

JOHANNES KEPLER UNIVERSITY LINZ

Institute of Computational Mathematics

A–4040 LINZ, Altenbergerstraße 69, Austria

Technical Reports before 1998:

1995

0 5 4		
95-1	Hedwig Brandstetter	M 1 1005
05.2	Was ist neu in Fortran 90? C. Hanga, P. Haiga, M. Kuhn, H. Langar	March 1995
90-2	dantive Domain Decomposition Methods for Finite and Roundary Element	August 1995
	Equations	nugust 1555
95-3	Joachim Schöberl	
000	An Automatic Mesh Generator Using Geometric Rules for Two and Three Space	August 1995
	Dimensions.	
1006		
1330		
96-1	Ferdinand Kickinger	T 1 1000
06.9	Automatic Mesn Generation for 3D Objects.	February 1996
90-2	Preprocessing in BE/EE Domain Decomposition Methods	Fobruary 1006
96-3	Bodo Heise	rebluary 1990
50 5	A Mixed Variational Formulation for 3D Magnetostatics and its Finite Element	February 1996
	Discretisation.	1001441, 1000
96-4	Bodo Heise und Michael Jung	
	Robust Parallel Newton-Multilevel Methods.	February 1996
96-5	Ferdinand Kickinger	
	Algebraic Multigrid for Discrete Elliptic Second Order Problems.	February 1996
96-6	Bodo Heise	
	A Mixed Variational Formulation for 3D Magnetostatics and its Finite Element	May 1996
0.0 -	Discretisation.	
96-7	Michael Kuhn	T 1000
	Benchmarking for Boundary Element Methods.	June 1996
1997		
97-1	Bodo Heise, Michael Kuhn and Ulrich Langer	
	A Mixed Variational Formulation for 3D Magnetostatics in the Space $H(rot) \cap$	February 1997
	H(div)	
97-2	Joachim Schöberl	
	Robust Multigrid Preconditioning for Parameter Dependent Problems I: The	June 1997
	Stokes-type Case.	
97-3	Ferdinand Kickinger, Sergei V. Nepomnyaschikh, Ralf Pfau, Joachim Schöberl	
0 - 1	Numerical Estimates of Inequalities in $H^{\frac{1}{2}}$.	August 1997
97-4	Joachim Schöberl	

Programmbeschreibung NAOMI 2D und Algebraic Multigrid. September 1997

From 1998 to 2008 technical reports were published by SFB013. Please see

http://www.sfb013.uni-linz.ac.at/index.php?id=reports From 2004 on reports were also published by RICAM. Please see

http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see

http://www.numa.uni-linz.ac.at/Publications/List/

Efficient preconditioning for an optimal control problem with the time-periodic Stokes equations

Wolfgang Krendl¹, Valeria Simoncini², and Walter Zulehner³

- ¹ Johannes Kepler University Linz, Doctoral Program Mathematics, Altenberger Straße 69, 4040 Linz, Austria, wolfgangl.krendl@dk-compmath.jku.at
- ² Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna, Italy, valeria.simoncini@unibo.it
- ³ Johannes Kepler University Linz, Institute of Computational Mathematics, Altenberger Straße 69, 4040 Linz, Austria, zulehner@numa.uni-linz.ac.at

Abstract. For the optimal control problem with time-periodic Stokes equations a practical robust preconditioner is presented. The discretization of the corresponding optimality system leads to a linear system with a large, sparse and complex 4-by-4 block matrix in saddle point form. We present a decoupling strategy, which reduces the system to two linear systems with a real 4-by-4 block matrix. Based on analytic results on preconditioners for time-harmonic control problems in [4], a practical preconditioner is constructed, which is robust with respect to the mesh size h, the frequency ω and the control parameter ν . The result is illustrated by numerical examples with the preconditioned minimal residual method. Finally we discuss alternative stopping criteria.

