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Abstract

We consider an algebraic method for reconstruction of a function satisfying the Poisson
equation with a polynomial right-hand side in the unit disk. The given data, besides the
right-hand side, is assumed to be in the form of a finite number of values of Radon projec-
tions of the unknown function. We first homogenize the problem by finding a polynomial
which satisfies the given Poisson equation. This leads to an interpolation problem for a
harmonic function, which we solve in the space of harmonic polynomials using a previ-
ously established method. For the special case where the Radon projections are taken
along chords that form a regular convex polygon, we extend the error estimates from the
harmonic case to this Poisson problem. Finally we give some numerical examples.

Keywords: multivariate interpolation, Radon projections, Poisson equation, harmonic
polynomials

1. Introduction

The classical approach to interpolation is based on sampling a given function at a
finite number of points. This is natural for approximation of univariate functions since
a table of function values is a standard type of information in practical problems and
processes described by functions in one variable. Moreover, the Lagrange interpolation
problem by polynomials is always uniquely solvable.

In the multivariate case, such an approach is met with serious difficulties. For ex-
ample, the pointwise interpolation by multivariate polynomials is no longer possible for
every choice of the nodes. See [1] and the references therein for a survey of multivariate
polynomial interpolation. Furthermore, there are many practical problems in which the
information about the relevant function comes as a set of functionals which are not point
evaluations. For instance, in computer tomography, a table of mean values of a function
of d variables on (d− 1)−dimensional hyperplanes is the data on which the reconstruc-
tion is based. Such nondestructive methods have important practical applications in
medicine, radiology, geology, etc., and have their theoretical foundation in the work of
Johann Radon in the early twentieth century [2].

Mathematically speaking, the problem is to recover or approximate a multivariate
function using information given as integrals of the unknown function over a number of



hyperplanes. This problem has been intensively studied since the 1960s using different
approaches [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and continues to find many applications.
Among the developed reconstruction algorithms are filtered backprojection, iterative
reconstruction, direct methods, etc., and some are based on the inverse Radon transform.

One class of methods uses direct interpolation by multivariate polynomials [9, 13, 14,
15, 16, 17, 18, 19, 20]. In our work, we follow this general approach. The interpolant
is sought in an appropriate polynomial space such that it matches the given Radon
projections exactly.

To improve the approximation accuracy and to reduce the amount of input data
required as well as the computational effort, it seems natural to incorporate additional
knowledge about the function to be recovered into the approximation method. This was
first suggested by Borislav Bojanov. Such problem-specific knowledge is often provided
in the form of a partial differential equation which the unknown function satisfies.

In the present paper, we concern ourselves with the case where the unknown function
satisfies the Poisson equation ∆u = uxx + uyy = f , where f is a polynomial. This
elliptic partial differential equation is important both as a model problem as well as in
applications.

The present work expands on the earlier articles [21, 22], where the Laplace equation
was considered, i.e., the homogeneous case f = 0. Therein, first results on interpolation
of harmonic functions with harmonic polynomials based on Radon projections along
chords of the unit circle were presented. The existence of a unique interpolant in the
space of harmonic polynomials was shown for a family of schemes where all chords are
chosen at equal distance to the origin. For the special case of chords forming a regular
convex polygon, error estimates on the unit circle and in the unit disk were proved.

In the present paper, our main aim is to extend several of these results to the inhomo-
geneous case, i.e., the Poisson equation, with a polynomial right-hand side, again using
Radon projections type of data. Both the Laplace and the Poisson equation have many
practical applications such as heat transport, diffusion problems or in Stokes flow of in-
compressible fluids, making them interesting both as model problems and with a view
to applications. The main idea is to reduce the interpolation problem to the harmonic
case by finding a suitable homogenizing polynomial. This allows us to prove existence
and uniqueness of a polynomial interpolant. We obtain an error estimate under certain
more restrictive assumptions.

2. Preliminaries

Let D ⊂ R2 denote the open unit disk and ∂D the unit circle. By I(θ, t) we denote a
chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1) from the origin (see
Figure 1), parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√

1− t2,
√

1− t2).

Definition 1. Let u(x, y) be a real-valued bivariate function in the unit disk D. The
Radon projection Rθ(u; t) of u in direction θ is defined by the line integral

Rθ(u; t) :=

∫
I(θ,t)

u(x, y) d` =

∫ √1−t2

−
√
1−t2

u(t cos θ − s sin θ, t sin θ + s cos θ) ds.
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Figure 1: The chord I(θ, t) of the unit circle.

