spanned by (T)HB-
splines. More precisely, we use several instances of the hierarchical spline spaces (2) which are constructed
in a way which ensures that they are nested. The following lemma, which has been derived in [30], will be
essential for this construction.

Lemma 1 ([30]). We consider the two sequences Ω and Ω̂ of nested subdomains

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩΛ and Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂Λ

and the hierarchical B-splines K and K̂ defined by them. If Ωλ ⊆ Ω̂λ for every λ = 0, . . . ,Λ, then

spanK ⊆ span K̂.

Consequently, enlarging all subdomains of a given subdomain hierarchy Ω while preserving the property
that they are nested leads to a superspace of the hierarchical spline space. Clearly, this result is also valid
for the THB-splines, as the spaces spanned by HB- and THB-splines are identical (2). Moreover it is also
inherited by the spaces used for the isogeometric discretizations (3), since these spaces are obtained simply
by composing the hierarchical spline spaces with the inverse of the geometry mappings.

In order to use this result in the multigrid framework, we consider L+ 1 sequences Ω`

Ω` = (Ωλ` )λ∈N0
for ` = 0, . . . , L,

7



where each of them satisfies the assumptions specified in Section 2.1. We denote the hierarchical and
truncated hierarchical B-splines associated with the sequences Ω` by K` and T`, respectively. Furthermore,
we make the assumption

Ωλ`−1 ⊆ Ωλ` ∀λ ∈ N0 ∀` ∈ N. (6)

We combine this with the fact that the subdomains within each hierarchy are also nested, see (1), and obtain
the following diagram:

D = Ω0
0 ⊇ . . . ⊇ Ωλ0 ⊇ Ωλ+1

0 ⊇ . . . ⊇ ΩΛ
0 = ∅

= ⊆ ⊆ =

...
...

...
...= ⊆ ⊆ =

D = Ω0
`−1 ⊇ . . . ⊇ Ωλ`−1 ⊇ Ωλ+1

`−1 ⊇ . . . ⊇ ΩΛ
`−1 = ∅

= ⊆ ⊆ =

D = Ω0
` ⊇ . . . ⊇ Ωλ` ⊇ Ωλ+1

` ⊇ . . . ⊇ ΩΛ
` = ∅

= ⊆ ⊆ =

...
...

...
...= ⊆ ⊆ =

D = Ω0
L ⊇ . . . ⊇ ΩλL ⊇ Ωλ+1

L ⊇ . . . ⊇ ΩΛ
L = ∅

Due to Lemma 1, this yields

span{K0} ⊆ . . . ⊆ span{K`−1} ⊆ span{K`} ⊆ . . . ⊆ span{KL}

and similarly for T`. Several comments on this construction of nested hierarchical spline spaces are in order:

• In the standard situation, the sequences Ω` were constructed by adaptively refining a given uniform
discretization consisting of only one level, see Section 3.4. Typically this means that one refinement
level is added in every step. Thus we have Ωλ` = ∅ whenever λ ≥ `. Note that each refinement does
not only add an extra level, but may also enlarge the previously introduced subdomains, hence the
sets in (6) are generally not equal for λ < `.

• The construction of the multigrid hierarchy also supports geometry mappings which use hierarchical
spline spaces, such as the mappings constructed in [10]. In this case, even the coarsest domain hierarchy
may be fully populated, i.e., all subdomains are possibly non-empty, except for ΩΛ

0 .

• An alternative multigrid hierarchy can be constructed by considering only the subdomain sequence
for the largest level L, i.e., the last row in the diagram. HB-splines KµL (and similarly THB-splines
T µL ) spanning nested discretization spaces are obtained simply by replacing each subdomain ΩλL with
the empty set for λ > µ. Except for the discretization at the coarsest level, which is the same by
definition, this approach gives larger dimensions of the discretization spaces in the multigrid hierarchy.
Moreover, it does not comply with the isoparametric principle at all levels if the geometry mapping
uses hierarchical splines.

