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An Algorithm for Low-rank Approximation of Bivariate
Functions using Splines

Irina Georgieva∗ Clemens Hofreither†

Abstract

We present an algorithm for the approximation of bivariate functions by “low-rank
splines”, that is, sums of outer products of univariate splines. Our approach is motivated
by the Adaptive Cross Approximation (ACA) algorithm for low-rank matrix approxima-
tion as well as the use of low-rank function approximation in the recent extension of the
chebfun package to two dimensions. We show that our proposed algorithm for low-rank
approximation in tensor product spline spaces can be efficiently implemented in terms
of the cross approximation algorithm for matrices using either full or row pivoting. We
present several numerical examples which show that the performance of the algorithm
is reasonably close to the best low-rank approximation using truncated singular value
decomposition and leads to dramatic savings compared to full tensor product spline in-
terpolation. The presented algorithm has interesting applications in isogeometric analysis
as a data compression scheme, as an efficient representation format for geometries, and in
view of possible solution methods which operate on tensor approximations.

1 Introduction
In recent years, low-rank and tensor approximation methods have increasingly found applica-
tions to many problems in numerical analysis and scientific computing. In boundary element
methods (BEM), it was found that the use of so-called H-matrices for the data-sparse represen-
tation of otherwise dense BEM matrices allows for the quasi-optimal realization of the BEM in
three dimensions. The core idea is the hierarchical decomposition of the computational domain
and the approximation of the resulting submatrices in low-rank form by the so-called Adaptive
Cross Approximation (ACA) algorithm. These approximations have been extensively studied,
and we can cite here only a few publications by Hackbusch [6], Hackbusch and Khoromskij
[8], and Bebendorf [1]. The idea of low-rank approximation has been extended to tensors of
orders higher than two, and the resulting tensor approximation schemes have been applied very
successfully to many computational problems. We refer to the survey [5] and the monograph
[7] as well as the references therein for an overview of this rapidly expanding field.

Isogeometric analysis (IGA) is a discretization method for partial differential equations
introduced in [9] based on the idea that geometry representations from industry-standard
CAD systems in terms of tensor product spline spaces should be used directly in analysis, and
also solution fields should be represented in such spline spaces. This approach has become
increasingly popular in the last decade, and tensor product B-spline and NURBS spaces still
seem to be the most popular choices as approximation spaces in the IGA literature.

Therefore, one motivation of the present work is to study to what extent low-rank approxi-
mation methods can yield gains in computational efficiency in isogeometric analysis. As a first
step, we study here the approximation of functions using low-rank approximations, which is
important both to give an idea of the savings that can be expected and as a prerequisite for the
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future development of PDE solvers operating on tensor approximations directly. We restrict
ourselves to the two-dimensional case, where we do not have to use the more sophisticated
models for high-dimensional tensor approximation and can instead rely on simple sums of rank
1 matrices.

Some related work is given by Townsend and Trefethen [13] who describe an extension of the
chebfun software to two dimensions. Chebfun is a Matlab package for numerical computation
with functions based on polynomial interpolation in Chebyshev nodes. The two-dimensional
extension, chebfun2, is based on low-rank approximation of bivariate functions and represent-
ing the univariate factors by the techniques developed in chebfun.

We base our algorithm on similar ideas, however we use splines instead of polynomial
interpolation as the underlying univariate representation. Furthermore, we show that the use
of a fixed tensor grid leads to advantages in the computational realization of the algorithm. We
also give an algorithm using row pivoting rather than the full pivoting used in [13], which leads
to dramatic time savings in large-scale approximation problems with only modestly increased
error.

The remainder of the paper is structured as follows.
In Section 2, we collect some preliminaries on low-rank approximation of bivariate functions,

in particular known results on best approximation by the truncated singular value decomposi-
tion, as well as on B-splines. We also state the well-known cross approximation algorithm for
low-rank approximation of matrices.

In Section 3, we develop our algorithm for low-rank approximation of bivariate functions.
We base our algorithm on the translation of the ACA algorithm to functions and then introduce
a discrete version of this algorithm by means of spline interpolation. We show how the resulting
method can be efficiently realized in terms of the matrix ACA algorithm and a postprocessing
step by spline interpolation.

In Section 4, we present several numerical examples. In particular, we study how close
the results from the cross approximation algorithm are to the best possible approximation by
truncated singular value decomposition, and we compare the errors obtained from full pivoting
and the more efficient row pivoting. We also make some observations on how the choice of the
underlying spline space influences the approximation quality of the algorithm.