Johann Radon [2] showed in 1917 that a differentiable function u is uniquely deter-
mined by the values of its Radon transform,

u 7→
{
Rθ(u; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.

2.1. Interpolation by Harmonic Polynomials
We recall some results on interpolation of harmonic functions by harmonic polyno-

mials using Radon projections from [22]. This corresponds to the special case f = 0 of
the Poisson equation.

Let Π2
n denote the space of real bivariate polynomials of total degree at most n. We

consider the subspace
Hn =

{
p ∈ Π2

n : ∆p = 0
}

of real bivariate harmonic polynomials of total degree at most n, which has dimension
2n+ 1. We use the basis of the harmonic polynomials

φ0(x, y) = 1, φk,1(x, y) = Re(x+ iy)k, φk,2(x, y) = Im(x+ iy)k,

for k = 1, . . . , n. In polar coordinates, they have the representation

φk,1(r, θ) = rk cos(kθ), φk,2(r, θ) = rk sin(kθ).

The following result, which gives a closed formula for Radon projections of the basis
harmonic polynomials, is the harmonic form of the famous Marr’s formula [9]. A direct
proof can be found in [22].

Theorem 1 ([22]). The Radon projections of the basis harmonic polynomials are given
by ∫

I(θ,t)

φk,1(x, y) d` =
2

k + 1

√
1− t2Uk(t) cos(kθ),∫

I(θ,t)

φk,2(x, y) d` =
2

k + 1

√
1− t2Uk(t) sin(kθ),

where k ∈ N, θ ∈ R, t ∈ (−1, 1), and Uk(t) = sin((k+1) arccos(t))
sin(arccos(t)) is the k-th Chebyshev

polynomial of second kind.
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We prescribe chords

I := {Ii = I(θi, ti) : θi ∈ [0, π), ti ∈ (−1, 1)}2n+1
i=1

of the unit circle and associated given values Γ = {γi}2n+1
i=1 , and wish to find a harmonic

polynomial p ∈ Hn such that

Rθi(p, ti) =

∫
I(θi,ti)

p(x, y) d` = γi, i = 1, . . . , 2n+ 1. (1)

Definition 2. A scheme of chords I is called regular if the interpolation problem (1)
has a unique solution for arbitrary given values Γ.

Theorem 1 plays a crucial role in proving sufficient conditions for regularity of schemes
I of chords.

Theorem 2 (Existence and uniqueness [21, 22]). The interpolation problem (1) has a
unique solution for any set of chords I = {I(θi, ti)}2n+1

i=1 with

0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2π

and with constant distances ti = t ∈ (−1, 1) such that t is not a zero of any Chebyshev
polynomial of the second kind U1, . . . , Un.

See Figure 2 for some examples of (regular) schemes which satisfy the conditions of
the above theorem, and one which does not and is in fact not regular. Note that the
theorem is not a characterization, and schemes of many other types can be regular.

Figure 2: Top: Some admissible schemes according to Theorem 2. Bottom: A scheme which does not
satisfy the assumptions of Theorem 2 since t = 0 is a root of every Chebyshev polynomial of odd degree.
This scheme is not regular.

For the error estimate, we make the stronger assumption that the chords form a
regular convex (2n + 1)-sided polygon inscribed in the unit circle; cf. Figure 2, first
picture. We thus consider the sequence I(n) = {I(θ

(n)
i , t(n)) : i = 1, . . . , 2n + 1} of

schemes with the angles and the distances, respectively,

θ
(n)
i =

2πi

2n+ 1
, t(n) = cos

π

2n+ 1
, for i = 1, . . . , 2n+ 1. (2)

Then we know the following error estimate.
4



Theorem 3 ([22]). Consider the interpolation problem (1) with γi =
∫
Ii u for a harmonic

function u ∈ C2(D). Assume that g = u|∂D has a uniformly convergent Fourier series

g(θ) = g0 +

∞∑
k=1

(gk cos(kθ) + g−k sin(kθ))

and its Fourier coefficients (gk)k∈Z decay like |gk| ≤ M |k|−s with M > 0, s > 1. Let
p(n) ∈ Hn be the interpolating polynomial of degree n obtained by solving (1). Then the
approximation error on the unit circle satisfies

‖g − p(n)‖L2(∂D) ≤MCn−(s−1/2)

with a constant C which depends only on s.

Remark 1. Under the assumptions of Theorem 3 above, we have also obtained an
L2-error estimate within the unit disk, namely,

‖u− p(n)‖L2(D) = O(n−(s−1/2)).

This follows immediately from the observation that, for any harmonic function v in the
unit disk, we have ‖v‖L2(D) ≤ ‖v‖L2(∂D). See [22, Lemma 4] for a proof.

