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Approximation error estimates and inverse
inequalities for B-splines of maximum smoothness

Stefan Takacs, Thomas Takacs

February 11, 2015

Abstract In this paper, we will give approximation error estimates as well
as corresponding inverse inequalities for B-splines of maximum smoothness,
where both the function to be approximated and the approximation error are
measured in standard Sobolev norms and semi-norms. The presented approx-
imation error estimates do not depend on the polynomial degree of the splines
but only on the mesh size.

We will see that the approximation lives in a subspace of the classical B-
spline space. We show that for this subspace, there is an inverse inequality
which is also independent of the polynomial degree. As the approximation
error estimate and the inverse inequality show complementary behavior, the
results shown in this paper can be used to construct fast iterative methods for
solving problems arising from isogeometric discretizations of partial differential
equations.

1 Introduction

The objective of this paper is to prove approximation error estimates as well
as corresponding inverse estimates for B-splines of maximum smoothness. The
presented approximation error estimates do not depend on the degree of the
splines but only on the mesh size. All bounds are given in terms of classical
Sobolev norms and semi-norms.
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In approximation theory, B-splines have been studied for a long time and
many properties are already well known. We do not go into the details of the
existing results but present the results of importance for our study throughout
this paper.

The emergence of Isogeometric Analysis, introduced in [12], sparked new
interest in the theoretical properties of B-splines. Since isogeometric Galerkin
methods are aimed at solving variational formulations of differential equations,
approximation properties measured in Sobolev norms need to be studied.

The results presented in this paper improve the results given in [14,8,1]
by explicitly studying the dependence on the polynomial degree p. Such an
analysis was done in [2]. However, the results there, do not cover (for p > 3)
the most important case of B-splines of maximum smoothness k = p− 1. Un-
like the aforementioned papers we only consider approximation with B-splines
in the parameter domain within the framework of Isogeometric Analysis. A
generalization of the results to NURBS as well as the introduction of a geom-
etry mapping, as presented in [1], is straightforward and does not lead to any
additional insight.

Note that a detailed study of direct and inverse estimates may lead to a
deeper understanding of isogeometric multigrid methods and give insight to
suitable preconditioning methods. We refer to [11,9], where similar techniques
were used.

We now go through the main results of this paper. For simplicity, we con-
sider the case of one dimension first. Here, without loss of generality, we assume
that Ω = (0, 1).

For this domain we can introduce for any n ∈ N := {1, 2, 3, . . .} a uniform
gridMn by subdividing Ω into subintervals (elements) of length hn := 1

n . On
these grids we can introduce spaces of spline functions.

Definition 1 Sp,k,n(Ω) is the space of all spline functions in Ck(Ω), which
are piecewise polynomials of degree p on the mesh Mn, i.e. polynomials of
degree p on each element of the mesh.

Here and in what follows, C0(Ω) is the space of all continuous functions map-
ping Ω → R. For k > 0, Ck(Ω) is the space of all k times continuously
differentiable functions. For completeness, we have to define also C−1(Ω) as
the space of all Riemann-integrable functions Ω → R.

The main result of this paper is the following.

Theorem 1 For each u ∈ H1(Ω), each n ∈ N and each p ∈ N, there is a
spline approximation up,p−1,n ∈ Sp,p−1,n(Ω) such that

‖u− up,p−1,n‖L2(Ω) ≤ 2
√

2 hn|u|H1(Ω)

is satisfied.

Here and in what follows, L2 is the standard Lebesgue space of square
integrable function and Hr denotes the standard Sobolev space of order r ≥ 0
with standard norms and semi-norms.
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Remark 1 Obviously Sp,k,n(Ω) ⊇ Sp,p−1,n(Ω) for all 0 ≤ k ≤ p − 1. So, The-
orem 1 is also valid in that case. However, for this case there might be better
estimates for these larger B-spline spaces. Moreover, Theorem 1 is also satis-
fied in the case of having repeated knots, as this is just a local reduction of the
continuity (which just enlarges the corresponding space of spline functions).

As we are mostly interested in the case k = p−1, here and in what follows,
we will use Sp,n(Ω) := Sp,p−1,n(Ω).

Below, we will introduce a subspace S̃p,n(Ω) ⊆ Sp,n(Ω) (cf. Definition 3)

and show that the spline approximation is even in the space S̃p,n(Ω) (cf. Corol-

lary 1). Note that for S̃p,n(Ω) there is also a corresponding inverse inequality.

Theorem 2 For each n ∈ N and each p ∈ N,

|up,n|H1(Ω) ≤ 2
√

3h−1n ‖up,n‖L2(Ω) (1)

is satisfied for all up,n ∈ S̃p,n(Ω).

Remark 2 This inverse inequality does not extend to the whole space Sp,n(0, 1).
Here it is easy to find a counterexample: The function up,n, given by

up,n(x) =

{
(1− x/hn)p for x ∈ [0, hn)
0 for x ∈ [hn, 1],

is a member of the space Sp,n(0, 1). Straight-forward computations yield

|up,n|H1(0,1)

‖up,n‖L2(0,1)
=

√
2p+ 1

2p− 1
p h−1n ,

which cannot be bounded from above by a constant times h−1n uniformly in p.

Will moreover show that both the approximation error estimate and the
inverse inequality are sharp up to constants (Corollaries 2 and 3).

The remainder of this paper is organized as follows. In Section 2, we give
the necessary definitions and briefly discuss the known approximation error
results. The Sections 3 and 4 are dedicated to the proof of the approximation
error estimate (Theorem 1). The inverse inequality (Theorem 2) will be proven
in Section 5. In the following two sections, we generalize those results: In
Section 6 we consider higher Sobolev indices and in Section 7, the results are
generalized to two or more dimensions.

2 Known results and spline spaces

In this section, we first recall some known results on spline approximation. In
the second subsection, we give the definitions that are needed throughout the
paper and, moreover, we extend some known results to the periodic case.



4 Stefan Takacs, Thomas Takacs

2.1 Known approximation results

We start with a well-known approximation error estimate which relates – for a
fixed polynomial degree p and a fixed smoothness k – the approximation error
and the grid size. The result is well-known in literature, cf. [14], Theorem 6.25
or [8], Theorem 7.3. In the framework of Isogeometric Analysis, such results
have been used, e.g., in [1], Lemma 3.3.

Theorem 3 For each r ∈ N0 := {0, 1, 2, 3, . . .}, each k ∈ N0, each q ∈ N and
each p ∈ N, with 0 ≤ r ≤ q ≤ p + 1 and r − 1 ≤ k < p, there is for each
u ∈ Hq(Ω) a spline approximation up,k,n ∈ Sp,k,n(Ω) such that

|u− up,k,n|Hr(Ω) ≤ C(p, k, r, q)hq−rn |u|Hq(Ω)

is satisfied, where C(p, k, r, q) is a constant that might depend on p, k, r and
q. C(p, k, r, q) is independent of the gird size hn.

This lemma is valid for tensor-product spaces in any dimension and gives a
local bound for locally quasi-uniform knot vectors. However, the dependence
of the constant on the polynomial degree has not been derived.

A major step towards p-dependent estimates was presented in [2], Theo-
rem 2, where an estimate with an explicit dependence on p, k, r and q was
given. However, there the continuity is limited by the upper bound 1

2 (p − 1).
In our notation, the theorem reads as follows.