In Section 5, we summarize the obtained results and discuss possible applications and
further developments.

2 Preliminaries

2.1 Low-rank approximation of bivariate functions and the singular
value decomposition

In this section, we summarize some results on the low-rank approximation of bivariate functions
and in particular the best approximation result by the truncated singular value decomposition
of a compact operator. In the matrix case, the fact that the best low-rank approximation can
be obtained from the singular value decomposition is a classical result due to Eckart and Young
[4]. The results for bivariate functions given here are the straightforward generalization of the
matrix case using the spectral theory of compact operators on Hilbert spaces.

Let
Ω = (−1, 1)2, f : Ω→ R.

Our aim is to find univariate functions and coefficients

uk, vk ∈ L2(−1, 1) and σk ∈ R ∀k ∈ {1, . . . ,K}

such that f is close in some sense to the low-rank approximation

fK(x, y) =

K∑
k=1

σk(uk ⊗ vk)(x, y) :=

K∑
k=1

σkuk(x)vk(y). (1)
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The best possible approximation for a given rank K is given by the truncated singular value
decomposition (SVD). Assuming that f ∈ L2(Ω), we introduce the integral operator

S : L2(−1, 1)→ L2(−1, 1)

u 7→
∫ 1

−1

f(x, ·)u(x) dx.

This is a Hilbert-Schmidt integral operator and thus compact, and therefore admits a singular
value decomposition (see, e.g., [15]). In other words, there exist two orthonormal bases of
L2(−1, 1) denoted by {uk : k ∈ N} and {vk : k ∈ N} as well as singular values σ1 ≥ σ2 ≥ . . . ≥ 0
tending to 0 such that

Sw =

∞∑
k=1

σk〈w, uk〉vk.

In particular, we have Su` = σ`v`. It follows that the expansion of f ∈ L2(Ω) in the orthonormal
basis (uk ⊗ v`)k,`∈N has the coefficients (δk,`σk)k,`, and hence

f(x, y) =
∑
k∈N

σkuk(x)vk(y).

By Parseval’s identity,
‖f‖2L2(Ω) =

∑
k∈N

σ2
k,

and the best rank-K approximation with respect to the L2-norm is given by the truncated
SVD

fK(x, y) :=

K∑
k=1

σkuk(x)vk(y)

with error

‖f − fK‖2L2(Ω) =

∞∑
k=K+1

σ2
k. (2)

2.2 B-splines and tensor product B-splines
We fix some spline degree p ∈ N and assume that we have a knot vector

t = (t1, t2, . . . , tN+p+1)

of monotonically increasing knots, tj ≤ tj+1, where both the first knot −1 = t1 = . . . = tp+1

and the last knot 1 = tN+1 = . . . = tN+p+1 are repeated p + 1 times each. Furthermore, we
assume that no interior knot is repeated more than p times. Such a knot vector is referred to
as open.

Over this knot vector, we introduce a B-spline basis of degree p (or order p + 1). There
are various ways to define the B-splines; we give here a recurrence formula for Bi,p, the i-th
normalized B-spline of degree p (see [2, 11]).

Bi,0(t) =

{
1, if t ∈ [ti, ti+1)

0, otherwise

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t
ti+p+1 − ti+1

Bi+1,p−1(t)

The set {B1,p, . . . , BN,p} is then the B-spline basis of degree p over the knot vector t. It satisfies
the partition of unity property. Each B-spline is a nonnegative polynomial of degree p in each
nonempty knot span [ti, ti+1). Furthermore, the support of Bi,p is [ti, ti+p+1].
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We choose the interpolation nodes

ξi = 1
p (ti+1 + . . .+ ti+p), i = 1, . . . , N,

also known as Gréville abscissae. Due to the Schönberg-Whitney theorem (see, e.g., de Boor
[3]), the node vector ξ = {ξ1, . . . , ξN} is unisolvent for the spline space of degree p. That
is to say that for arbitrary given values (yi)

N
i=1, we can find a unique interpolating spline

v ∈ span{B1,p, . . . , BN,p} such that v(ξi) = yi for all i = 1, . . . , N .
We denote by

B := span{Bi,p ⊗Bj,p : i, j ∈ {1, . . . , N}}

the space of tensor product splines of degree p over Ω with dimension N2, given in terms of
the tensor product B-spline basis. The tensor product of interpolation nodes

Ξ = ξ ⊗ ξ = {(ξi, ξj) : i, j ∈ {1, . . . , N}} ⊂ Ω

is unisolvent for B. Therefore, for arbitrary given values (yij)
N
i,j=1, we can find a unique

interpolating tensor product spline v ∈ B such that v(ξi, ξj) = yij for all i, j = 1, . . . , N .