1 The model problem

We consider the following problem: Find the velocity $\mathbf{u}(x,t)$, the pressure p(x,t), and the force $\mathbf{f}(x,t)$ that minimize the cost functional

$$J(\mathbf{u}, \mathbf{f}) = \frac{1}{2} \int_0^T \int_\Omega |\mathbf{u}(x, t) - \mathbf{u}_d(x, t)|^2 \, dx \, dt + \frac{\nu}{2} \int_0^T \int_\Omega |\mathbf{f}(x, t)|^2 \, dx \, dt$$

subject to the time-dependent Stokes problem

$$\begin{split} \frac{\partial}{\partial t} \mathbf{u}(x,t) - \Delta \mathbf{u}(x,t) + \nabla p(x,t) &= \mathbf{f}(x,t) \quad \text{in } \Omega \times (0,T), \\ \nabla \cdot \mathbf{u}(x,t) &= 0 \quad \text{in } \Omega \times (0,T), \\ \mathbf{u}(x,t) &= 0 \quad \text{on } \Gamma \times (0,T), \end{split}$$

with time-periodic conditions

$$\mathbf{u}(x,0) = \mathbf{u}(x,T), \ p(x,0) = p(x,T), \ \mathbf{f}(x,0) = \mathbf{f}(x,T) \quad \text{on } \Omega.$$

Here $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$ is an open and bounded domain with Lipschitz boundary Γ , $\mathbf{u}_d(x,t)$ is a given target velocity, $\nu > 0$ is a cost or regularization

2 W. Krendl, V. Simoncini, W. Zulehner

parameter, and |.| denotes the Euclidean norm in \mathbb{R}^d . We assume that $u_d(x, t)$ is time-periodic.

For time discretization a truncated Fourier series expansion is used and for space discretization we choose appropriate finite element spaces \mathbf{V}_h of dimension n and Q_h of dimension m for \mathbf{u} and p, respectively, and the same finite element space \mathbf{V}_h for \mathbf{f} as well. The fully discretized problem can then be decoupled in systems, which only depend on one Fourier coefficient. For the Fourier coefficient corresponding to the frequency ω the system reads as follows:

$$J(\underline{\mathbf{u}}, \underline{\mathbf{f}}) = \frac{1}{2} (\underline{\mathbf{u}} - \underline{\mathbf{u}}_d)^* \mathbf{M} (\underline{\mathbf{u}} - \underline{\mathbf{u}}_d) + \frac{\nu}{2} \underline{\mathbf{f}}^* \mathbf{M} \underline{\mathbf{f}}$$
(1)

subject to

$$i\omega \mathbf{M} \underline{\mathbf{u}} + \mathbf{K} \underline{\mathbf{u}} - \mathbf{D}^T \underline{p} = \mathbf{M} \underline{\mathbf{f}},$$

 $\mathbf{D} \underline{\mathbf{u}} = 0.$

Here the symbol * denotes the conjugate transpose of a vector or a matrix and the real matrices **M**, **K**, and **D** are the mass matrix, representing the L^2 -inner product in **V**_h, the discretized negative vector Laplacian, and the discretized divergence, respectively. The underlined quantities denote the coefficient vectors of finite element functions relative to a chosen basis.

The Lagrangian functional for this constrained optimization problem is given by

$$\mathcal{L}(\underline{u},\underline{p},\underline{f},\underline{w},\underline{r}) = J(\underline{\mathbf{u}},\underline{\mathbf{f}}) + \underline{w}^* \left(i\omega \, M \, \underline{u} + K \underline{u} - \mathbf{D}^T \underline{p} - M \underline{f} \right) + \underline{r}^* \mathbf{D} \underline{u},$$

where $\underline{w}, \underline{r}$ denote the Lagrangian multipliers associated with the constraints. The first-order optimality conditions are $\nabla \mathcal{L}(\underline{u}, p, f) = 0$, and read in details:

$$\begin{bmatrix} M & 0 & 0 & K - i\omega M - \mathbf{D}^T \\ 0 & 0 & 0 & -\mathbf{D} & 0 \\ 0 & 0 & \nu M & -M & 0 \\ K + i\omega M - \mathbf{D}^T - M & 0 & 0 \\ -\mathbf{D} & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \underline{u} \\ \underline{p} \\ \underline{f} \\ \underline{w} \\ \underline{r} \end{bmatrix} = \begin{bmatrix} M \underline{u}_d \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
(2)