Theorem 4 For each r ∈ N0, each k ∈ N0, each q ∈ N and each p ∈ N with
0 ≤ r ≤ k + 1 ≤ q ≤ p + 1 and k ≤ 1

2 (p − 1), there is for each u ∈ Hq(Ω) a
spline approximation up,k,n ∈ Sp,k,n(Ω) such that

|u− up,k,n|Hr(Ω) ≤ Chq−rn (p− k)−(q−r)|u|Hq(Ω)

is satisfied, where C is a constant that is independent of p, k, r, q and the grid
size hn.

Remark 3 The requirement q ≥ k + 1 can be dropped easily. First note that

Π
(r)
p,k,n, the Hr-orthogonal projection operator from Hr(Ω) to Sp,k,n(Ω), is the

optimal interpolation and satisfies both,

|u−Π(r)
p,k,nu|Hr(Ω) ≤ Chq−rn (p− k)−(q−r)|u|Hq(Ω) and

|u−Π(r)
p,k,nu|Hr(Ω) ≤ |u|Hr(Ω).

Due to the Hilbert space interpolation theorem (Theorem 3.2.23 in [6]), we
obtain that

|u−Π(r)
p,k,nu|Hr(Ω) ≤ ĈC(q̂−r)/(q−r)hq̂−rn (p− k)−(q̂−r)|u|H q̂(Ω)

holds for any (real) q̂ that satisfies r ≤ q̂ ≤ q. Here, Ĉ only depends on q̂.
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Again, the original result was stated for locally quasi-uniform knots. For
any p > 3 the relevant case k = p − 1, which we consider, is not covered by
this theorem.

Similar results to Theorem 1 are known in approximation theory, cf. [13].
There, however, different norms have been discussed. Hence we do not go into
the details.

In [10], it was suggested and confirmed by numerical experiments that
Theorem 1 is satisfied. A proof was however not given.

2.2 Spline spaces

For any function u ∈ H1(0, 1), the symmetric function w : (−1, 1)→ R, given
by w(x) := u(|x|), also satisfies w ∈ H1(−1, 1). Because w(−1) = w(1), the
function w can be extended in a periodic way to R.

The periodic extension is still symmetric, i.e. w(−x) = w(x) for all x ∈ R,
and can be approximated by a periodic and symmetric spline. Here and in
what follows, the term symmetric spline refers to a spline that is an even
function, i.e., to a spline satisfying wp,n(x) = wp,n(−x). The space of periodic
splines is given by the following definition.

Definition 2 Sperp,n (−1, 1) is the space of all wp,n ∈ Sp,n(−1, 1) that satisfy
the periodicity condition

∂l

∂xl
wp,n(−1) =

∂l

∂xl
wp,n(1) for all l ∈ N0 with l < p. (2)

The restriction of a symmetric spline function wp,n ∈ Sperp,n (−1, 1) to the
interval (0, 1) is again a function in up,n ∈ Sp,n(0, 1). However, we know more:
As wp,n is assumed to be a symmetric spline, i.e. an even function, we have

∂l

∂xl
wp,n(x) = (−1)l

∂l

∂xl
wp,n(−x) for all l ∈ N0.

By plugging x = 0 into this condition, we obtain that all odd derivatives vanish
for x = 0. By plugging x = 1 into the condition, we obtain together with (2)
that also for x = 1 all odd derivatives vanish.

Concluding, the restricted function up,n is the member of some space

S̃p,n(0, 1), which can be characterized by the following definition.

Definition 3 S̃p,n(0, 1) is the space of all up,n ∈ Sp,n(0, 1) that satisfy the
following symmetry condition:

∂2l+1

∂x2l+1
up,n(0) =

∂2l+1

∂x2l+1
up,n(1) = 0 for all l ∈ N0 with 2l + 1 < p.

We can extend Theorem 3 for k = p − 1 to the following lemma stating
that the approximation error estimate is still satisfied if we restrict ourselves
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to periodic splines. Let Hq,per(−1, 1) be the space of all w ∈ Hq(−1, 1) that
satisfy the periodicity condition

∂l

∂xl
w(−1) =

∂l

∂xl
w(1) for all l ∈ N0 with l < q.

The following lemma holds.

Lemma 1 For each r ∈ N0, each q ∈ N and each p ∈ N with 0 ≤ r ≤ q ≤ p+1
and r − 1 < p, there is for each w ∈ Hq,per(−1, 1) a spline approximation
wp,n ∈ Sperp,n (−1, 1) such that

|w − wp,n|Hr(−1,1) ≤ C(p, r, q)hq−rn |w|Hq(−1,1)

is satisfied, where C(p, r, q) is a constant that might depend on p, r and q.
C(p, r, q) is independent of the gird size hn.

Proof We make use of the fact that the proof in [14] uses local projections. So,
there is a local approximation error estimate available, cf. [14], Theorem 6.24:
The value of the approximation Qp,nw of a function w at a certain element
Ii := (xi, xi+1) only depends on the values of the function to be approximated

in a certain neighborhood Ĩi := (xi − p hn, xi+1 + p hn). We assume that the

grid is fine enough such that Ĩi ⊆ (xi − 1
2 , xi + 1

2 ). Due to [14], Theorem 6.24,
the following local estimate

|w −Qp,kw|Hr(Ii) ≤ C̃(p, r, q)hq−rn |w|Hq(Ĩi)
. (3)

is satisfied for a constant C̃(p, r, q) which is independent of the grid size hn.
The function w can be extended periodically to R. For this function, we

can construct a spline approximation wp,n := Qp,kw, defined on R. Based on

the local error estimates (3) and using Ĩi ⊆ (xi − 1
2 , xi + 1

2 ), we obtain

|w − wp,n|Hr(−1,1) ≤ C̃(p, r, q) p hq−rn |w|Hq(−3/2,3/2).

Because w is periodic, we obtain

|w − wp,n|Hr(−1,1) ≤ 2 C̃(p, r, q) p hq−rn |w|Hq(−1,1).

This finishes the proof. ut

The next step is to introduce bases for the B-spline spaces which we have
defined in this section to make it easier to work with them and to make the
reader more familiar with the function spaces. For the construction of the
basis we assume that n > p, i.e., that the grid is fine enough not to have basis
functions that interact with both end points of the grid. Note that we do not
need this requirement for the proofs of the main theorems.

On R, B-spline basis functions (cardinal B-splines) are typically defined as
follows, cf. [14], (4.22).
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Definition 4 The B-splines of degree p = 0 are given for any n ∈ N by

ψ
(i)
0,n(x) =

{
1 for x ∈ (ihn, (i+ 1)hn],
0 else,

where i ∈ Z. The B-splines of degree p > 0 are for any n ∈ N given by the
recurrence formula

ψ(i)
p,n(x) =

x− i hn
p hn

ψ
(i)
p−1,n(x) +

(p+ i+ 1) hn − x
p hn

ψ
(i+1)
p−1,n(x), (4)

where i ∈ Z.

We obtain by construction that supp ψ
(i)
p,n = [ihn, (i+ 1 + p)hn] or, equiv-

alently, that for i ∈ {−p, n} the intersection of the support with Ω = (0, 1) is
non-empty.

For Sperp,n (0, 1), we introduce a B-spline basis as follows:

{ϕ(i)
p,n := ψ(i)

p,n + ψ(i−n)
p,n : i = 1, . . . , n}. (5)

To show that this is actually a basis, we observe that the functions ϕ
(i)
p,n are

linear independent because the cardinal B-spline functions ψ
(i)
p,n are linear in-

dependent and each function ψ
(i)
p,n only contributes to one of the functions

ϕ
(i)
p,n. The number of functions in (5) is n, so it coincides with the dimension

of Sp,n(0, 1) minus the number of periodicity conditions. Hence we conclude
that (5) is a basis. If we omit the functions which vanish in (0, 1), we obtain

{ϕ(i)
p,n = ψ(i)

p,n : i = 1, . . . , n−p−1}∪{ϕ(i)
p,n = ψ(i)

p,n+ψ(i−n)
p,n : i = n−p, . . . , n}.

