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Abstract. For the optimal control problem with time-periodic Stokes equations a
practical robust preconditioner is presented. The discretization of the corresponding
optimality system leads to a linear system with a large, sparse and complex 4-by-4
block matrix in saddle point form. We present a decoupling strategy, which reduces
the system to two linear systems with a real 4-by-4 block matrix. Based on analytic
results on preconditioners for time-harmonic control problems in [4], a practical
preconditioner is constructed, which is robust with respect to the mesh size h, the
frequency ω and the control parameter ν. The result is illustrated by numerical
examples with the preconditioned minimal residual method. Finally we discuss
alternative stopping criteria.

1 The model problem

We consider the following problem: Find the velocity u(x, t), the pressure
p(x, t), and the force f(x, t) that minimize the cost functional

J(u, f) =
1

2

∫ T

0

∫
Ω

|u(x, t)− ud(x, t)|2 dx dt+
ν

2

∫ T

0

∫
Ω

|f(x, t)|2 dx dt

subject to the time-dependent Stokes problem

∂

∂t
u(x, t)−∆u(x, t) +∇p(x, t) = f(x, t) in Ω × (0, T ),

∇ · u(x, t) = 0 in Ω × (0, T ),

u(x, t) = 0 on Γ × (0, T ),

with time-periodic conditions

u(x, 0) = u(x, T ), p(x, 0) = p(x, T ), f(x, 0) = f(x, T ) on Ω.

Here Ω ⊂ Rd, d ∈ {2, 3} is an open and bounded domain with Lipschitz
boundary Γ , ud(x, t) is a given target velocity, ν > 0 is a cost or regularization
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parameter, and |.| denotes the Euclidean norm in Rd. We assume that ud(x, t)
is time-periodic.

For time discretization a truncated Fourier series expansion is used and
for space discretization we choose appropriate finite element spaces Vh of
dimension n and Qh of dimension m for u and p, respectively, and the same
finite element space Vh for f as well. The fully discretized problem can then
be decoupled in systems, which only depend on one Fourier coefficient. For
the Fourier coefficient corresponding to the frequency ω the system reads as
follows:

J(u, f) =
1

2
(u− ud)

∗M(u− ud) +
ν

2
f∗Mf (1)

subject to

iωM u + Ku−DT p = Mf ,

Du = 0.

Here the symbol ∗ denotes the conjugate transpose of a vector or a matrix
and the real matrices M, K, and D are the mass matrix, representing the
L2-inner product in Vh, the discretized negative vector Laplacian, and the
discretized divergence, respectively. The underlined quantities denote the co-
efficient vectors of finite element functions relative to a chosen basis.

The Lagrangian functional for this constrained optimization problem is
given by

L(u, p, f , w, r) = J(u, f) + w∗
(
iωM u+Ku−DT p−Mf

)
+ r∗Du,

where w, r denote the Lagrangian multipliers associated with the constraints.
The first-order optimality conditions are ∇L(u, p, f) = 0, and read in details:

M 0 0 K − iωM −DT

0 0 0 −D 0
0 0 ν M −M 0

K + iωM −DT −M 0 0
−D 0 0 0 0



u
p
f
w
r

 =


Mud

0
0
0
0

 . (2)

From the third row it follows that f = ν−1w. So the control f can be elimi-
nated. After reordering we obtain the reduced optimality system:

Mx = b, (3)

where

M =

[
A BT

B 0

]
, x =


u
w
p
r

 and b =


Mud

0
0
0

 ,
with

A =

[
M

√
ν (K− iωM)√

ν (K + iωM) − 1
νM

]
and B =

[
0 −D
−D 0

]
.



Efficient practical preconditioning 3

2 Transformation to two systems with a real matrix

Elementary calculations show that:

M = T∗MTT, (4)

where

MT =


(1 + νω2)1/2M K 0 −DT

K −ν−1(1 + νω2)1/2M −DT 0
0 −D 0 0
−D 0 0 0

 ,
and

T =

[
T ⊗ In 0

0 T ⊗ Im

]
with T = (1 + νω2)−1/4

[
(1 + νω2)1/2 −i

0 1

]
.