From the third row it follows that $\underline{f} = \nu^{-1} \underline{w}$. So the control \underline{f} can be eliminated. After reordering we obtain the reduced optimality system:

$$\mathcal{M}\underline{x} = \underline{b},\tag{3}$$

where

$$\mathcal{M} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}, \quad \underline{x} = \begin{bmatrix} \underline{u} \\ \underline{w} \\ \underline{p} \\ \underline{r} \end{bmatrix} \quad \text{and} \quad \underline{b} = \begin{bmatrix} M \underline{u}_d \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

with

$$A = \begin{bmatrix} \mathbf{M} & \sqrt{\nu} \left(\mathbf{K} - i\omega \, \mathbf{M} \right) \\ \sqrt{\nu} \left(\mathbf{K} + i\omega \, \mathbf{M} \right) & -\frac{1}{\nu} \mathbf{M} \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -\mathbf{D} \\ -\mathbf{D} & 0 \end{bmatrix}.$$

2 Transformation to two systems with a real matrix

Elementary calculations show that:

$$\mathcal{M} = \mathbf{T}^* \mathcal{M}_{\mathbf{T}} \mathbf{T},\tag{4}$$

where

$$\mathcal{M}_{\mathbf{T}} = \begin{bmatrix} (1 + \nu \omega^2)^{1/2} \mathbf{M} & \mathbf{K} & 0 & -\mathbf{D}^T \\ \mathbf{K} & -\nu^{-1} (1 + \nu \omega^2)^{1/2} \mathbf{M} - \mathbf{D}^T & 0 \\ 0 & -\mathbf{D} & 0 & 0 \\ -\mathbf{D} & 0 & 0 & 0 \end{bmatrix},$$

and

$$\mathbf{T} = \begin{bmatrix} T \otimes I_n & 0 \\ 0 & T \otimes I_m \end{bmatrix} \quad \text{with} \quad T = (1 + \nu \omega^2)^{-1/4} \begin{bmatrix} (1 + \nu \omega^2)^{1/2} & -i \\ 0 & 1 \end{bmatrix}.$$

Here the symbol \otimes denotes the Kronecker product and I_k denotes the identity matrix in \mathbb{R}^k . The original system (3) is equivalent to the two systems

$$\mathcal{M}_{\mathbf{T}}\underline{y}_1 = \underline{c}_1 \quad \text{and} \quad \mathcal{M}_{\mathbf{T}}\underline{y}_2 = \underline{c}_2,$$
(5)

with $\underline{c} = \underline{c}_1 + i \underline{c}_2 = (\mathbf{T}^{-1})^* \underline{b}$ and $\underline{y} = \underline{y}_1 + i \underline{y}_2 = \mathbf{T} \underline{x}$. So instead of solving one linear system with a complex 4-by-4 block matrix, we have to solve two linear systems with the same 4-by-4 real block matrix $\mathcal{M}_{\mathbf{T}}$, which can be done in parallel.

3 Preconditioning

Our method of choice for solving (5) is the preconditioned MINRES method. As preconditioner \mathcal{P} we consider the block preconditioner constructed in [4]:

$$\mathcal{P} = \begin{bmatrix} P & 0 \\ 0 & R \end{bmatrix}, \quad \text{where} \quad P = \begin{bmatrix} \mathbf{P} & 0 \\ 0 & \frac{1}{\nu} \mathbf{P} \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} \nu S & 0 \\ 0 & S \end{bmatrix}, \tag{6}$$

with real and symmetric positive matrices

$$\mathbf{P} = \mathbf{M} + \sqrt{\nu} \left(\mathbf{K} + \omega \, \mathbf{M} \right) \quad \text{and} \quad S = \mathbf{D} \mathbf{P}^{-1} \mathbf{D}^{T}.$$
(7)

Definition 1. For a matrix N, we denote the eigenvalues of N with minimal and maximal modulus by $\lambda_{\min}(N)$ and $\lambda_{\max}(N)$, respectively.