3.3. Computation of the prolongation matrix
In order to describe the computation of the prolongation matrix, which is required for the multigrid solver,

we assume that the B-splines within each basis Bλ are identified by indices, Bλ = {βλi : 1 ≤ i ≤ mλ}, where
mλ is the number of tensor-product B-splines of level λ in the spline hierarchy. Given a fixed level ` of the
multigrid hierarchy, the active B-splines (which are selected for inclusion in K`) are identified by indicator
functions

χλ` (i) =

{
1 if βλi is active in K`,
0 otherwise, λ = 0, . . . ,Λ.

8



These functions are represented by using a sparse data structure in our implementation, cf. [22]. We also
use them to create an index set for the basis functions in K` and T`,

I` =

Λ⋃
λ=0

{λ} × Iλ` , Iλ` = {i : χλ` (i) = 1, 1 ≤ i ≤ mλ}, (7)

where Iλ` is the index set of active B-spline functions from the hierarchical level λ. The overall index set I`
of the multigrid hierarchy ` is sorted lexicographically with respect to λ and i.

Given two spline hierarchies for adjacent levels ` − 1 and ` in the multigrid hierarchy, the algorithm
PROLONG computes the associated prolongation matrix for K`−1 and T`−1:

Algorithm PROLONG( I`−1, I`, (Rλ)λ=1,...,Λ) {

// I`−1 and I`: index sets of active basis functions of level ` − 1 and ` in the multigrid hierarchy,
respectively. The index sets for each level λ in the spline hierarchy are Iλ`−1 and Iλ` , see (7)
// (Rλ)λ=1,...,Λ: prolongation matrices between Bλ−1 and Bλ, precomputed using knot insertion.
// The algorithm returns the prolongation matrix P`.

create null matrix P` of size |I`−1| × |I`|

for all (λ, i) ∈ I`−1 do {

create null vector Mλ of size mλ

Mλ[i] := 1

for ν from λ to N − 1 do {

for all k ∈ Iν` do {
if ν > λ { // this line THB-splines only
for all k ∈ Iν`−1 do { // this line THB-splines only
Mν [k] := 0 } } // this line THB-splines only

P`[(λ, i), (ν, k)] := Mν [k]

Mν [k] := 0 // this line HB-splines only
}

Mν+1 := Rν+1Mν } }

RETURN(P`) }

For HB-splines, the algorithm iteratively computes the representation of each B-spline in K`−1 with
respect to the new basis K`. This is performed by visiting all levels ν of the spline hierarchy. In each
level we eliminate the contributions of the functions which are present at the next level ` of the multigrid
hierarchy. Subsequently, the remainder is represented with respect to the next level ν + 1 of the spline
hierarchy. Clearly, the iteration can be aborted if all coefficients in Mν+1 are zero.

The computation for THB-splines is based on the preservation of coefficients, see [15, Section 5]. We
apply truncation to compute the representation at all levels and to determine the coefficients with respect to
the THB-splines at level ` of the multigrid hierarchy. In order to speed up the computation, we determine,
for each index (λ, i) ∈ I`−1, the highest level

max{λ′ : suppβλi ∩ Ωλ
′

` 6= ∅}

that can lead to non-zero entries in the prolongation matrix P`. The iteration is aborted when this level is
reached.
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3.4. Construction by adaptive refinement
In practice we usually construct the sequence of nested subdomains Ω`, and therefore the sequence of

associated discretization spaces, by adaptive refinement based on an a posteriori error estimator. To this
end, we start with a coarse tensor product B-spline discretization defined over the parameter domain. In
our notation, this means that the initial hierarchy

Ω0 = (D)

contains only a single domain, namely, the entire parameter domain. Let V0 = spanK0 denote the hierar-
chical spline space defined over Ω0, which is simply a tensor product spline space. Over this coarse space,
we solve the discretized boundary value problem (4) and obtain a discrete solution u0.