2.3 Cross approximation of matrices
When applied to a matrix, the truncated SVD described in Section 2.1 gives the best possible
approximation for a rank K approximation in both the Frobenius and spectral norms [4].
However, the SVD is rather expensive to compute, requiring O(N3) operations for a matrix of
size N ×N . Therefore, more efficient low-rank approximation algorithms have been developed
which generally do not yield the best possible approximation, but often a reasonably close
result, and run faster than the SVD. The following algorithm is well-known in the literature and
typically referred to as “Cross Approximation” or “Adaptive Cross Approximation” (ACA). See
for instance the monographs [1] and [7] for the statement of the algorithm and some analytical
results.

In the following, we let 〈n〉 = {1, . . . , n} and write AI,J ∈ R|I|×|J| for the submatrix of A
formed by taking the rows from the index set I and the columns from the index set J .

Algorithm 1 (Cross approximation with row pivoting). Given is a matrix A ∈ Rm×n. Let
E(0) = A and i1 = 1. For k = 1, 2, . . ., choose jk such that

jk = arg max
j∈〈n〉

|E(k−1)
ik,j

|.

(If the ik-th row is zero and hence the maximum above is zero, increase ik by one until we find
a nonzero row. If it happens that ik > m in this search, reset ik to 1.) Then choose

uk = E
(k−1)
〈m〉,jk ∈ Rm, vk =

(
E

(k−1)
ik,〈n〉

)>
∈ Rn.

and set
E(k) = E(k−1) − σkukv>k

with
σk = 1/E

(k−1)
ik,jk

.

Choose the next row as ik+1 = arg maxi∈〈m〉 |(uk)i|. Then increase k and repeat.
We terminate the iteration once we find that the K-th error E(K) is small enough in some

suitable sense. The low-rank approximation AK to f is then given by

AK =

K∑
k=1

σkukv
>
k .
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Remark 1. As written, Algorithm 1 has space complexity O(mn + K max{m,n}) and time
complexity O(Kmn) due to the full update of the error matrix E(k) in every iteration. This is
faster than computing the SVD for K < min{m,n}, but still not tractable for large matrices.
However, in every iteration, the algorithm actually needs only the matrix entries in a single row
and a single column of E(k). For large matrices, it is therefore more efficient not to compute
and store E(k) explicitly, but to use the expression

E(k) = A−A(k) = A−
k∑
j=1

σjujv
>
j

for computing the needed rows and columns of E(k) on the fly. Thus we do not even even need to
store the matrix A; instead, it is sufficient to be able to generate its rows and columns as needed.
The resulting algorithm runs in O(K2 max{n,m}) and has space complexity O(K max{m,n}).
This reduction in complexity is the main motivation for using row pivoting over full pivoting,
since the latter will always require at least O(Kmn) operations.

3 Cross approximation of bivariate functions by spline in-
terpolation

3.1 Motivation: Cross approximation of bivariate functions
As motivation, we consider the following procedure which is the direct translation of Algo-
rithm 1 to bivariate functions.

Let e0 = f . For k = 1, 2, . . ., we find a pivot point by full pivoting,

(xk, yk) = arg max
(x,y)∈Ω

|ek−1(x, y)|,

or by row pivoting analogously to the matrix algorithm. Then set

ek(x, y) = ek−1(x, y)− ek−1(x, yk)ek−1(xk, y)

ek−1(xk, yk)
.

Note that this choice ensures that

ek(xk, y) = ek(x, yk) = 0 ∀(x, y) ∈ Ω,

and in fact it is easy to prove that this property is preserved throughout all iterations, i.e.,

ek(x`, y) = ek(x, y`) = 0 ∀(x, y) ∈ Ω and ` ≤ k.

A low-rank approximation to f is then given by (1) with the choices

σk = 1/ek−1(xk, yk), uk(x) = ek−1(x, yk), vk(y) = ek−1(xk, y).

This procedure is difficult to realize in practice. Finding the maximum over the error
function might be intractable, and storing the univariate functions uk and vk exactly is not
possible in general. Therefore, in the sequel we describe an algorithm which considers the
values of f only in a pre-determined grid and stores spline interpolants of uk and vk.