Here the symbol ⊗ denotes the Kronecker product and Ik denotes the identity
matrix in Rk. The original system (3) is equivalent to the two systems

MTy1 = c1 and MTy2 = c2, (5)

with c = c1 + i c2 =
(
T−1

)∗
b and y = y

1
+ i y

2
= Tx. So instead of solving

one linear system with a complex 4-by-4 block matrix, we have to solve two
linear systems with the same 4-by-4 real block matrix MT, which can be
done in parallel.

3 Preconditioning

Our method of choice for solving (5) is the preconditioned MINRES method.
As preconditioner P we consider the block preconditioner constructed in [4]:

P =

[
P 0
0 R

]
, where P =

[
P 0
0 1
νP

]
and R =

[
νS 0
0 S

]
, (6)

with real and symmetric positive matrices

P = M +
√
ν (K + ωM) and S = DP−1DT . (7)

Definition 1. For a matrix N , we denote the eigenvalues of N with minimal
and maximal modulus by λmin(N) and λmax(N), respectively.

We have the following estimates.

Theorem 2.

1/
√

12 ≤ |λmin(P−1MT)| and |λmax(P−1MT)| ≤ (1 +
√

5)/2.
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For the proof, the detailed analysis and further structural spectral results,
see [4].

Definition 3. We call a symmetric and positive definite matrix Q a robust
preconditioner for MT, if κ(Q−1MT) = λmax(Q−1MT)/λmin(Q−1MT) ≤
C with constant C independent of h, ω and ν.

The result of Theorem 2 implies that κ(P−1MT) ≤
√

3(1 +
√

5). Hence P
is a robust preconditioner forMT. Using well known convergence results for
the preconditioned MINRES method (see [2]), it follows that the number of
iterations, which is needed to decrease the relative error of the k-th residual
measured in the ‖ · ‖P−1-norm by a factor ε > 0, is independent of h, ω and
ν. Thereby, for a symmetric and positive definite matrix M , the norm ‖ · ‖M
is defined by 〈M ·, ·〉1/2, where 〈·, ·〉 denotes the Euclidean inner product.

3.1 The practical preconditioner P̃

The usage of P as preconditioner forMT requires the evaluation of P−1d and
S−1e for some given vectors d and e in every step of the MINRES method.
These, especially the evaluation of S−1e, are nontrivial tasks, due to the po-
tentially high number of involved unknowns. To decrease the computational
costs we want to replace P and S by efficient approximations P̃ and S̃, re-
spectively. This leads to a preconditioner of the form:

P̃ =

[
P̃ 0

0 R̃

]
with P̃ =

[
P̃ 0

0 νP̃

]
and R̃ =

[
S̃ 0

0 1
ν S̃

]
. (8)

Definition 4. For symmetric and positive definite matrices M,N ∈ Rn×n,
we write M ∼ N , if there exists positive constants γ1 and γ2 independent of
h, ν and ω, such that γ1〈Mv, v〉 ≤ 〈Nv, v〉 ≤ γ2〈Mv, v〉 for all v ∈ Rn.

Obviously we have that P̃ is also a robust preconditioner for MT, if P̃ ∼ P
and S̃ ∼ S. We will now present a possible choice for P̃ and S̃ with P̃ ∼ P
and S̃ ∼ S, which guarantee the robustness of P̃, and further an efficient
evaluation of P̃−1z for a vector z:

Choice for P̃: We replace the evaluation of P−1d by one V (1, 1)-cycle
of a multigrid method with a symmetric Gauß-Seidel smoother as pre- and

post-smoother applied to Pv = d, shortly denoted by P̃
−1
d. In [8] it was

shown that P̃ ∼ P.
Choice for S̃: First we replace S by the so called Cahouet-Chabard pre-

conditioner SCH := (
√
νM−1p + (1 +

√
νω)K−1p )−1, where Mp and Kp de-

note the mass and stiffness matrices in the finite element space Qh, respec-
tively. For particular finite elements, e.g. the Taylor-Hood element, we have
S ∼ SCH , see, e.g., [1], [5], [6] and [7]. In a second step of approximations,
we replace the evaluation of M−1p e by one step of a symmetric Gauß-Seidel
iteration applied to Mpq = e and the evaluation of K−1p e by one V (1, 1)-cycle
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of the same multigrid method as before applied to Pq = e, shortly denoted

by M̃−1p e and K̃−1p e, respectively. Again from [8] we have M̃p ∼ Mp and

K̃p ∼ Kp. As result of this replacements we obtain

S̃CH := (
√
νM̃−1p + (1 +

√
νω)K̃−1p )−1, (9)

where S̃CH ∼ S and the inverse of S̃CH can be applied efficiently. Now we
replace the evaluation S−1e by applying r-steps (typically r = 1, 2, 3) of
the preconditioned Richardson method to the equation Sq = e, with scaling

parameters τi > 0, the preconditioner S̃CH and the initial vector q0 = 0. The
corresponding preconditioner is given by

S̃ = S

(
I2m −

r∏
i=1

(I2m − τi S̃−1CHS)i

)−1
, (10)

In order to guarantee that S̃ is positive definite, it is easy to see that the
condition

1−
r∏
i=1

(1− τi λ)i > 0 ∀λ ∈ (0, 1]. (11)

suffices. In particular if we choose τ1 > 0 fixed and τi = 1 for i ≥ 2, then it
follows that S̃ is symmetric, positive definite, and S̃ ∼ S.

In summary we obtain:

Theorem 5. P̃ defined in (8) with the previous presented choices for P̃ and
S̃, is a practical, symmetric and positive definite robust preconditioner for
MT.

3.2 Numerical results

We present some numerical examples on the unit square domain Ω = (0, 1)×
(0, 1) ⊂ R2. Following Example 1 in [3] we choose the target velocity ud(x, y) =

[(U(x, y), V (x, y)]
T

, given by

U(x, y) = 10ϕ(x)ϕ′(y) and V (x, y) = −10ϕ′(x)ϕ(y),

with ϕ(z) =
(
1 − cos(0.8πz)

)
(1 − z)2. This target velocity ud(x, y) is diver-

gence free. The problem was discretized by the Taylor-Hood pair of finite
element spaces consisting of continuous piecewise quadratic polynomials for
the velocity u(x, y) and the force f(x, y), and continuous piecewise linear
polynomials for the pressure p(x, y) on a triangulation of Ω. The initial mesh
contains four triangles obtained by connecting the two diagonals. The final
mesh was constructed by applying ` uniform refinement steps to the initial
mesh, leading to a mesh size h = 2−`.
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All presented numerical experiments refer to the first of the two systems
from (5). The results for the second system are completely identical. There-
fore, they are omitted. For each system, the total number of unknowns on
the finest level ` = 7 is 1 184 780.

Tables 1 and 2 contain the numerical results produced by the precondi-
tioned MINRES method with the preconditioner P̃ as described in (8), where
we choose r = 1 with τ1 = 1 (i.e. S̃ = S̃CH). The considered values for the
mesh size h, the frequency ω, and the regularization parameter ν are speci-
fied in the table captions, the first rows and first columns. The other entries
of the tables contain the numbers of MINRES iterations that are required
for reducing the initial errors in the P̃−1-norm by a factor of ε = 10−8 with
initial vector x0 = 0, respectively.