We have the following estimates.

Theorem 2.

$$1/\sqrt{12} \leq |\lambda_{\min}(\mathcal{P}^{-1}\mathcal{M}_T)|$$
 and $|\lambda_{\max}(\mathcal{P}^{-1}\mathcal{M}_T)| \leq (1+\sqrt{5})/2.$

For the proof, the detailed analysis and further structural spectral results, see [4].

Definition 3. We call a symmetric and positive definite matrix Q a robust preconditioner for $\mathcal{M}_{\mathbf{T}}$, if $\kappa(Q^{-1}\mathcal{M}_{\mathbf{T}}) = \lambda_{\max}(Q^{-1}\mathcal{M}_{\mathbf{T}})/\lambda_{\min}(Q^{-1}\mathcal{M}_{\mathbf{T}}) \leq C$ with constant C independent of h, ω and ν .

The result of Theorem 2 implies that $\kappa(\mathcal{P}^{-1}\mathcal{M}_{\mathbf{T}}) \leq \sqrt{3}(1+\sqrt{5})$. Hence \mathcal{P} is a robust preconditioner for $\mathcal{M}_{\mathbf{T}}$. Using well known convergence results for the preconditioned MINRES method (see [2]), it follows that the number of iterations, which is needed to decrease the relative error of the k-th residual measured in the $\|\cdot\|_{\mathcal{P}^{-1}}$ -norm by a factor $\varepsilon > 0$, is independent of h, ω and ν . Thereby, for a symmetric and positive definite matrix M, the norm $\|\cdot\|_M$ is defined by $\langle M \cdot, \cdot \rangle^{1/2}$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product.

3.1 The practical preconditioner $\tilde{\mathcal{P}}$

The usage of \mathcal{P} as preconditioner for $\mathcal{M}_{\mathbf{T}}$ requires the evaluation of $\mathbf{P}^{-1}\underline{d}$ and $S^{-1}\underline{e}$ for some given vectors \underline{d} and \underline{e} in every step of the MINRES method. These, especially the evaluation of $S^{-1}\underline{e}$, are nontrivial tasks, due to the potentially high number of involved unknowns. To decrease the computational costs we want to replace \mathbf{P} and S by efficient approximations $\tilde{\mathbf{P}}$ and \tilde{S} , respectively. This leads to a preconditioner of the form:

$$\tilde{\mathcal{P}} = \begin{bmatrix} \tilde{P} & 0\\ 0 & \tilde{R} \end{bmatrix} \quad \text{with} \quad \tilde{P} = \begin{bmatrix} \tilde{\mathbf{P}} & 0\\ 0 & \nu \tilde{\mathbf{P}} \end{bmatrix} \quad \text{and} \quad \tilde{R} = \begin{bmatrix} \tilde{S} & 0\\ 0 & \frac{1}{\nu} \tilde{S} \end{bmatrix}.$$
(8)

Definition 4. For symmetric and positive definite matrices $M, N \in \mathbb{R}^{n \times n}$, we write $M \sim N$, if there exists positive constants γ_1 and γ_2 independent of h, ν and ω , such that $\gamma_1 \langle M\underline{v}, \underline{v} \rangle \leq \langle N\underline{v}, \underline{v} \rangle \leq \gamma_2 \langle M\underline{v}, \underline{v} \rangle$ for all $\underline{v} \in \mathbb{R}^n$.