Remark 2. The condition number of the matrix associated with the interpolation prob-
lem (1) has been shown to be uniformly bounded by 2

√
2 independently of the degree n of

the interpolating polynomial in the regular polygonal case (see [22, Theorem 6]). Hence
errors in the input data are not significantly amplified by our interpolation algorithm.

3. Interpolation problem for the Poisson equation

We now consider the following interpolation problem for the Poisson equation:

∆u = f, f ∈ Π2
m∫

Ii

u(x, y) d` = γi, i = 1, . . . , 2n+ 1.

 (3)

3.1. Construction of the interpolant
We search for a solution to problem (3) in a polynomial space by first homogenizing

and then using results for the harmonic case. The first step thus consists in finding a
polynomial uf ∈ Π2

m+2 such that
∆uf = f. (4)

It is relatively easy to see that such a polynomial uf always exists. We refer to [23,
Theorem 1] for a constructive proof and therefore also a possible algorithm for computing
it.

Next, we set uH := u− uf . Since ∆uH = ∆(u− uf ) = f − f = 0, we see that uH is
harmonic. We now find a harmonic interpolant for uH by solving the following problem:
find a harmonic polynomial p(n) ∈ Hn such that∫

Ii

p(n)(x, y) d` =

∫
Ii

uH(x, y) d` = γi −
∫
Ii

uf (x, y) d`, i = 1, . . . , 2n+ 1. (5)
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We have to assume that this harmonic interpolation problem has a solution, in other
words, that the scheme I is regular. Theorem 2 gives a sufficient (but not necessary)
condition for this to be the case.

The interpolant for u, which itself satisfies the Poisson equation, is then given in the
form

Int(u) := p(n) + uf ∈ Π2
max{m+2,n}. (6)

3.2. Existence of a unique interpolant
Assume an interpolation problem of type (3) with some functions u and f and regular

chords I. Let u1f , u2f ∈ Π2
m+2 be two different solutions of (4) and let p1, p2 ∈ Hn be the

solutions of the corresponding interpolation problems (5), namely∫
Ii

pj(x, y) d` = γi −
∫
Ii

ujf (x, y) d`, i = 1, . . . , 2n+ 1, j = 1, 2.

Let Int1 := u1f + p1 and Int2 := u2f + p2. Note that

∆(Int1− Int2) = f + 0− f − 0 = 0, (7)

i.e., Int1− Int2 ∈ Hmax{m+2,n}. We have that for i = 1, . . . , 2n+ 1∫
Ii

(Int1− Int2) d` =

∫
Ii

(
(u1f + p1)− (u2f + p2)

)
d` = 0. (8)

In the case where n ≥ m+ 2, from Theorem 2, (7),(8) it follows that

Int1− Int2 ≡ 0,

i.e., the interpolant is uniquely determined and does not depend on the choice of uf .
On the other hand, assume m + 2 > n and let us choose u2f := u1f + d with d ∈

Hm+2 \Hn; in particular, d 6= 0. If the resulting interpolants were the same, Int1 = Int2,
it would follow

Hn 3 p1 − p2 = u2f − u1f = d 6∈ Hn,

a contradiction. This proves the following theorem.

Theorem 4. Assume that the chords I are regular; for instance, they satisfy the as-
sumptions of Theorem 2. If n ≥ m + 2, then the interpolant (6) is independent of the
choice of the homogenizing polynomial uf . If n < m + 2, then it is always possible to
choose two different homogenizing polynomials such that the resulting interpolants are
not equal.

4. Error estimate

We make the assumption (2), i.e., that the chords form a regular convex (2n+1)-sided
polygon. Furthermore, we assume that the given data {γi} are the Radon projections of
some unknown function u ∈ C2(D) satisfying the Poisson problem (3).

In this section, we give error estimates for the interpolating polynomial Int(u) in
terms of the smoothness of the boundary data g = u|∂D. Being defined on the unit

6



circle, g can be written as a periodic function of the angle θ. We will also rely on its
Fourier series, i.e., let (gk)k∈Z be the Fourier coefficients of g such that

g(θ) = g0 +

∞∑
k=1

(gk cos(kθ) + g−k sin(kθ)). (9)

For simplicity, we will assume that the Fourier series converges uniformly to g.
The interpolation error is given by

u− Int(u) = u− p(n) − uf = uH − p(n). (10)

In the following, we use the notations: let gH := uH |∂D and (gH,k)k∈Z be its Fourier
coefficients; let τ := uf |∂D ∈ Tm+2 and (τk)|k|≤m+2 be its Fourier coefficients. Here Tm
denotes the space of trigonometric polynomials of degree up to m.