For S̃p,n(0, 1), we may introduce a B-spline basis as follows:

{ψ(−i−p−1)
p,n + ψ(i)

p,n + ψ(−i+2n−p+1)
p,n : i = −

⌈p
2

⌉
, . . . , n−

⌊p
2

⌋
}.

Again, after omitting the vanishing terms and eliminating duplicates, we derive
for odd p the basis

{ψ(−(p+1)/2)
p,n }

∪ {ψ(i)
p,n + ψ(−i−p−1))

p,n : i = −(p− 1)/2, . . . ,−1}

∪ {ψ(i)
p,n : i = 0, . . . , n− p}

∪ {ψ(i)
p,n + ψ(−i+2n−p+1))

p,n : i = n− p+ 1, . . . , n− (p+ 1)/2}

∪ {ψ(n−(p−1)/2)
p,n }

and for even p the basis

{ψ(i)
p,n + ψ(−i−(p+1))

p,n : i = −p/2, . . . ,−1}

∪ {ψ(i)
p,n : i = 0, . . . , n− p}

∪ {ψ(i)
p,n + ψ(n−(p−1)−i)

p,n : i = n− p+ 1, . . . , n− p/2}.
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Fig. 1 B-spline basis functions for S̃1,n(0, 1) and S̃2,n(0, 1)
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Fig. 2 B-spline basis functions for S̃3,n(0, 1) and S̃4,n(0, 1)

Again, we observe that these functions are linear independent. Moreover, we
see that the dimension of the space corresponds to the dimension of Sp,n
minus the number of 2 bp/2c boundary conditions. This again indicates that
the presented sets are bases.

Remark 4 By construction, the latter bases for S̃p,n(0, 1) form a partition of
unity. Moreover, all basis functions are obviously non-negative.

Fig. 1 and 2 depict the B-spline basis functions that span S̃p,n(0, 1). Here,
the basis functions that have an influence at the boundary are plotted with
solid lines. The basis functions that have zero derivatives up to order p − 1
at the boundary coincide with standard B-spline functions. They are plotted
with dashed lines.

If we compare the pictures of the B-spline basis functions in S̃p,n(0, 1)
(Fig. 1 and 2) with the standard B-spline basis functions for Sp,n(0, 1) (Fig. 3
and 4) obtained from a classical open knot vector, we see that the latter ones
have more basis functions that are associated with the boundary. This can
also be seen by counting the number of degrees of freedom, cf. Table 1.

3 An estimate for two consecutive grids

In this section we will show an approximation error estimate for two consecu-
tive grids for the periodic case. To be able to do a proper telescoping argument,
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Fig. 3 B-spline basis functions for S1,n(0, 1) and S2,n(0, 1)
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Fig. 4 B-spline basis functions for S3,n(0, 1) and S4,n(0, 1)

dim Sp,n(0, 1) dim Sper
p,n (0, 1) dim S̃p,n(0, 1)

p even n + p n n
p odd n + p n n + 1

Table 1 Degrees of freedom, where n is the number of elements and n + 1 is the number
of nodes.

we have to analyze a fixed interpolation operator. So, we show that

‖(I −Πp,n)wp,2n‖L2(−1,1) ≤
√

2 hn|wp,2n|H1(−1,1) (6)

holds for all wp,2n ∈ Sperp,2n(−1, 1), where I is the identity and Πp,n is the

H1-orthogonal projection operator, given by the following definition.

Definition 5 For each w ∈ H1,per(−1, 1), Πper
p,nw is the solution of the fol-

lowing problem. Find wp,n ∈ Sperp,n (−1, 1) such that

(wp,n, w̃p,n)H̃1(−1,1) = (w, w̃p,n)H̃1(−1,1)

for all w̃p,n ∈ Sperp,n (−1, 1), where

(u, v)H̃1(−1,1) := (u′, v′)L2(−1,1) +

(∫ 1

−1
u(x)dx

)(∫ 1

−1
v(x)dx

)
.
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The proof will be done using Fourier analysis. For this purpose, we have
to introduce a matrix-vector formulation of (6). Here, we follow the classical
approaches that are used in finite element (FEM) approaches as well as in Iso-
geometric Analysis (IGA). So we first introduce the standard mass matrix and
give some results. Then we introduce standard stiffness matrix and intergrid
transfer matrices as it is common for standard multigrid methods.

3.1 Some results for the standard mass matrix

Using the B-spline basis, we can introduce a standard mass matrix Mp,n =

(m
(i,j)
p,n )2n−1i,j=0, where

m
(i,j)
p,k = (ϕ

(i)
p,k, ϕ

(j)
p,k)L2(−1,1).

For an equidistant grid, we can derive the coefficients of the mass matrix
explicitly. Due to [17], we have

m(i,j)
p,n = hn

E(2p+ 1, p+ ξ)

(2p+ 1)!
,

where ξ ∈ {−n/2, . . . , n/2 − 1} such that i − j ≡ ξ mod n. Here, E(n, k) are
the Eulerian numbers, which satisfy the recurrence relation

E(n, k) = (n− k)E(n− 1, k − 1) + (k + 1)E(n− 1, k)

and the initial condition

E(0, j) =

{
1 for j = 0
0 for j 6= 0

.

The following lemma relates the mass matrices for two polynomial degrees.

Lemma 2 For all p ∈ N, all n ∈ N and all vectors wn ∈ R2n, the inequality

‖wn‖Mp,n ≤ 2‖wn‖Mp−1,n (7)

is satisfied.

Proof Take σ := min{0,minwn} and define un := wn − σen, where en :=
(1, 1, 1, . . .)T ∈ R2n. Then we have for q ∈ {p− 1, p}

‖wn‖2Mq,n
= ‖un‖2Mq,n

− 2σ(un,Mq,nen)`2 + σ2(en,Mq,nen)`2 .

As the B-splines form a partition of unity (Theorem 4.20 in [14]), we have
Mq,nen = h−1n en, so

‖wn‖2Mq,n
= ‖un‖2Mq,n

− 2σh−1n (un, en)`2 + σ2h−1n (en, en)`2 .

Note that σ ≤ 0 and un ≥ 0. So, −2σh−1n (un, en)`2 + σ2h−1n (en, en)`2 ≥ 0.
Hence (7) is a consequence of

‖un‖Mp,n
≤ 2‖un‖Mp−1,n

. (8)
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For un = (ui)
2n−1
i=0 and q ∈ {p− 1, p}, we have

‖un‖2Mq,n
=

∫ 1

0

fq(x)2dx, with fq(x) :=

n∑
i=0

uiϕ
(i)
q,n(x),

where the basis function ϕ
(i)
q,n are as specified in (5). Using the recurrence

formula (4), we obtain

fp(x) =

2n−1∑
i=0

uiϕ
(i)
p,n(x)

=

2n−1∑
i=0

ui

(x− ihn
phn

ϕ
(i)
p−1,n(x) +

(p+ i+ 1)hn − x
phn

ϕ
(i−1)
p−1,n(x)

)
=

2n−1∑
i=0

( x− ihn
phn︸ ︷︷ ︸
Ai :=

ui +
(p+ i)hn − x

phn︸ ︷︷ ︸
Bi :=

ui−1

)
ϕ
(i)
p−1,n(x).