3.2 Cross approximation by spline interpolation
Let

Φ = span{φ1, φ2, . . . , φN} ⊂ L2(−1, 1)

denote a spline space with a B-spline basis φi = Bi,p of degree p with unisolvent point set
ξ = {ξ1, . . . , ξN} as introduced in Section 2.2. In other words, for arbitrary given values
(yi)

N
i=1, there exists a unique spline v ∈ Φ with v(ξi) = yi for all i = 1, . . . , N .
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Everything that follows can be immediately generalized to the case where we use different
spaces in x- and in y-directions, but to simplify the notation we use the same space Φ in both
directions.

Algorithm 2. Let e0 = f and x1 = ξ1. For k = 1, 2, . . ., find a row pivot element by

yk = arg max
y∈ξ

|ek−1(xk, y)|.

(If the maximum is zero, set xk to the next node from ξ until a non-zero row is found.) Then
find spline interpolants uk, vk ∈ Φ such that

uk(ξi) = ek−1(ξi, yk) ∀i = 1, . . . , N,

vk(ξi) = ek−1(xk, ξi) ∀i = 1, . . . , N,

and set
ek(x, y) = ek−1(x, y)− σkuk(x)vk(y) (3)

with
σk =

ek−1(xk, yk)

uk(xk)vk(yk)
= 1/ek−1(xk, yk).

Then set xk+1 to the next node from ξ after xk, increase k, and repeat.
We terminate the iteration once we find that the K-th error function eK is small enough.

The low-rank approximation fK to f is then given by (1).

Remark 2. Note that Algorithm 2 constructs a series of pivots (xk, yk) ∈ Ξ by maximizing the
magnitude of the pivot element over a single row in each iteration. The corresponding algorithm
with full pivoting is obtained if one instead maximizes the pivot over both dimensions in each
step, i.e.,

(xk, yk) = arg max
(x,y)∈Ξ

|ek−1(x, y)| ∀k = 1, . . . ,K.

Algorithm 2 satisfies a similar property as the procedure from Subsection 3.1 concerning
preservation of zeroes, however now only on discrete crosses formed from the grid points Ξ. To
be precise, we have the following statement.

Lemma 1. The k-th error function in Algorithm 2 vanishes on all rows and columns of the
point grid Ξ on which we have chosen a pivot element, that is,

ek(x`, ξj) = ek(ξj , y`) = 0 ∀j ∈ {1, . . . , N} and ` ≤ k.

Proof. By construction, we have that

σkuk(xk)vk(ξj) = ek−1(xk, ξj) and σkuk(ξj)vk(yk) = ek−1(ξj , yk) ∀j = 1, . . . , N.

Due to the definition of ek in (3), we obtain

ek(xk, ξj) = ek(ξj , yk) = 0 ∀j = 1, . . . , N. (4)

We now consider the next update, where we see that

uk+1(xk) = ek(xk, yk+1) = 0 and vk+1(yk) = ek(xk+1, yk) = 0

due to (4), and it follows that

ek+1(xk, ξj) = ek+1(ξj , yk) = 0 ∀j = 1, . . . , N.

By induction, the statement of the lemma follows.
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Remark 3. For each of the interpolants uk and vk, we denote their coefficient vectors with
respect to the basis {φi} by uk, vk ∈ RN . Then we have

fK(x, y) =

K∑
k=1

(
N∑
i=1

uk,iφi(x)

) N∑
j=1

vk,jφj(y)


=

N∑
i,j=1

φi(x)φj(y)

(
K∑
k=1

uk,ivk,j

)
=

N∑
i,j=1

φi(x)φj(y)

[
K∑
k=1

ukv
>
k

]
i,j

.

This shows that fK lies in the tensor product spline space B and has the coefficient matrix∑K
k=1 ukv

>
k with rank at most K.

The above remark together with Lemma 1 implies that Algorithm 2 converges to the exact
tensor product interpolant after at most N iterations. However, we can usually achieve a good
approximation already after K � N iterations and thus obtain a low-rank approximation.

3.3 Reduction to the matrix approximation algorithm
We observe that Algorithm 2 depends only on the matrix

F := f(Ξ) := (f(ξi, ξj))
N
i,j=1

of function values of f in Ξ. In fact, we have e0(Ξ) = f(Ξ), and then by construction ek(Ξ) =
ek−1(Ξ) − σkckr>k , where ck and rk are a column and a row, respectively, of ek−1(Ξ). The
functions uk and vk are the interpolants of the vectors ck and rk, respectively, at the nodes ξ.