Obviously we have that $\tilde{\mathcal{P}}$ is also a robust preconditioner for $\mathcal{M}_{\mathbf{T}}$, if $\tilde{\mathbf{P}} \sim \mathbf{P}$ and $\tilde{S} \sim S$. We will now present a possible choice for $\tilde{\mathbf{P}}$ and \tilde{S} with $\tilde{\mathbf{P}} \sim \mathbf{P}$ and $\tilde{S} \sim S$, which guarantee the robustness of $\tilde{\mathcal{P}}$, and further an efficient evaluation of $\tilde{\mathcal{P}}^{-1}\underline{z}$ for a vector \underline{z} :

Choice for $\tilde{\mathbf{P}}$: We replace the evaluation of $\mathbf{P}^{-1}\underline{d}$ by one V(1, 1)-cycle of a multigrid method with a symmetric Gauß-Seidel smoother as pre- and post-smoother applied to $\mathbf{P}\underline{v} = \underline{d}$, shortly denoted by $\tilde{\mathbf{P}}^{-1}\underline{d}$. In [8] it was shown that $\tilde{\mathbf{P}} \sim \mathbf{P}$.

Choice for S: First we replace S by the so called Cahouet-Chabard preconditioner $S_{\text{CH}} := (\sqrt{\nu}M_p^{-1} + (1 + \sqrt{\nu}\omega)K_p^{-1})^{-1}$, where M_p and K_p denote the mass and stiffness matrices in the finite element space Q_h , respectively. For particular finite elements, e.g. the Taylor-Hood element, we have $S \sim S_{CH}$, see, e.g., [1], [5], [6] and [7]. In a second step of approximations, we replace the evaluation of $M_p^{-1}\underline{e}$ by one step of a symmetric Gauß-Seidel iteration applied to $M_p\underline{q} = \underline{e}$ and the evaluation of $K_p^{-1}\underline{e}$ by one V(1, 1)-cycle of the same multigrid method as before applied to $\mathbf{P}\underline{q} = \underline{e}$, shortly denoted by $\tilde{M}_p^{-1}\underline{e}$ and $\tilde{K}_p^{-1}\underline{e}$, respectively. Again from [8] we have $\tilde{M}_p \sim M_p$ and $\tilde{K}_p \sim K_p$. As result of this replacements we obtain

$$\tilde{S}_{\rm CH} := (\sqrt{\nu}\tilde{M}_p^{-1} + (1+\sqrt{\nu}\omega)\tilde{K}_p^{-1})^{-1}, \tag{9}$$

where $\tilde{S}_{CH} \sim S$ and the inverse of \tilde{S}_{CH} can be applied efficiently. Now we replace the evaluation $S^{-1}\underline{e}$ by applying *r*-steps (typically r = 1, 2, 3) of the preconditioned Richardson method to the equation $S\underline{q} = \underline{e}$, with scaling parameters $\tau_i > 0$, the preconditioner \tilde{S}_{CH} and the initial vector $q_0 = 0$. The corresponding preconditioner is given by

$$\tilde{S} = S \left(I_{2m} - \prod_{i=1}^{r} (I_{2m} - \tau_i \, \tilde{S}_{CH}^{-1} S)^i \right)^{-1}, \tag{10}$$

In order to guarantee that \tilde{S} is positive definite, it is easy to see that the condition

$$1 - \prod_{i=1}^{\prime} (1 - \tau_i \,\lambda)^i > 0 \quad \forall \lambda \in (0, 1].$$
(11)

suffices. In particular if we choose $\tau_1 > 0$ fixed and $\tau_i = 1$ for $i \ge 2$, then it follows that \tilde{S} is symmetric, positive definite, and $\tilde{S} \sim S$.

In summary we obtain:

Theorem 5. $\tilde{\mathcal{P}}$ defined in (8) with the previous presented choices for $\tilde{\mathbf{P}}$ and \tilde{S} , is a practical, symmetric and positive definite robust preconditioner for \mathcal{M}_{T} .