Based on this solution, we compute a residual a posteriori error estimator (see [13] for more details) and
refine the parts of the domain where the estimator is largest. This results in a new hierarchy

Ω1 = (D,Ω1
1)

which induces a refined hierarchical spline space V1 = spanK1 ⊇ V0. We now solve (4) in V1 and obtain a
new discrete solution u1. We repeat the process of a posteriori error estimation and adaptive refinement,
adding at most one new level to the hierarchy at each iteration, so that after the k-th step we obtain a
hierarchy

Ωk = (D,Ω1
k, . . . ,Ω

k
k)

and associated hierarchical spline space Vk = spanKk. Note that the refinement procedure may not only
add an additional level to the hierarchical spline space, but also enlarge the subdomains associated to the
previous levels, as discussed in Section 3.2. We terminate this process once we are satisfied with the accuracy
of the obtained solution uk.

It is clear that the same procedure can be performed when the initial hierarchy Ω0 is non-trivial, for
instance because the geometry map is already given in terms of a hierarchical basis. In our examples,
however, we always start from a tensor product space.

3.5. Application of multigrid
The nested sequence of discretization spaces V0 ⊂ V1 ⊂ . . . ⊂ Vk constructed in Section 3.4 allows us to

apply the abstract multigrid framework described in Section 3.1 to the solution of the discretized problem
in Vk, where k = L is the number of levels in the multigrid hierarchy. For the computation of the transfer
matrices P` which describe the embedding of V`−1 in V`, we use the procedure described in Section 3.3.

In the present work, we use a simple Gauss-Seidel smoother, i.e., the smoothing matrix S` used in level
` is chosen as the lower triangular part of the stiffness matrix A` on the same level. It is understood by now
that this simple smoothing strategy does not always result in optimal multigrid solvers in the isogeometric
setting, in particular for higher spline degrees and space dimensions [19]. However, the design of optimal
smoothers for isogeometric analysis is still a field of active research (see, e.g., [17, 7], and we therefore stick
to the simple choice of the Gauss-Seidel smoother.

4. Numerical experiments

In this section, we present experimental results for three model problems. Example 1 uses a synthetically
generated sequence of meshes generated a priori, while Examples 2 and 3 use adaptive refinement by a
posteriori error estimation for problems with nonsmooth solutions.

In all examples, we compare iteration numbers for THB-spline basis functions with those for HB-spline
basis functions. This is a simple change of basis which leaves the discretization spaces unchanged. Through-
out we use V-cycle iteration with one pre- and one post-smoothing Gauss-Seidel step on each level. The
stopping criterion in all cases is the reduction of the Euclidean norm of the initial residual by a factor of
10−8.
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4.1. Example 1
On the square W = (−1, 1)2, we construct a hierarchy of THB-spline spaces by adaptively fitting the

function
u(x, y) = exp(52

√
(10x− 2)2 + (10y − 3)2)−1

starting from a coarse tensor product spline space. The applied fitting method is described in details in [23].
An example of the mesh resulting after several fitting steps is shown in Figure 5.

Figure 5: THB-spline supports after five steps of adaptive fitting with quadratic THB-splines (Example 1)

We then solve the Poisson equation

−∆u = f in W, u|∂W = g,

where the right-hand side f and Dirichlet data g are chosen according to the exact solution u given above. We
use the sequence of nested THB-spline spaces generated by the fitting process as the grids in our multigrid
method. Note that in this example, the mesh is refined a priori in such a way as to be able to represent
the exact solution u well. In the later examples, we will use a posteriori error estimators to compute such
meshes on the fly.

The iteration numbers are reported in Table 1. When using THB-splines, the number of iterations is
significantly smaller than for HB-splines.

4.2. Example 2
We solve the Poisson equation

−∆u = f in W, u|∂W = 0

with the source function

f(x, y) =

{
1, (x− 0.25)2 + (y − 1.6)2 < 0.22,

0, otherwise.