We have (by construction) that ϕ
(i)
p−1,n(x) ≥ 0, ui ≥ 0 and ui−1 ≥ 0. Moreover,

on the support of ϕ
(i)
p−1,n(x) we have Ai ≤ 1 and Bi ≤ 1. So we obtain

fp(x) ≤
2n−1∑
i=0

(ui + ui−1)ϕ
(i)
p−1,n(x) =

2n−1∑
i=0

(un + Snun)iϕ
(i)
p−1,n(x),

where Sn is a shift operator, mapping (u0, u1, . . . , un−1) to (un−1, u0, . . . , un−2).
Hence we conclude

‖un‖Mp,n
=

(∫ 1

0

f2p (x)dx

)1/2

≤ ‖un + Snun‖Mp−1,n

≤ ‖un‖Mp−1,n + ‖Snun‖Mp−1,n = 2‖un‖Mp−1,n ,

where the last equation is due to the fact that Mp−1,n is a simple, periodic
band-matrix. This finishes the proof. ut

3.2 Fourier analysis and the symbol of the mass matrix

A. Brandt has proposed to use Fourier series to analyze multigrid methods, cf.
[5]. Fourier analysis provides a framework to determine sharp bounds for the
convergence rates of multigrid methods and other iterative solvers for problems
arising from partial differential equations. This is different to classical analysis,
which typically yields qualitative statements only. For a detailed introduction
into Fourier analysis, see, e.g., [16].

Besides the analysis of multigrid solvers, the idea of Fourier analysis can
be carried over to the computation of approximation error estimates, as we
will see in the remainder of this section.
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The key idea of Fourier analysis is to represent the vectors un ∈ Rn in
terms of a Fourier series

un =
∑
θ∈Θn

un,θ (eiθl)2n−1l=0︸ ︷︷ ︸
φ
n
(θ) :=

,

where Θn := {0, hnπ, 2hnπ, 3hnπ, . . . , (2n− 1)hnπ}. We observe that

Mp,nφn(θ) = hn

p∑
l=−p

E(2p+ 1, p+ l)

(2p+ 1)!
eiθl︸ ︷︷ ︸

M̂p,n(θ) :=

φ
n
(θ) (9)

is satisfied, i.e., that φ
n
(θ) is an eigenvector of Mp,n. In Fourier analysis, the

eigenvalue M̂p,n(θ) is called the symbol of Mp,n.

As the factor E(2p+1,p+l)
(2p+1)! in (9) is symmetric in l, we have

M̂p,n(θ) = hn

p∑
l=−p

E(2p+ 1, p+ l)

(2p+ 1)!
cos(lθ). (10)

The symbol is better characterized by the following lemma.

Lemma 3 M̂p,n(θ) ≥ 0 for all θ. Moreover, M̂p,n(θ1) ≤ M̂p,n(θ2) for all θ1
and θ2 where cos θ1 ≤ cos θ2.

Proof For c ∈ [0, 2], we define

fp,n(c) := h−1n M̂p,n(arccos(c− 1)).

The statement of the lemma is now equivalent to

– h−1n M̂p,n(arccos(−1)) = fp,n(0) > 0 and

– h−1n M̂p,n(arccos(c− 1)) = fp,n(c) is monotonically increasing for c > 0.

Since we can express cos(l arccos(c)) as the l-th Chebyshev polynomial, fp,n
is a polynomial function in c. Using the recurrence relation for the Eulerian
numbers, we can derive the following recurrence formula for fp,n:

fp,n(c) =
1 + cp

1 + 2p
fp−1,n(c) +

(2− c)(1 + c(−1 + 2p))

p(1 + 2p)
f ′p−1,n(c)

+
(−2 + c)2c

p(1 + 2p)
f ′′p−1,n(c).

We can make an ansatz

fp,n(c) =

p∑
j=0

ap,jc
j ,
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and derive the recurrence formula

ap,j =
(1− j + p)2

p+ 2p2︸ ︷︷ ︸
Ap,j :=

ap−1,j−1+
4j(p− j) + j + p

p+ 2p2︸ ︷︷ ︸
Bp,j :=

ap−1,j+
2 + 6j + 4j2

p+ 2p2︸ ︷︷ ︸
Cp,j :=

ap−1,j+1

for the coefficients ap,j . For p = 1, we obtain

a1,j =

{
1
3 for j ∈ {0, 1}
0 otherwise.

As Ap,j ≥ 0, Bp,j ≥ 0 and Cp,j ≥ 0 for 0 ≤ j ≤ p, one can show using
induction in p that for all p ≥ 1:{

ap,j > 0 for j ∈ {0, 1, . . . , p}
ap,j = 0 otherwise.

This immediately implies that fp,n(0) > 0 and that fp,n(c) is monotonically
increasing for c > 0, which concludes the proof. ut

3.3 The symbol of the stiffness matrix

The next step is to derive the symbol of the stiffness matrixKp,n = (k
(i,j)
p,n )2n−1i,j=0,

where
k(i,j)p,n =

(
ϕ(i)
p,n, ϕ

(j)
p,n

)
H̃1(−1,1)

.

Since the basis functions ϕ
(i)
p,n form a partition of unity,

∫ 1

−1 ϕ
(i)
p,n(x)dx = hn

holds for all i. So, we obtain

k(i,j)p,n =

(
∂

∂x
ϕ(i)
p,n,

∂

∂x
ϕ(j)
p,n

)
L2(−1,1)

+ h2n.

Note that for uniform knot vectors the identity

∂

∂x
ϕ(j)
p,n(x) =

1

hn

(
ϕ
(j−1)
p−1,n(x)− ϕ(j)

p−1,n(x)
)

holds, see e.g. (5.36) in [14]. Hence we directly obtain

k(i,j)p,n =
1

h2n

(
m

(i,j)
p−1,n −m

(i,j−1)
p−1,n −m

(i−1,j)
p−1,n +m

(i−1,j−1)
p−1,n

)
+ h2n.

Because the grid is equidistant, this reduces to

k(i,j)p,n =
1

h2n

(
2m

(i,j)
p−1,n −m

(i,j−1)
p−1,n −m

(i−1,j)
p−1,n

)
+ h2n.

As
∑2n−1
l=0 eiθlh2n = 0 for all θ ∈ Θn\{0}, the term “+h2n” does not have any

effect in this case. So, the symbol of the stiffness matrix Kp,n is given via

K̂p,n(θ) =
2− eiθ − e−iθ

h2n
M̂p−1,n(θ) = 2

1− cos θ

h2n
M̂p−1,n(θ)

for θ ∈ Θn\{0}. For θ = 0, the part representing the derivatives vanishes and

we obtain K̂p,n(0) = h2n
∑2n−1
l=0 e0 = 2nh2n = 2hn.
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3.4 Representing intergrid transformations in Fourier analysis

As we have been mentioning in the beginning of this section, we are interested
in showing that

‖(I −Πper
p,n )up,2n‖L2(−1,1) ≤

√
2hn|up,2n|H1(−1,1), (11)

is satisfied for any up,2n ∈ Sperp,2n(−1, 1). Using mass matrix Mn and stiffness
matrix Kn, this can be rewritten as

‖(I − Pp,2nK−1p,nPTp,2nKp,2n)u2n‖Mp,2n ≤
√

2hn‖u2n‖Kp,2n

for all u2n ∈ R4n. Here, Pp,2n is the matrix representing the canonical embed-
ding of Sperp,n (−1, 1) into Sperp,2n(−1, 1). Before we can analyze (11), we have to
determine the symbol for Pp,2n.