3.2 Numerical results

We present some numerical examples on the unit square domain $\Omega = (0, 1) \times (0, 1) \subset \mathbb{R}^2$. Following Example 1 in [3] we choose the target velocity $\mathbf{u}_d(x, y) = [(U(x, y), V(x, y)]^T$, given by

$$U(x,y) = 10 \varphi(x) \varphi'(y)$$
 and $V(x,y) = -10 \varphi'(x) \varphi(y)$,

with $\varphi(z) = (1 - \cos(0.8\pi z))(1 - z)^2$. This target velocity $\mathbf{u}_d(x, y)$ is divergence free. The problem was discretized by the Taylor-Hood pair of finite element spaces consisting of continuous piecewise quadratic polynomials for the velocity $\mathbf{u}(x, y)$ and the force $\mathbf{f}(x, y)$, and continuous piecewise linear polynomials for the pressure p(x, y) on a triangulation of Ω . The initial mesh contains four triangles obtained by connecting the two diagonals. The final mesh was constructed by applying ℓ uniform refinement steps to the initial mesh, leading to a mesh size $h = 2^{-\ell}$.

6 W. Krendl, V. Simoncini, W. Zulehner

All presented numerical experiments refer to the first of the two systems from (5). The results for the second system are completely identical. Therefore, they are omitted. For each system, the total number of unknowns on the finest level $\ell = 7$ is 1 184 780.

Tables 1 and 2 contain the numerical results produced by the preconditioned MINRES method with the preconditioner $\tilde{\mathcal{P}}$ as described in (8), where we choose r = 1 with $\tau_1 = 1$ (i.e. $\tilde{S} = \tilde{S}_{CH}$). The considered values for the mesh size h, the frequency ω , and the regularization parameter ν are specified in the table captions, the first rows and first columns. The other entries of the tables contain the numbers of MINRES iterations that are required for reducing the initial errors in the $\tilde{\mathcal{P}}^{-1}$ -norm by a factor of $\varepsilon = 10^{-8}$ with initial vector $x_0 = 0$, respectively.

			ν		
h	10^{-8}	10^{-4}	1	10^{4}	10^{8}
2^{-4}	44	46	46	46	46
2^{-5}	48	50	50	50	48
2^{-6}	50	52	52	52	52
2^{-7}	54	56	56	56	56

Table 1. $\omega = 10^4$

Table 2. $\nu = 10^{-4}$

	ω				
h	10^{-8}	10^{-4}	1	10^4	10^{8}
2^{-4}	87	87	87	46	38
2^{-5}	99	99	99	52	34
2^{-6}	101	101	101	51	30
2^{-7}	105	105	105	56	34

As expected from the results of Theorem 5, the condition numbers are bounded away from ∞ independent of h, ν and ω , leading to a uniform bound for the number of iterations.

Next, we compare the performance of the practical preconditioner $\tilde{\mathcal{P}}$ with the original (typically better but impractical) preconditioner \mathcal{P} for the particular parameter choice 2^{-7} , $\nu = 1$ and $\omega = 1$. In this case the number of iterations for $\tilde{\mathcal{P}}$ is 118, which is roughly four times higher than the expected number of iterations for \mathcal{P} , see Table 1 in [4]. Since the difference is relatively high, it is worthwhile to consider other options for the inner iteration in order to reduce this gap. Table 3 shows the numbers of iterations \tilde{k} and the computational costs, measured in the CPU-time, for \tilde{S} with $r \in \{1, 2, 3\}$, for different values of $\tau_1 \in \{1, 4\}$ and $\tau_i = 1$ for $i \ge 2$. These and similar further numerical experiments show that a significant improvement of the numbers of iterations can be achieved by a proper choice for τ_1 and not so much by a higher number r of inner iterations. It turned out that $\tau_1 = 4$ is a very good choice, also for all other cases.