The domain W approximates a quarter annulus in the first quadrant with inner and outer radius 1 and 2,
respectively, by means of quadratic tensor product B-splines.
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p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 49 64 81
1 109 11 27 169 43 43 196 167 167
2 365 15 48 475 90 554 528 891 12443
3 829 12 31 1174 75 441 1272 628 13126
4 1487 13 29 2266 81 414 2509 404 10771
5 2317 12 29 3580 75 408 4136 419 9091

Table 1: Iteration numbers for Example 1

Figure 6: Left: Domain from Example 2 with quadratic THB-splines after six adaptive refinement steps (6249 dofs). Right:
Solution field.
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p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 100 121 144
1 182 15 34 195 68 238 226 183 3656
2 343 18 41 353 75 382 381 397 6112
3 701 24 57 668 131 1176 673 478 6113
4 1355 26 64 1326 198 734 1216 2012 25559
5 2822 23 98 2635 144 987 2312 1436 34310

Table 2: Iteration numbers for Example 2

p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 630 703 780
1 810 18 33 909 71 297 982 392 3487
2 1163 16 35 1252 68 317 1332 370 3300
3 1631 18 33 1721 84 359 1783 557 4266
4 2338 17 41 2379 73 395 2458 446 5873
5 3327 18 32 3414 87 382 3514 615 6804

Table 3: Iteration numbers for Example 3

Starting from a coarse tensor-product B-spline basis (` = 0), we construct a hierarchy of THB-spline
spaces by means of adaptive refinement based on an a posteriori error estimator as described in Section 3.4.
An example of a THB-spline basis arising from this adaptive refinement process, as well as a plot of the
obtained solution, are shown in Figure 6.

We then set up a multigrid method as described above which always has ` = 0 as its coarse grid and
solves the problem on some given level ` by V-cycle iteration.

The iteration numbers are reported in Table 2. Once again, when using THB-splines, the number of
iterations is significantly smaller than for HB-splines.

4.3. Example 3
We solve the classical benchmark problem for a singularity arising from a reentrant corner on the L-shape

domain
−∆u = 0 in W, where W = (−1, 1)2 \ [0, 1]2.

We choose pure Dirichlet boundary conditions according to the exact solution, given in polar coordinates,

g(r, ϕ) = r2/3 sin((2ϕ− π)/3),

where the argument is assumed to have the range ϕ ∈ [0, 2π). The geometry is represented by piecewise
linear splines.

We then perform adaptive refinement using THB-splines as described in Example 2. An example of a
THB-spline basis arising from adaptive refinement is shown in Figure 7.

The procedure is as in Example 2, and we report the resulting iteration numbers in Table 3, which again
confirms the observation regarding the superior performance of THB-splines.

5. Conclusion

We have presented a multigrid solver for isogeometric discretizations of the Poisson equation on adaptively
refined hierarchical spline spaces. We have tested the solver both on synthetic examples as well as on
hierarchies which were generated by adaptive refinement where the exact solution has a singularity. In each
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Figure 7: L-shape domain with cubic THB-splines after four adaptive refinement steps (2379 dofs)

example, we compared the iteration numbers when the hierarchical spline space is represented by standard
hierarchical B-splines (HB-splines) and by truncated hierarchical B-splines (THB-splines).

In all examples, we found that the V-cycle iteration numbers to reduce the initial residual by a fixed
factor were significantly smaller when using THB-splines compared to HB-splines. The difference in iteration
numbers was especially dramatic for higher spline degrees. We conjecture that the significantly reduced iter-
ation numbers in the case of THB-splines result from the reduced overlap and consequently lower condition
number.

We should point out that for high spline degrees, the iteration numbers are not satisfactory even when
using THB-splines. This is consistent with the known fact that even in the case of tensor product B-splines,
the Gauss-Seidel smoother does not perform well for high spline degrees [17]. Research into optimal and
robust smoothers for isogeometric multigrid methods is ongoing, and we can hope that insights gained in
the tensor product case will also result in better smoothers for the more complicated case of hierarchical
splines.
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