In this formulation, it becomes clear that we never need the function values of uk and vk
in any other points but ξ, and these values are given by ck and rk. Thus, Algorithm 2 is
equivalent to applying Algorithm 1 to F , resulting in the low-rank approximation

FK =

K∑
k=1

ckr
>
k

and finally, as a post-processing step, computing the spline interpolants uk, vk ∈ Φ as

uk(ξi) = ck,i, vk(ξi) = rk,i ∀k = 1, . . . ,K, i = 1, . . . , N.

The above discussion leads to a very efficient implementation of the approximation pro-
cedure. As discussed after Algorithm 1, it is not needed to compute the entire matrix F
beforehand; instead one can compute single rows and columns of it as needed by the cross
approximation algorithm. Note that the same is not true, in general, for the coefficient matrix
of the tensor product interpolant of f , which may depend on all entries of F .

The main part of the algorithm is the computation of the low-rank matrix FK . We point
out that the computational effort for this step does not depend on the spline degree p, but only
on the dimension N of the used spline space Φ. Only the final interpolation step to obtain uk
and vk becomes more expensive when increasing the degree.

4 Numerical Experiments
Below we consider the approximation of three different functions by the proposed algorithm.

4.1 Example 1
We consider the off-center mexican hat function in (−1, 1)2 (see Figure 1) given by

f(x, y) =
sin(5π((x− 0.2)2 + y2))

5π((x− 0.2)2 + y2)

7



Figure 1: (Example 1) Mexican hat function f .

and fix a uniform interpolation grid Ξ of 100 × 100 nodes. Let F = f(Ξ) denote the ma-
trix of function values. We determine the approximation error of full and row pivoted cross
approximation of F compared to the best possible approximation by truncated SVD.

0 2 4 6 8 10 12 14 16
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10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

row

full

SVD

Figure 2: (Example 1) Comparison of error ‖F − FK‖C for approximation of the matrix F by
truncated SVD, cross approximation with full pivoting, cross approximation with row pivoting
for different ranks.

Figure 2 shows the maximum matrix entry error ‖F −FK‖C for different ranks K by these
three approximation methods. (By ‖ · ‖C we denote the Chebyshev matrix norm, i.e., the
maximum entrywise error.) The plot indicates that both cross approximation methods achieve
an asymptotically optimal error. Keeping in mind that row pivoting is much cheaper in terms
of computational complexity, this makes cross approximation with row pivoting seem very
attractive in practice.

Next we set up spline spaces Φ(N, p) of different degrees p and dimensions N and compute
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Figure 3: (Example 1) L2 errors with different spline degrees p plotted over the number of
degrees of freedom n = 2KN .

low-rank spline approximations to f by the fast cross approximation algorithm described in
Section 3.3 with full pivoting. In each run, the rankK at which to terminate the approximation
algorithm was chosen as K(N, p) such that the L2-error ‖f−fK(N,p)‖L2(Ω) was not much larger
than the interpolation error in the full tensor product spline space B = Φ(N, p)⊗Φ(N, p) with
the same knots and degree.

In Figure 3, we plot the resulting L2-errors over the number of degrees of freedom that we
need to store, n = 2NK(N, p). We observe that using cross approximation, we can almost
achieve the convergence rate O(n−(p+1)) for the L2-error. Using tensor product spline inter-
polation in B with n = Nd degrees of freedom, it is known that we can at best hope for the
rate O(n−(p+1)/d) (see, e.g., [12]).

4.2 Example 2
We consider the function

f(x, y) =
2

3

(
exp(−

√
(10x− 3)2 + (10y − 3)2) + exp(−

√
(10x+ 3)2 + (10y + 3)2)

)
with two exponential peaks (see Figure 4, left). The error function for a rank 12 spline ap-
proximation with degree p = 2 and N = 200 intervals computed using row pivoting is shown
in the right plot of Figure 4. Due to the presence of singularities, increasing the spline degree
does not significantly reduce the approximation error for this function, and therefore all our
tests are done with p = 2 in this example.

We perform low-rank approximation as described in Section 3.3 using row pivoting, degree
p = 2, and varying N . The resulting L2-errors are plotted in Figure 5 over the rankK. For each
choice of N , the algorithm converges to an approximation with L2-error essentially identical
to that of full tensor product spline interpolation. For instance, for N = 400, the optimal
error is reached with rank K = 18, which requires storing 2KN = 14 400 coefficients, whereas
storing the tensor product interpolant achieving the same error would require N2 = 160 000
coefficients.
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Figure 4: (Example 2) Left: Function f . Right: Error f − f12 of rank 12 spline approximation
with p = 2, N = 200.
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Figure 5: (Example 2) L2 errors plotted over rank K, with degree p = 2 and varying N .
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4.3 Example 3
We consider the function

f(x, y) =
cos(10x(1 + y2))

1 + 10(x+ 2y)2
,

an example lifted from [14]. See Figure 6 for a contour plot of the function.
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Figure 6: (Example 3) Contour plot of function f .