Table 3. $h = 2^{-7}, \nu = 1, \omega = 1$

r	scaling parameters	$ ilde{k}$	CPU-time [sec]
1	$\tau_1 = 1$ (i.e. $\tilde{S} = \tilde{S}_{CH}$)	118	577.65
1	$ au_1 = 4$ (i.e. $\tilde{S} = 4 S_{CH}$)	69	341.69
2	$\tau_1 = 4, \ \tau_2 = 1$	46	333.7
3	$\tau_1 = 4, \tau_2 = \tau_3 = 1$	41	402.73

4 Alternative stopping criteria

In our numerical examples the stopping criterion

$$\|r_k\|_{\tilde{\mathcal{P}}^{-1}} \le \varepsilon \, \|r_0\|_{\tilde{\mathcal{P}}^{-1}} \tag{12}$$

was used. Another natural measure for the error is $||x - x_k||_{\tilde{\mathcal{P}}}$. This quantity is not directly computable but can be estimated by using the relation:

$$c\|x - x_k\|_{\tilde{\mathcal{P}}} \le \|r_k\|_{\tilde{\mathcal{P}}^{-1}} \le C\|x - x_k\|_{\tilde{\mathcal{P}}}$$
(13)

with $c = |\lambda_{\min}(\tilde{\mathcal{P}}^{-1}\mathcal{M}_{\mathbf{T}})|$ and $C = |\lambda_{\max}(\tilde{\mathcal{P}}^{-1}\mathcal{M}_{\mathbf{T}})|$. Approximations \tilde{c} and \tilde{C} for c and C, respectively, can be computed by using the so called harmonic Ritz values, see [9]. Therefore, the stopping criterion

$$\|x - x_k\|_{\mathcal{P}} \le \varepsilon \,\|x - x_0\|_{\mathcal{P}} \tag{14}$$

is asymptotically satisfied, if we prescribe (12) with ε replaced by $\varepsilon_* = \tilde{c}/\tilde{C}\varepsilon$.

We test the use of the stopping criterion in (14) with a numerical example. For the parameter choice $h = 2^{-7}, \nu = 1$ and $\omega = 1$, we computed the numbers of iterations \tilde{k} produced by the preconditioned MINRES method, for the two different stopping criteria (12) and (14). Thereby we choose for $\tilde{S}, r = 1$ with $\tau_1 = 1$ (i.e. $\tilde{S} = \tilde{S}_{CH}$). As result we obtain $\tilde{k} = 118$ and $\tilde{k} = 130$, using (12) and (14), respectively. The computed approximations are $\tilde{c} = 0.152077$ and $\tilde{C} = 1.60562$. **Standard norm for stopping criterion:** Finally we present an analytic convergence result, for the standard norm

 $\|(u, p, w, r)\|_{\mathcal{N}}^2 := \|u\|_{H^1(\Omega)}^2 + \|p\|_{L^2(\Omega)}^2 + \|w\|_{H^1(\Omega)}^2 + \|r\|_{L^2(\Omega)}^2.$

For $\nu \leq 1$, it is easy to see that:

 $\|x - x_k\|_{\mathcal{N}} / \|x - x_0\|_{\mathcal{N}} \le 2 \left(\max(2, \omega) / \nu \right)^2 \|x - x_k\|_{\mathcal{P}} / \|x - x_0\|_{\mathcal{P}}.$

This allows to use this standard norm for the stopping criterion in an efficient manner via (14). Using this estimate in combination with the well known convergence results for the preconditioned MINRES method (see [2]), it follows that the number of iterations k^* which is needed to decrease the initial error by a factor $\varepsilon > 0$, depends only mildly on the parameters ω and ν , namely, logarithmically on $(\max(2, \omega)/\nu)^2$.

Acknowledgements

The research of the first and the third author was supported by the Austrian Science Fund (FWF): W1214-N15, project DK12.