The following lemma is rather well-known in literature, cf. [7] equation
(4.3.4), and can be easily shown by induction in p.

Lemma 4 For all p ∈ N, all n ∈ N and all x ∈ R,

ϕ
(j)
p,2n(x) = 2−p

p+1∑
l=0

(
p+ 1
l

)
ϕ(2j+l)
p,n (x) (12)

is satisfied.

This allows to introduce the symbol of the prolongation operator. Here,
the symbol cannot be understood as eigenvalue anymore as the prolongation
operator is a rectangular matrix. However, we have

φ
p,2n

(2θ) =

2n−1∑
j=0

e2θijϕ
(j)
p,2n =

∑
j

e2θij2−p
p+1∑
l=0

(
p+ 1
l

)
ϕ(2j+l)
p,n

= 2−p
p+1∑
l=0

(
p+ 1
l

)
e−θil

2n−1∑
j=0

eθi(2j+l)ϕ(2j+l)
p,n

= 2−p
p+1∑
l=0

(
p+ 1
l

)
e−θil

2n−1∑
j=0

eθijϕjp,n

+ 2−p
p+1∑
l=0

(
p+ 1
l

)
e−(θ+π)il

2n−1∑
j=0

e(θ+π)ijϕ(j)
p,n

=

(
2−p

p+1∑
l=0

(
p+ 1
l

)
e−iθl

)
φ
p,n

(θ)

+

(
2−p

p+1∑
l=0

(
p+ 1
l

)
e−i(θ+π)l

)
φ
p,n

(θ + π).



Approximation error and inverse inequalities for splines of maximum smoothness 15

We observe that the prolongation operator Pp,2n maps the linear span, spanned
by

φ
p,2n

(2θ) (13)

to the linear span, spanned by

φ
p,n

(θ) and φ
p,n

(θ + π). (14)

The restriction operator PTp,2n maps the linear span, spanned by (14), to the
linear span, spanned by (13). So, we can introduce the symbol as a 2×1-matrix

P̂p,2n(θ) =
1

2p


∑p+1
l=0

(
p+ 1
l

)
e−iθl∑p+1

l=0

(
p+ 1
l

)
e−i(θ+π)l

 =
1

2p

(
(1 + e−iθ)p+1

(1 + e−i(θ+π))p+1

)
.

Now we have all the ingredients needed to derive the symbol of the projection
operator in (11).

3.5 Analysis of the projection operator

The symbol Π̂per
p,n (θ) of the projection operator Πper

p,n is represented in the
basis (14), i.e., it is a 2× 2-matrix with

Π̂per
p,n (θ) = I − P̂p,2n(θ)K̂p,n(θ)−1P̂p,2n

∗
(θ)K̂p,2n(θ), (15)

where A∗ is the conjugate complex of the transpose of a matrix A. Here,

K̂p,2n(θ) is the representation of the symbol of the stiffness matrix correspond-
ing to the basis (14). Since we know that the multiplication with the stiffness
matrix preserves any frequency, we obtain

K̂p,2n(θ) =

(
K̂p,2n(θ)

K̂p,2n(θ + π)

)
,

where K̂p,2n(θ) is the representation of the symbol of the stiffness matrix
corresponding to the basis (13).

The basis (14) naturally splits the domain of frequencies Θ = [0, 2π) into
subdomains Θ(high) := [π/2, 3π/2) and Θ(low) := Θ\Θ(high). Here, for any
θ ∈ Θ(low), we obtain θ+π ∈ Θ(high). We observe that cos θ ≥ 0 for θ ∈ Θ(low)

and cos θ ≤ 0 for θ ∈ Θ(high) and vice versa.
Next, we show the following lemma.

Lemma 5 For any up,2n ∈ Sperp,2n(−1, 1)

‖(I −Πper
p,n )up,2n‖L2(−1,1) ≤

√
2hn|up,2n|H1(−1,1), (16)

is satisfied.
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Proof Rewriting (16) in matrix notation, we obtain

‖M1/2
p,2n(I − Pp,2nK−1p,nPTp,2nKp,2n)K

−1/2
p,2n ‖ ≤

√
2hn,

whereKp,n = Pp,2nKp,2nP
T
p,2n (Galerkin projection). Here and in what follows,

‖ · ‖ is the Euclidean norm. Using Lemma 2 we get

‖M1/2
p,2n(I − Pp,2nK−1p,nPTp,2nKp,2n)K

−1/2
p,2n ‖

≤ ‖M1/2
p,2nM

−1/2
p−1,2n‖‖M

1/2
p−1,2n(I − Pp,2nK−1p,nPTp,2nKp,2n)K

−1/2
p,2n ‖

≤ 2‖M1/2
p−1,2n(I − Pp,2nK−1p,nPTp,2nKp,2n)K

−1/2
p,2n ‖.

So it suffices to show

‖M1/2
p−1,2n(I − Pp,2nK−1p,nPTp,2nKp,2n)K

−1/2
p,2n ‖ ≤

1

2

√
2hn,

which is equivalent to

ρ(Mp−1,2n(I − Pp,2nK−1p,nPTp,2nKp,2n)K−1p,2n) ≤ 1

2
h2n, (17)

where ρ denotes the spectral radius. This statement is equivalent to

ρ(M̂p−1,2n(θ)Π̂per
p,n (θ)K̂p,2n(θ)−1)︸ ︷︷ ︸

q(θ)h2n :=

≤ 1

2
h2n, (18)

for all θ ∈ Θn, where Π̂per
p,n (θ) is as defined in (15) and

M̂p−1,2n(θ) =

(
M̂p−1,2n(θ)

M̂p−1,2n(θ + π)

)
.

We observe that replacing θ by θ + π has the same effect as switching both
the rows and the columns of the symbol, therefore q(θ) = q(θ+π). So, we can

restrict ourselves to showing (18) for all θ ∈ Θ(low)
n = Θn ∩Θ(low).

As the matrix in (18) is a 2-by-2 matrix with rank 1, the spectral radius
is equal to its trace.

From Lemma 3, we obtain that 0 ≤ M̂p−1,2n(θ + π) ≤ M̂p−1,2n(θ) for

all θ ∈ Θ
(low)
n , so we can substitute M̂p−1,2n(θ + π) by ξM̂p−1,2n(θ), where

ξ ∈ [0, 1]. By doing this substitution, the term M̂p−1,2n(θ+π) cancels out. We

obtain for θ ∈ Θ(low)
n \{0}

q(θ) =
−(1 + c)p + c(1 + c)p − (1− c)pξ − (1− c)pcξ

2(c2 − 1)((1 + c)p + (1− c)pξ)
,

where c := cos θ and ξ = M̂p−1,2n(θ + π)/M̂p−1,2n(θ). The case θ = 0 will be
dealt with at the end of the proof. To finalize the proof we need to show

q(θ) ≤ 1

2
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for all θ ∈ Θ(low)
n \{0}. It suffices to show

−(1 + c)p + c(1 + c)p − (1− c)pξ − (1− c)pcξ
2(c2 − 1)((1 + c)p + (1− c)pξ)

≤ 1

2

for all c ∈ ]0, 1[, all ξ ∈ [0, 1] and all p ∈ N, i.e., to show the inequality for
the whole range of all of these variables ignoring their dependence on θ. We
observe that