We perform low-rank approximation of this functions using splines of varying degree p
according to the algorithm from Section 3.3. We compare the full pivoting strategy and the
more efficient row pivoting strategy in terms of the resulting L2 errors. In each test, we use
the same number N = 200 of knot spans for the spline spaces.
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Figure 7: (Example 3) L2 errors plotted over rank K for N = 200 and varying spline degree
p. Left: full pivoting. Right: row pivoting.

Figure 7 shows the L2 errors for low-rank approximation plotted over the rank K using
full pivoting (left plot) and row pivoting (right plot). We observe that both pivoting strategies
converge to the same error level, and row pivoting seems to require only slightly more iterations.
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In both plots, the dashed line labeled “TSVD” is an approximation of the best possible rank
K error using truncated SVD as given by (2).

The obtained final errors for sufficiently high rank are essentially the same as if using full
tensor product spline interpolation. Therefore, and since the function f is smooth, increasing
the spline degree p reduces the obtainable error if one is willing to increase the rank of the
approximation. It is interesting that if only low accuracy is required, increasing the degree has
no benefits as the speed of convergence in the initial part of the plot is essentially independent
of the spline degree, and seems to depend only on the decay of the singular values of the
function f .

5 Conclusion and Outlook
We have presented an algorithm for the approximation of bivariate functions by sums of sep-
arable splines which is based on the idea of cross approximation. The resulting approximants
lie in tensor product spline spaces, but typically require the storage of much fewer degrees of
freedom to achieve the same accuracy as full tensor product interpolants. Indeed, we have seen
that using low-rank approximation we can achieve approximation errors close to O(n−(p+1)),
where n is the number of degrees of freedom, whereas using tensor product interpolation in d
dimensions we can at best hope for the rate O(n−(p+1)/d). Furthermore, the complexity con-
siderations in Remark 1 show that using row pivoting we can treat very large approximation
problems, even to the point where the tensor product interpolant would not fit into memory
anymore and/or be too expensive to compute, as long as the rank K is relatively small.

There are three parameters to be chosen in our algorithm: the spline degree p, the dimension
of the univariate spline spacesN , and the approximation rankK. The parameters (p,N) should
be chosen according to the smoothness of the function to be approximated and the final desired
accuracy. For the rank K, there is an “optimal” choice depending on (p,N) in the sense that
there is usually a rank where the low-rank approximant achieves the same error as tensor
product interpolation with N2 degrees of freedom. Increasing the rank beyond this point does
not further decrease the error since the low-rank approximations lie in the space of tensor
product splines.

We have demonstrated the approximation properties of our algorithm using several numer-
ical examples. In particular, we have seen that the use of row pivoting, which is much faster
for large problems, does not significantly increase the approximation error. In future work, we
plan to prove rigorous error bounds for this algorithm.

Low-rank approximations can be of great benefit in isogeometric analysis, where geometries
are often represented in tensor product spaces. Applying the low-rank approximation algorithm
as a form of compression can result in greatly reduced storage requirements as well as enable
faster assembling of stiffness matrices. Furthermore, the large savings obtained here motivate
the study of solution methods for partial differential equations discretized using isogeometric
schemes which work directly on low-rank approximations of the input data and also produce
a solution in this format. Promising results in this direction in other fields are given in [10].
The algorithm we presented could then be used as a preprocessing step to convert input data
given in tensor product or analytic form to the low-rank format.

A crucial extension of the present method will be to higher dimensions. The structure of
tensors with more than two dimensions is known to be much more complicated than that of
matrices. In particular, the best approximation in “canonical” form, that is, as a sum of rank
1 tensors, is known to be an ill-posed problem in general. To work around this problem, other
formats such as Tucker decomposition, tensor train decomposition, or hierarchical Tucker de-
composition are commonly used. We refer to the survey [5] and the references therein for the
related literature. Nevertheless, canonical approximations can still be useful in applications,
and it would be interesting to study a generalization of the present algorithm to higher dimen-
sions. Hackbusch [7] gives some details on generalizing the cross approximation algorithm to
tensors of order greater than two.
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