Table 1. ω = 104

ν

h 10−8 10−4 1 104 108

2−4 44 46 46 46 46
2−5 48 50 50 50 48
2−6 50 52 52 52 52
2−7 54 56 56 56 56

Table 2. ν = 10−4

ω

h 10−8 10−4 1 104 108

2−4 87 87 87 46 38
2−5 99 99 99 52 34
2−6 101 101 101 51 30
2−7 105 105 105 56 34

As expected from the results of Theorem 5, the condition numbers are
bounded away from ∞ independent of h, ν and ω, leading to a uniform
bound for the number of iterations.

Next, we compare the performance of the practical preconditioner P̃ with
the original (typically better but impractical) preconditioner P for the par-
ticular parameter choice 2−7, ν = 1 and ω = 1. In this case the number of
iterations for P̃ is 118, which is roughly four times higher than the expected
number of iterations for P, see Table 1 in [4]. Since the difference is relatively
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high, it is worthwhile to consider other options for the inner iteration in or-
der to reduce this gap. Table 3 shows the numbers of iterations k̃ and the
computational costs, measured in the CPU-time, for S̃ with r ∈ {1, 2, 3}, for
different values of τ1 ∈ {1, 4} and τi = 1 for i ≥ 2. These and similar further
numerical experiments show that a significant improvement of the numbers
of iterations can be achieved by a proper choice for τ1 and not so much by a
higher number r of inner iterations. It turned out that τ1 = 4 is a very good
choice, also for all other cases.

Table 3. h = 2−7, ν = 1, ω = 1

r scaling parameters k̃ CPU-time [sec]

1 τ1 = 1 (i.e. S̃ = S̃CH) 118 577.65

1 τ1 = 4 (i.e. S̃ = 4SCH) 69 341.69
2 τ1 = 4, τ2 = 1 46 333.7
3 τ1 = 4, τ2 = τ3 = 1 41 402.73

4 Alternative stopping criteria

In our numerical examples the stopping criterion

‖rk‖P̃−1 ≤ ε ‖r0‖P̃−1 (12)

was used. Another natural measure for the error is ‖x− xk‖P̃ . This quantity
is not directly computable but can be estimated by using the relation:

c‖x− xk‖P̃ ≤ ‖rk‖P̃−1 ≤ C‖x− xk‖P̃ (13)

with c = |λmin(P̃−1MT)| and C = |λmax(P̃−1MT)|. Approximations c̃ and
C̃ for c and C, respectively, can be computed by using the so called harmonic
Ritz values, see [9]. Therefore, the stopping criterion

‖x− xk‖P ≤ ε ‖x− x0‖P (14)

is asymptotically satisfied, if we prescribe (12) with ε replaced by ε∗ = c̃/C̃ ε.
We test the use of the stopping criterion in (14) with a numerical example.

For the parameter choice h = 2−7, ν = 1 and ω = 1, we computed the
numbers of iterations k̃ produced by the preconditioned MINRES method,
for the two different stopping criteria (12) and (14). Thereby we choose for
S̃, r = 1 with τ1 = 1 (i.e. S̃ = S̃CH). As result we obtain k̃ = 118 and
k̃ = 130, using (12) and (14), respectively. The computed approximations are
c̃ = 0.152077 and C̃ = 1.60562.
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Standard norm for stopping criterion: Finally we present an analytic
convergence result, for the standard norm

‖(u, p, w, r)‖2N := ‖u‖2H1(Ω) + ‖p‖2L2(Ω) + ‖w‖2H1(Ω) + ‖r‖2L2(Ω).

For ν ≤ 1, it is easy to see that:

‖x− xk‖N /‖x− x0‖N ≤ 2 (max(2, ω)/ν)
2 ‖x− xk‖P/‖x− x0‖P .

This allows to use this standard norm for the stopping criterion in an efficient
manner via (14). Using this estimate in combination with the well known con-
vergence results for the preconditioned MINRES method (see [2]), it follows
that the number of iterations k? which is needed to decrease the initial error
by a factor ε > 0, depends only mildly on the parameters ω and ν, namely,
logarithmically on (max(2, ω)/ν)

2
.
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