References

- J. CAHOUET AND J.-P. CHABARD, Some fast 3D finite element solvers for the generalized Stokes problem, Int. J. Numer. Methods Fluids 8:8 (1988), 865–895.
- 2. A. GREENBAUM, *Iterative methods for solving linear systems.*, Frontiers in Applied Mathematics. 17. Philadelphia, PA: SIAM, 1997.
- M. GUNZBURGER AND S. MANSERVISI, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal. 37:5 (2000), 1481–1512.
- W. KRENDL, V. SIMONCINI, AND W. ZULEHNER, Stability estimates and structural spectral properties of saddle point problems, Numer. Math. 124:1 (2013), 183–213.
- K.-A. MARDAL AND R. WINTHER, Uniform preconditioners for the time dependent Stokes problem, Numer. Math. 98:2 (2004), 305–327.
- Erratum: Uniform preconditioners for the time dependent Stokes problem [Numer. Math 98(2), 305-327 (2004)], Numer. Math. 103:1 (2006), 171– 172.
- M. A. OLSHANSKII, J. PETERS, AND A. REUSKEN, Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, Numer. Math. 105:1 (2006), 159–191.
- M. A. OLSHANSKII AND A. REUSKEN, On the convergence of a multigrid method for linear reaction-diffusion problems, Computing 65:3 (2000), 193–202.
- D. J. SILVESTER AND V. SIMONCINI, An optimal iterative solver for symmetric indefinite systems stemming from mixed approximation, ACM Transactions on Mathematical Software 37:4 (2011), 42:1–42:22.

Latest Reports in this series

2009 - 2011

[..]

2012

[]		
2012-08	Michael Kolmbauer and Ulrich Langer	
	Efficient Solvers for Some Classes of Time-Periodic Eddy Current Optimal	November 2012
	Control Problems	
2012-09	Clemens Hofreither, Ulrich Langer and Clemens Pechstein	
	FETI Solvers for Non-Standard Finite Element Equations Based on Boundary	November 2012
	Integral Operators	
2012-10	Helmut Gfrerer	
	On Metric Pseudo-(sub)Regularity of Multifunctions and Optimality Condi-	December 2012
	tions for Degenerated Mathematical Programs	
2012-11	Clemens Pechstein and Clemens Hofreither	
	A Rigorous Error Analysis of Coupled FEM-BEM Problems with Arbitrary	December 2012
	Many Subdomains	
2012 - 12	Markus Eslitzbichler, Clemens Pechstein and Ronny Ramlau	
	An H ¹ -Kaczmarz Reconstructor for Atmospheric Tomography	December 2012
2012 - 13	Clemens Pechstein	
	On Iterative Substructuring Methods for Multiscale Problems	December 2012
2013		
2013-01	Ulrich Langer and Monika Wolfmayr	
1010 01	Multiharmonic, Finite, Element, Analysis of a Time-Periodic Parabolic Ontimal	January 2013
	Control Problem	sumary 2010

2013-02	Helmut Gfrerer	
	Optimality Conditions for Disjunctive Programs Based on Generalized Differ-	March 2013
	entiation with Application to Mathematical Programs with Equilibrium Con-	
	straints	
2013-03	Clemens Hofreither, Ulrich Langer and Clemens Pechstein	
	BEM-based Finite Element Tearing and Interconnecting Methods	May 2013
2013-04	Irina Georgieva and Clemens Hofreither	
	Cubature Rules for Harmonic Functions Based on Radon Projections	June 2013
2013-05	Astrid Pechstein and Clemens Pechstein	
	A FETI Method For A TDNNS Discretization of Plane Elasticity	August 2013
2013-06	Peter Gangl and Ulrich Langer	
	Topology Optimization of Electric Machines Based on Topological Sensitivity	September 2013
	Analysis	
2013-07	Walter Zulehner	
	The Ciarlet-Raviart Method for Biharmonic Problems on General Polygonal	October 2013
	Domains: Mapping Properties and Preconditioning	
2013-08	Wolfgang Krendl, Valeria Simoncini and Walter Zulehner	
	Efficient Preconditioning for an Optimal Control Problem with the Time-	November 2013

From 1998 to 2008 reports were published by SFB013. Please see

http://www.sfb013.uni-linz.ac.at/index.php?id=reports From 2004 on reports were also published by RICAM. Please see

http://www.ricam.oeaw.ac.at/publications/list/

For a complete list of NuMa reports see

 $periodic\ Stokes\ Equations$

http://www.numa.uni-linz.ac.at/Publications/List/