0 ≤
(

1− c
1 + c

)p
≤ 1− c

1 + c
,

so there is some ω ∈ [0, 1] such that ((1− c)/(1 + c))p = (1− c)/(1 + c)ω. After
substituting (1− c)p by (1− c)(1 + c)p−1ω it suffices to show

−(1 + c)p + c(1 + c)p − (1− c)(1 + c)p−1ωξ − (1− c)(1 + c)p−1ωcξ

2(c2 − 1)((1 + c)p + (1− c)(1 + c)p−1ωξ)
≤ 1

2

for all c ∈ ]0, 1[, all ξ ∈ [0, 1], all ω ∈ [0, 1] and all p ∈ N. This can be simplified
to

−(1 + c) + c(1 + c)− (1− c)ωξ − (1− c)ωcξ
2(c2 − 1)((1 + c) + (1− c)ωξ)

≤ 1

2

for all c ∈ ]0, 1[, all ξ ∈ [0, 1] and all ω ∈ [0, 1]. Here the denominator is always
negative. So we can multiply with the denominator and obtain

c(1− c2)(1− ωξ) ≥ 0,

which is obviously true for all c ∈ ]0, 1[, all ξ ∈ [0, 1] and all ω ∈ [0, 1].
The case θ = 0 has the be considered separately. Here, we have to use

K̂p,n(0) = 2hn and obtain – by straight-forward computation – that q(0) = 1
4 .

The inequality q(θ) ≤ 1
2 still holds in this case, which finishes the proof. ut

4 The proof of the approximation error estimate (Theorem 1)

First, we show the following lemma.

Lemma 6 For each w ∈ H1,per(−1, 1), each n ∈ N and each p ∈ N

‖(I −Πper
p,n )w‖L2(−1,1) ≤ 2

√
2 hn|w|H1(−1,1)

is satisfied.

Proof Using the triangular inequality, we obtain for any q ∈ N

‖(I −Πper
p,n )w‖L2(−1,1) ≤ ‖(I −Πper

p,2qn)w‖L2(−1,1)

+

q−1∑
l=0

‖(I −Πper
p,2ln

)Πper
p,2l+1n

w‖L2(−1,1).
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We use Lemma 1 and a standard Aubin-Nitsche duality argument to estimate
‖(I − Πper

p,N )w‖L2(−1,1) from above. Using [4], Lemma 7.6, and Lemma 1 for
r = 1 and q = 2, we immediately obtain

‖(I −Πper
p,N )w‖L2(−1,1) ≤ C̃(p)hN‖w‖H1(−1,1), (19)

where C̃(p) is independent of the grid size. Using (19) and Lemma 5, we obtain

‖(I −Πper
p,n )w‖L2(−1,1) ≤ C̃(p) 2−qhn‖w‖H1(−1,1)

+

q−1∑
l=0

√
2 2−lhn|Πper

p,2l+1n
w|H1(−1,1).

Because Πper
p,2l+1n

is H1-orthogonal, we further obtain

‖(I −Πper
p,n )w‖L2(−1,1) ≤ C̃(p) 2−qhn‖w‖H1(−1,1) +

q−1∑
l=0

√
2 2−lhn|w|H1(−1,1).

and using the summation formula for the geometric series gives

‖(I −Πper
p,n )w‖L2(−1,1) ≤ C̃(p) 2−qhn‖w‖H1(−1,1) + 2

√
2hn|w|H1(−1,1).

As this is true for all q ∈ N, we can take the limit q → ∞ and obtain the
desired result. ut

Theorem 1 is the extension of Lemma 6 to the non-periodic case.

Proof of Theorem 1 First, we observe that any u ∈ H1(0, 1) can be extended
to a w ∈ H1,per(−1, 1) by defining w(x) := u(|x|). Using Lemma 6, we can
find a function wp,n ∈ Sperp,n (−1, 1) such that

‖w − wp,n‖L2(−1,1) ≤ 2
√

2 hn|w|H1(−1,1).

This function is not necessarily symmetric, i.e., wp,n(x) = wp,n(−x) might not
be true. However, w̃p,n(x) := 1

2 (wp,n(x) + wp,n(−x)) is symmetric and still
satisfies the error estimate

‖w − w̃p,n‖L2(−1,1) ≤ 2
√

2 hn|w|H1(−1,1).

By restricting w̃p,n to (0, 1), we obtain a function up,n ∈ Sp,n(0, 1). This func-
tion satisfies the desired approximation error estimate since both |w|H1(−1,1) =√

2|u|H1(0,1) and ‖w−w̃p,n‖L2(−1,1) =
√

2‖u−up,n‖L2(0,1) hold due to the sym-
metry of w. ut

In the proof, we have defined up,n to be the restriction of a symmetric and

periodic spline w̃p,n to (0, 1). So, up,n ∈ S̃p,n(0, 1) is satisfied, i.e., we have
shown the following result.

Corollary 1 For each u ∈ H1(0, 1), each n ∈ N and each p ∈ N, there is a

spline approximation up,n ∈ S̃p,n(0, 1) such that

‖u− up,n‖L2(0,1) ≤ 2
√

2 hn|u|H1(0,1)

is satisfied.



Approximation error and inverse inequalities for splines of maximum smoothness 19

5 The proof of the inverse inequality (Theorem 2)

The proof of Theorem 2 is rather easy.

Proof of Theorem 2 We can extend every up,n ∈ S̃p,n(0, 1) to (−1, 1) by defin-
ing wp,n(x) := up,n(|x|) and obtain wp,n ∈ Sperp,n (−1, 1). The inverse inequal-
ity (1) is equivalent to

|wp,n|H1(−1,1) ≤ 2
√

3h−1n ‖wp,n‖L2(−1,1). (20)

This is shown using induction in p for all u ∈ S̃p,n(−1, 1). For p = 1, (20) is
known, cf. [15], Theorem 3.91.

Now, we show that the constant does not increase for larger p. So assume
p > 1 to be fixed. Due to the periodicity and due to the Cauchy-Schwarz
inequality,

|wp,n|2H1(−1,1) =

∫ 1

−1
(w′p,n)2dx = −

∫ 1

−1
w′′p,nwp,ndx

≤ ‖w′′p,n‖L2(−1,1)‖wp,n‖L2(−1,1) = |w′p,n|H1(−1,1)‖wp,n‖L2(−1,1)

is satisfied. Using the induction assumption (and w′p,n ∈ S
per
p−1,n(−1, 1), cf. [14],

Theorem 5.9), we know that

|w′p,n|H1(−1,1) ≤ 2
√

3h−1n ‖w′p,n‖L2(−1,1) = Ch−1n |wp,n|H1(−1,1).

Combining these results, we obtain

|wp,n|2H1(−1,1) ≤ 2
√

3h−1n |wp,n|H1(−1,1)‖wp,n‖L2(−1,1)

and further
|wp,n|H1(−1,1) ≤ 2

√
3h−1n ‖wp,n‖L2(−1,1).

This shows (20), which concludes the proof. ut

Remark 5 The proof of Theorem 2 does not require the grid to be equidistant.
Having a general grid, the following estimate is satisfied:

|up,n|H1(0,1) ≤ 2
√

3 h−1‖up,n‖L2(0,1)

for all splines up,n on (0, 1) with vanishing odd derivatives at the boundary,
where h is the size of the smallest element.