To apply Theorem 3 to Problem 2, we need a smoothness condition of the type

|gH,k| ≤M |k|−s ∀k ∈ Z. (11)

However, it seems more natural to pose a smoothness condition on g, the boundary
data of the unknown. We thus require |gk| ≤ M |k|−s with M > 0, s > 1 and analyze
smoothness of gH in dependence of g and uf .

Since u = uH + uf , we have

|gH,k| ≤ |gk|+ |τk|.

For |k| > m+ 2, we have
gH,k = gk

since τ has degree at most m + 2, and (11) holds for these k due to the assumption on
gk.

Only for |k| ≤ m+ 2, we have to take care to satisfy the assumption. We see that

|gH,k| ≤ |gk|+ |τk| ≤M |k|−s + |τk|
= |k|−s(M + |τk||k|s) ≤ |k|−s(M + max

k≤m+2
|τk||k|s),

and thus (11) holds with the choice

M := M + max
|k|≤m+2

|τk||k|s.

The error estimate follows from (10) and Theorem 3.

‖u− Int(u)‖L2(∂D) = ‖uH − p‖L2(∂D) ≤ (M + max
|k|≤m+2

|τk||k|s)Cn−(s−1/2).

Thus, we have proved the following theorem.

Theorem 5. Let u ∈ C2(D) be an exact solution of the Poisson problem (3). Assume
that g = u|∂D has a uniformly convergent Fourier series (9) and its Fourier coefficients
(gk)k∈Z decay like |gk| ≤ M |k|−s with M > 0, s > 1. Let Int(u) ∈ Π2

max{m+2,n} be the
interpolant for u according to (6), where the chords are chosen according to (2).

7



Then the approximation error on the unit circle satisfies

‖u− Int(u)‖L2(∂D) ≤MCn−(s−1/2)

where M = M + max|k|≤m+2 |τk||k|s and C is a constant depending only on s.

Remark 3. Under the assumptions of Theorem 5 above, we immediately obtain also an
L2-error estimate within the unit disk, namely,

‖u− Int(u)‖L2(D) = O(n−(s−1/2)).

See Remark 1 for the argument which applies here analogously.

Remark 4. The assumptions (2) on the chord distances t can be weakened such that
they only have to lie within a certain interval. We refer to [24] for a proof for the harmonic
case, which translates directly to the present setting.

5. Numerical examples

In the following examples, we study instances of the problem (3) with known exact
solution u and right-hand sides f = ∆u. We then compute the Radon projections
γi = Rθi(u, t) of u taken along the edges of a regular (2n + 1)-sided convex polygon
(Figure 2, first picture), i.e., Ii = I(θi, t) as in (2). Finally we compute the interpolant
Int(u) ∈ Π2

max{m+2,n} as given in (6) and compute the error between the exact solution
u and its interpolant.

Of course, only f and the (γi) serve as input to the interpolation algorithm. The
exact solution u itself is only used to compute the interpolation errors.

5.1. Example 1
We interpolate the exact solution of the equation ∆u = 1 (m = 0),

u(x, y) = exp(x) cos(y) +
y2

2
+ x,

by Int(u) ∈ Π2
max{2,n} given the Radon projections γi = Rθi(u, t) of u. In Figure 3, we

display the graphs of the function u, its interpolant and of the error function u− Int(u)
for n = 7.

For Figure 4, we vary the degree of the interpolating polynomial and plot the resulting
relative L2-errors. We see that the error decreases exponentially with n, indicating that
the smooth function u is being approximated with optimal order.

5.2. Example 2
In order to study the behavior of the method for functions with less smoothness, we

consider the Poisson equation ∆u = y2 + xy + 1 (m = 2) with the exact solution

u = uH + y4/12 + x3y/6 + x2/2 + 1. (12)

Here uH is chosen as the harmonic extension of the boundary function gH(θ) = θ2 on
the unit circle in radial coordinates, with the argument θ in the interval [−π, π]. The

8



Figure 3: Example 1: n = 7: function u, interpolant Int(u), error u − Int(u) using 15 values of Radon
projections.