As we have proven both an approximation error estimate and a correspond-
ing inverse inequality, both of them are sharp (up to constants independent of
p and hn):

Corollary 2 For each n ∈ N and each p ∈ N, there is a function u ∈ H1(0, 1)
such that

inf
up,n∈S̃p,n(0,1)

‖u− up,n‖L2(0,1) ≥
1

4
√

3
hn|u|H1(0,1) > 0.
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Proof Let u ∈ Sp,n+1(0, 1) be a non-constant function with (u, ũp,n)L2(0,1) =
0 for all ũp,n ∈ Sp,n. In this case, the infimum is taken for up,n = 0. So,
we obtain using Theorem 2 infup,n∈S̃p,n(0,1)

‖u − up,n‖L2(0,1) = ‖u‖L2(0,1) ≥
1

2
√
3
hn+1|u|H1(0,1). As hn+1 ≥ hn/2 for all n ∈ N, this finishes the proof. ut

Corollary 3 For each n ∈ N (with n ≥ 2) and each p ∈ N, there is a function

up,n ∈ S̃p,n(0, 1)\{0} such that

|up,n|H1(0,1) ≥
1

4
√

2
h−1n ‖up,n‖L2(0,1).

Proof Let up,n ∈ Sp,n(0, 1)\{0} be such that (up,n, ũp,n−1)L2(0,1) = 0 for all
ũp,n−1 ∈ Sp,n−1. For this case ‖up,n‖L2(0,1) = infup,n−1∈S̃p,n−1(0,1)

‖up,n −
up,n−1‖L2(0,1) ≤ 2

√
2h−1n−1|up,n|H1(0,1). As hn ≥ hn−1/2 for all n ≥ 2, this

finishes the proof. ut

6 An extension to higher Sobolev indices

We can easily lift Theorem 1 (Corollary 1) up to higher Sobolev indices.

Theorem 5 For each q ∈ N, each n ∈ N and each p ∈ N with 0 < q ≤ p+ 1,

there is for each u ∈ Hq(0, 1), a spline approximation up,n ∈ S̃(q)
p,n(0, 1) such

that

|u− up,n|Hq−1(0,1) ≤ 2
√

2 hn|u|Hq(0,1),

where S̃
(q)
p,n(0, 1) is the space of all up,n ∈ Sp,n(0, 1) that satisfy the following

symmetry condition:

∂2l+q

∂x2l+q
up,n(0) =

∂2l+q

∂x2l+q
up,n(1) = 0 for all l ∈ N0 with 2l + q < p.

Proof The proof is done by induction. From Corollary 1, we know the estimate

for q = 1 (as S̃
(1)
p,n(0, 1) = S̃p,n(0, 1)) and all p > q − 1 = 0. For q = 1 and

p = q− 1 = 0, the estimate is a well-known result, cf. [14], Theorem 6.1, (6.7),
where (in our notation) |u− u0,n|L2(0,1) ≤ hn|u|H1(0,1) has been shown.

So, now we assume to know the estimate for some q − 1 and show it for q.
As u ∈ Hq(0, 1), we know that u′ ∈ Hq−1(0, 1), so we can apply the

induction hypothesis and obtain that there is some up−1,n ∈ S̃(q−1)
p−1,n(0, 1) such

that

|u′ − up−1,n|Hq−1(0,1) ≤ 2
√

2 hn|u′|Hq−1(0,1).

Define

up,n(x) := c+

∫ x

0

up−1,n(ξ)dξ. (21)

Note that up,n ∈ Sp,n(0, 1) as integrating increases both the polynomial degree
and the differentiability by 1, cf. [14], Theorem 5.16. Because by integrating
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the boundary conditions on the l-th derivative become conditions on the l+1-st

derivative, we further have up,n ∈ S̃(q)
p,n(0, 1).

Therefore, we have

|u′ − u′p,n|Hq−1(0,1) ≤ 2
√

2 hn|u′|Hq−1(0,1),

which is the same as

|u− up,n|Hq(0,1) ≤ 2
√

2 hn|u|Hq(0,1).

This finishes the proof. ut

Remark 6 The integration constant (integration constants for q > 2) in (21)
can be used to guarantee that∫ 1

0

∂l

∂xl
(u(x)− up,n(x))dx = 0

for all l ∈ {0, 1, . . . , q − 1}.

For the spaces S̃
(q)
p,n(0, 1) there is again an inverse inequality.

Theorem 6 For each n ∈ N, each q ∈ N and each p ∈ N with 0 < q ≤ p+ 1,

|up,n|Hq(0,1) ≤ 2
√

3h−1n |up,n|Hq−1(0,1) (22)

is satisfied for all up,n ∈ S̃(q)
p,n(0, 1), where S̃

(q)
p,n(0, 1) is as defined in Theorem 5.

Proof First note that (22) is equivalent to∣∣∣∣ ∂q−1∂xq−1
up,n

∣∣∣∣
H1(0,1)

≤ 2
√

3h−1n

∥∥∥∥ ∂q−1∂xq−1
up,n

∥∥∥∥
L2(0,1)

. (23)

As ∂q−1

∂xq−1up,n ∈ S̃
(1)
p−q+1,n(0, 1) = S̃p−q+1,n(0, 1), cf. [14], Theorem 5.9, the

estimate (23) follows directly from Theorem 2. ut

Again, as we have both an approximation error estimate and an inverse
inequality, we know that both of them are sharp (cf. Corollaries 2 and 3).

The following theorem is directly obtained from telescoping.

Theorem 7 For each q ∈ N0, each n ∈ N, each p ∈ N, each r ∈ N with
0 ≤ r ≤ q ≤ p + 1, there is for each u ∈ Hq(0, 1) a spline approximation
up,n ∈ Sp,n(0, 1) such that

|u− up,n|Hr(0,1) ≤ (2
√

2 hn)q−r|u|Hq(0,1)

is satisfied.
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Proof Theorem 5 states the desired result for r = q − 1. For r < q − 1, the
statement is shown by induction in r. So, we assume to know the desired result
for some r, i.e., there is a spline approximation up,n ∈ Sp,n(0, 1) such that

|u− up,n|Hr(0,1) ≤ (2
√

2 hn)q−r|u|Hq(0,1). (24)

Now, we show that there is some ũp,n ∈ Sp,n(0, 1) such that

|u− ũp,n|Hr−1(0,1) ≤ (2
√

2 hn)q−(r−1)|u|Hq(0,1). (25)

Theorem 5 states that there is a function ũp,n ∈ Sp,n(0, 1) such that

|u− ũp,n|Hr−1(0,1) ≤ 2
√

2 hn|u− up,n|Hr(0,1),

which shows together with the induction assumption (24) the induction hy-
pothesis (25). ut

Here, it is not known to the authors how to choose a proper subspace
of Sp,n(0, 1) such that a complementary inverse inequality can be shown.

7 Extension to two and more dimensions and application in
Isogeometric Analysis

We can extend Theorem 1 (and also Corollary 1) to the following theorem
for a tensor-product structured grid on Ω := (0, 1)d. Here, we can intro-

duce W̃p,n(Ω) = ⊗di=1S̃p,n(0, 1). Assuming that (φ
(0)
p,n, . . . , φ

(N)
p,n ) is a basis of

S̃p,n(0, 1), the space W̃p,n(Ω) is given by

W̃p,n(Ω) =

w : w(x1, . . . , xd) =

N∑
i1,...,id=0

wi1,...,idφ
(i1)
p,n (x1) · · ·φ(id)p,n (xd)

 .

Theorem 8 Let Ω = (0, 1)d. For each u ∈ H1(Ω), each n ∈ N and each

p ∈ N0 there is a spline approximation wp,n ∈ W̃p,n(Ω) such that

‖u− wp,n‖L2(Ω) ≤ 2
√

2d hn|u|H1(Ω)

is satisfied.

The proof is similar to the proof in [3], Section 4, for the two dimensional case.
To keep the paper self-contained we give a proof of this theorem.

Proof of Theorem 8 For sake of simplicity, we restrict ourselves to d = 2. The
extension to more dimensions is completely analogous. Here

W̃p,n(Ω) = S̃p,n(0, 1)⊗S̃p,n(0, 1) =

w : w(x, y) =

N∑
i,j=0

wi,jφ
(i)
p,n(x)φ(j)p,n(y)

 .
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We assume u ∈ C∞(Ω) and show the desired result using a standard
density argument. Using Theorem 1, we can introduce for each x ∈ (0, 1) a

function v(x, ·) ∈ S̃p,n(0, 1) with

‖u(x, ·)− v(x, ·)‖L2(0,1) ≤ 2
√

2 hn|u(x, ·)|H1(0,1).

By squaring and taking the integral over x, we obtain

‖u− v‖L2(Ω) ≤ 2
√

2 hn

∥∥∥∥ ∂∂yu
∥∥∥∥
L2(Ω)

. (26)

By choosing v(x, ·) to be the L2-orthogonal projection, we also have

‖v(x, ·)‖L2(0,1) ≤ ‖u(x, ·)‖L2(0,1)

for all x ∈ (0, 1) and consequently∥∥∥∥ ∂∂xv(x, ·)
∥∥∥∥
L2(0,1)

≤
∥∥∥∥ ∂∂xu(x, ·)

∥∥∥∥
L2(0,1)

. (27)

As v(x, ·) ∈ S̃p,n(0, 1), there are coefficients vj(x) such that

v(x, y) =

N∑
j=0

vj(x)φ(j)p,n(y).

Using Corollary 1, we can introduce for each j ∈ {0, . . . , N} a function wj ∈
S̃p,n(0, 1) with

‖vj − wj‖L2(0,1) ≤ 2
√

2 hn|vj |H1(0,1). (28)

Next, we introduce a function w by defining

w(x, y) :=

N∑
j=0

wj(x)φ(j)p,n(y),

which is obviously a member of the space W̃p,n(Ω). By squaring (28), multi-

plying it with φ
(j)
p,n(y)2, summing over j and taking the integral, we obtain∫ 1

0

N∑
j=0

‖vj − wj‖2L2(0,1)φ
(j)
p,n(y)2dy ≤ 8 h2n

∫ 1

0

N∑
j=0

|vj |2H1(0,1)φ
(j)
p,n(y)2dy.

Using the definition of the norms, we obtain∫ 1

0

∫ 1

0

N∑
j=0

(vj(x)−wj(x))2φ(j)p,n(y)2dxdy ≤ 8 h2n

∫ 1

0

∫ 1

0

N∑
j=0

v′j(x)2φ(j)p,n(y)2dxdy

and further

‖v − w‖L2(Ω) ≤ 2
√

2 hn

∥∥∥∥ ∂∂xv
∥∥∥∥
L2(Ω)

.
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Using (27), we obtain

‖v − w‖L2(Ω) ≤ 2
√

2 hn

∥∥∥∥ ∂∂yu
∥∥∥∥
L2(Ω)

. (29)

Using (26) and (29), we obtain

‖u− w‖L2(Ω) ≤ ‖u− v‖L2(Ω) + ‖v − w‖L2(Ω)

≤ 2
√

2 hn

∥∥∥∥ ∂∂yu
∥∥∥∥
L2(Ω)

+ 2
√

2 hn

∥∥∥∥ ∂∂xu
∥∥∥∥
L2(Ω)

≤ 4 hn|u|H1(Ω),

which finishes the proof. ut

The extension of Theorem 2 to two or more dimensions is rather easy.

Theorem 9 Consider Ω := (0, 1)d. For each n ∈ N and each p ∈ N,

|up,n|H1 ≤ 2
√

3d h−1n ‖up,n‖L2

is satisfied for all up,n ∈ W̃p,n(Ω).

Proof For sake of simplicity, we restrict ourselves to d = 2. The generalization
to more dimensions is completely analogous.

We have obviously

|up,n|2H1 =

∥∥∥∥ ∂∂xup,n
∥∥∥∥2
L2

+

∥∥∥∥ ∂∂yup,n
∥∥∥∥2
L2

=

∫ 1

0

|up,n(·, y)|2H1dy +

∫ 1

0

|up,n(x, ·)|2H1dx

This can be bounded from above using Theorem 2 by

= 12h−2n

(∫ 1

0

‖up,n(·, y)‖2L2dy +

∫ 1

0

‖up,n(x, ·)‖2L2dx

)
= 24h−2n ‖up,n‖2L2 ,

which finishes the proof. ut

The extension to isogeometric spaces can be done following the approach
presented in [1], Section 3.3. In Isogeometric Analysis, we have a geometry
parameterization F : (0, 1)d → Ω. An isogeometric function on Ω is then
given as the composition of a B-spline on (0, 1)d with the inverse of F. The
following result can be shown using a standard chain rule argument.

There exists a constant C = C(F, q) such that

C−1 ‖f‖Hq(Ω) ≤ ‖f ◦ F‖Hq((0,1)d) ≤ C ‖f‖Hq(Ω) (30)

for all f ∈ Hq(Ω).
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See [1], Lemma 3.5, or [3], Corollary 5.1, for related results. In both pa-
pers the statements are slightly more general, [1] gives a more detailed depen-
dence on the parameterization F whereas [3] establishes bounds for anisotropic
meshes.

Using this equivalence of norms, we can transfer all results from the pa-
rameter domain (0, 1)d to the physical domain Ω. However, we need to point
out that this equivalence is not valid for seminorms. Hence, in Theorem 1 (and
follow-up Theorems 5, 7 and 8) the seminorms on the right hand side of the
equations need to be replaced by the full norms. Moreover, the bounds depend
on the geometry parameterization via the constant C in (30).

A similar strategy can be followed when extending the results to NURBS.
We do not go into the details here but refer to [1,3] for a more detailed study.
In the case of NURBS the seminorms again have to be replaced by the full
norms due to the quotient rule of differentiation. In that case the constants
of the bounds additionally depend on the given denominator of the NURBS
parameterization.
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On Computation of Generalized Derivatives of the Normal-Cone Mapping and
their Applications

May 2014

2014-02 Helmut Gfrerer and Diethard Klatte
Quantitative Stability of Optimization Problems and Generalized Equations May 2014

2014-03 Clemens Hofreither and Walter Zulehner
On Full Multigrid Schemes for Isogeometric Analysis May 2014

2014-04 Ulrich Langer, Sergey Repin and Monika Wolfmayr
Functional A Posteriori Error Estimates for Parabolic Time-Periodic Bound-
ary Value Problems

July 2014

2014-05 Irina Georgieva and Clemens Hofreither
Interpolating Solutions of the Poisson Equation in the Disk Based on Radon
Projections

July 2014

2014-06 Wolfgang Krendl and Walter Zulehner
A Decomposition Result for Biharmonic Problems and the Hellan-Herrmann-
Johnson Method

July 2014

2014-07 Martin Jakob Gander and Martin Neumüller
Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time September 2014

2014-08 Martin Jakob Gander and Martin Neumüller
Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Prob-
lems

November 2014

2014-09 Helmut Gfrerer and Jǐŕı V. Outrata
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