4 6 8 10 12 14

10-10

10-7

10-4

0.1

Figure 4: Example 1: errors. x-axis: degree of interpolating polynomial. y-axis: relative L2-error

function uH , and hence also u, is only C0 on the unit circle, but analytic within the
unit disk. By expanding the boundary data gH into its Fourier series, we find that the
corresponding harmonic function has the representation

uH(x, y) = Re
(
π2

3
+ 2(Li2(−x− iy) + Li2(−x+ iy))

)
,

where

Li2(z) =

∞∑
k=1

zk

k2

is the dilogarithm or Spence’s function.
In Figure 5, we display the graphs of the function u, its interpolant and of the error

function u− Int(u) for n = 10.
9



Figure 5: Example 2: n = 10: function u, interpolant Int(u), error u− Int(u) using 21 values of Radon
projections.

The harmonic function uH and hence also u satisfy the smoothness assumption from
Theorem 5 with a parameter s = 2. Hence the boundary function g = u|∂D satisfies
the smoothness assumption with a parameter s = 2 also. The following error estimate
follows from Remark 1

‖u− Int(u)‖L2(D) = ‖uH − p(n)‖L2(D) = O(n−(s−1/2)).

For Figure 6, we vary the degree of the interpolating polynomial and plot the resulting
relative L2-errors. We observe that the error decreases like O(n−1.8), indicating that
the smooth function u is being approximated with slightly better order than the one
predicted by the theory, O(n−3/2).
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10.05.03.0 7.0
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0.005

0.010

0.020
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Figure 6: Example 2: errors and reference line 0.2n−1.8. x-axis: degree of interpolating polynomial.
y-axis: relative L2-error
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5.3. Example 3
Consider the Poisson equation ∆u = 1, with the exact solution u = uH +y2/2+x+1,

where uH which is given by the harmonic extension of the quadratic spline gH(θ) on the
unit circle,

gH(θ) =



− 1
2 (θ + π

2 )(θ + 3
2π), −π ≤ θ < −π2 ,

1
2 (θ − π

2 )(θ + π
2 ), −π2 ≤ θ <

π
2 ,

− 1
2 (θ − π

2 )(θ − 3
2π), π

2 ≤ θ < π.

In Figure 7, we display the graph of the function gH(θ).

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Figure 7: Example 3: function gH(θ)

Note that gH(θ) is a periodic C1-function with discontinuous second derivative. The
resulting harmonic function uH has the series representation (in polar coordinates)

uH(r, θ) =

∞∑
k=1

(−1)kr2k−1
4 cos ((2k − 1)θ)

(2k − 1)3π
.

The harmonic function uH and hence also u satisfy the smoothness assumption from
Theorem 5 with a parameter s = 3.

In Figure 8, we display the graphs of the function u, its interpolant and of the error
function u− Int(u) for n = 10.

For Figure 9, we vary the degree of the interpolating polynomial and plot the resulting
relative L2-errors. We observe that the error decreases like O(n−2.8), indicating that the
smooth function u is being approximated slightly better than the rate O(n−5/2) predicted
by the theory.

5.4. Example 4
We consider the same problem as in Example 1, but with artificially added measure-

ment noise in the Radon projections. For this, we add to the exact values (γi) of the
Radon projections random numbers from a normal distribution with zero mean and stan-
dard deviation ε. We perform three experiments with error levels ε ∈ {10−3, 10−6, 10−9}.
The resulting relative errors in the reconstructed function are plotted in Figure 10. We

11



Figure 8: Example 3: n = 10: function u, interpolant Int(u), error u− Int(u) using 21 values of Radon
projections.
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Figure 9: Example 3: errors and reference line 0.2n−2.8. x-axis: degree of interpolating polynomial.
y-axis: relative L2-error
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see that the input function is reconstructed to the accuracy limit given by the noise
level. No amplification of the noise or instabilities are observed which agrees with Re-
mark 2. The computation of uf does not depend on the values (γi) and therefore does
not introduce any additional errors.
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Figure 10: Example 4: errors with noisy data. Displayed are three experiments with noise levels of 10−3

(circles), 10−6 (squares), 10−9 (diamonds). x-axis: degree of interpolating polynomial. y-axis: relative
L2-error

6. Conclusions

We have constructed an interpolation method for functions in the unit disk which
satisfy a Poisson equation with a polynomial right-hand side of degree m, and where
Radon projections serve as the input data. The method proceeds by finding a suitable
homogenizing polynomial of degreem+2 and then interpolating in the space of harmonic
polynomials of degree up to n. Here 2n+1 distinct Radon projections are the given data.
We have shown that, if n ≥ m+ 2, the interpolant does not depend on the choice of the
homogenizing polynomial.

For a particular choice of chords, we have proved an interpolation error estimate
which depends on the smoothness of the unknown function on the boundary. The error
estimate also depends on the choice of homogenizing polynomial, but only by a constant
factor which does not interfere with the asymptotic behavior with respect to n.
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