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On Iterative Substructuring Methods for Multiscale
Problems

Clemens Pechstein∗

December 19, 2012

Abstract

In this note, we discuss iterative substructuring methods for a scalar elliptic model
problem with a strongly varying diffusion coefficient that is typically discontinuous and
exhibits large jumps. Opposed to earlier theory, we treat the case where the jumps happen
on a small spatial scale and can in general not be resolved by adomain decomposition. We
review the available theory of FETI methods for coefficientsthat are—on each subdomain
(or a part of it)—quasi-monotone. Furthermore, we present novel theoretical robustness
results of FETI methods for coefficients which have a large number of inclusions with
large values, and a constant “background” value (by far not quasi-monotone). In both
cases, the coarse space is the usual space of constants per subdomain.

Keywords FETI, varying coefficients, robustness

1 Introduction

Model Problem Let Ω ⊂ R
2 or R3 be a Lipschitz polytope with boundary∂Ω = ΓD ∪ΓN,

whereΓD ∩ΓN = /0. We are interested in findinguh ∈Vh
D(Ω) such that

∫

Ω
α ∇uh ·∇vhdx = 〈 f , vh〉 ∀uh ∈Vh

D(Ω). (1)

Above,Vh
D(Ω) denotes the finite element space of continuous and piecewise linear functions

with respect to a meshT h(Ω) that vanish on the Dirichlet boundaryΓD. The functionalf ∈
Vh

D(Ω)∗ is assumed to be composed from a volume integral overΩ and a surface integral over
ΓN.

The diffusion coefficientα ∈ L∞(Ω) is assumed to be uniformly positive, i.e., ess.infx∈Ω α(x)>
0. We allow here thatα varies of several orders of magnitude in an unstructured way through-
out the domainΩ. In particular, we allow thatα is discontinuous and exhibits large jumps
(high contrast). If the jumps occur at a scaleη ≪ diam(Ω), one speaks of amultiscale problem
(cf. e.g., [1]).

Problem (1) is equivalent to the linear system

Kh,α uh = fh , (2)
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2 C. Pechstein

α = 1 αH αL

Figure 1: Top row: three coefficient distributionsα . Second row: spectraσ(Kh,α) correspond-
ing to the three distributions. Third row:σ(diag(Kh,α)

−1Kh,α). Bottom row:σ(M−1
h,αKh,α). In

each case structured mesh with mesh sizeh= 1/32. The contrast forαL = α−1
H is 108.

where the stiffness matrixKh,α and load vectorfh are defined with respect to the standard nodal
basis ofVh

D(Ω). For a quasi-uniform mesh, one easily shows that

κ(Kh,α)≤C
ess.supx∈Ω α(x)
ess.infx∈Ω α(x)

h−2 .

Although in many cases, this might be a pessimistic bound, it is sharp in general.Consequently,
an ideal preconditioner forKh,α should be robust in (i) the contrast inα , (ii) the mesh sizeh, (iii)
the scaleη at which the coefficient varies, where here we may assume thath≤ η ≤ diam(Ω).

Spectral Properties and the Weighted Poincaŕe Inequality To get an idea, how difficult
it is to precondition System (2), we display the entirespectrumof Kh,α for the pure Neumann
problem (ΓD = /0) on the unit squareΩ = (0, 1)2 and for three coefficient distributionsα (see
the top row of Fig. 1). The smallest eigenvalue ofKh,α is always zero and not shown in the
following plots.

The second row of Fig. 1 displaysσ(Kh,α). We see that compared to the reference coeffi-
cientα = 1, the spectrum is distorted in the two other casesαH , αL.

In the third and fourth row, we change the point of view, and display the spectrum of
diag(Kh,α)

−1Kh,α and ofM−1
h,αKh,α , whereMh,α denotes the weighted mass matrix correspond-
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ing to the inner product(v, w)L2(Ω),α :=
∫

Ω α vwdx. On a quasi-uniform mesh, one can easily
show that diag(Kh,α) andh−2Mh,α are spectrally equivalent with uniform constants. For this
reason, the spectra in the third and fourth row differ mainly by a simple shift. For coefficient
αH , with 8 inclusions of large values (plotted in red), we obtain 7 additional small eigenvalues
compared to the reference coefficient. This fact has been theoretically shown by Graham &
Hagger [10].

For coefficientαL, with 8 inclusions of small values (plotted in blue), the spectra are es-
sentially the same as for the reference coefficient. The theoretical explanation of this fact is the
so-calledweighted Poincaŕe inequality[17].

Definition 1.1. Let {Di} be a finite partition ofΩ into polytopes, letα be piecewise constant
w.r.t. {Di} with value αi on Di , and letℓ∗ be an index such thatαℓ∗ = maxi αi . Thenα is
calledquasi-monotoneonΩ iff for eachi we can find a pathDℓ1 ∪Dℓ2 ∪ . . .∪Dℓn of subregions
connected through proper faces withℓ1 = i, ℓn = ℓ∗ such thatαℓ1 ≤ αℓ2 ≤ . . .≤ αℓn.

Def. 1.1 is independent of the choice ofℓ∗: if α attains its maximum in more than one
subregion, thenα is either not quasi-monotone, or all the maximum subregions are connected.
In our example,αL is quasi-monotone, whereasαH is not.

Theorem 1.2. If α (as in Def. 1.1) is quasi-monotone onΩ, then there exists a constant CP,α(Ω)
independent of thevaluesαi and ofdiam(Ω) such that

inf
c∈R

‖u−c‖L2(Ω),α ≤CP,α(Ω)diam(Ω) |u|H1(Ω),α ∀u∈ H1(Ω),

where‖v‖2
L2(Ω),α :=

∫
Ω α v2dx and|v|H1(Ω),α :=

∫
Ω α |∇v|2dx.

For thegeometricaldependence ofCP,α(Ω) on the partition{Di} (in our previous example,
the scaleη), we refer to [17]. The infimum on the left hand side is attained at the weighted
averagec = uΩ,α :=

∫
Ω α udx/

∫
Ω α dx. Due to the fact that the coefficientαL in Fig. 1 is

quasi-monotone,
λ2(M

−1
h,αKh,α)≥CP,α(Ω)−2diam(Ω)−2

and thus bounded from below independently of the contrast inαL.

Related Preconditioners The simple examples in Fig. 1 show that it is not necessarily con-
trast alone, which makes preconditioning difficult, but a specialkindof contrast. The fact that a
smallnumber of large inclusions lead to essentially well-conditioned problems has, e.g., been
exploited in [23]. Overlapping Schwarz theory is given in [11] for coefficients of typeαH ,
and in [7, 18]. forlocally quasi-monotone coefficients. Robustness theory of FETI methods
for locally quasi-monotone coefficients has been developed in [15, 16, 14, 13]. Achieving
robustnessin the general case, requires a good coarse space (either for overlapping Schwarz
or FETI). Spectral techniques, in particular solving local generalized eigenvalue problems to
computecoarse basis functions, have come up in [8, 5, 20] (see also the references therein).
Very recently, this approach has been even carried over to FETI methods [21], see also Axel
Klawonn’s DD21 talk and proceedings contribution. Although the spectralapproaches above
guaranteerobust preconditioners, the dimension of the coarse may be large, therefore mak-
ing the preconditioner inefficient. For analyzing the coarse space dimension, tools like the
weighted Poincaré inequality are quite useful, cf. [5].
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Outline In the note at hand, we shall

(i) review the available theoretical results of FETI methods for coefficientsthat are—on
each subdomain (or a part of it)—quasi-monotone (i.e., of typeαL),

(ii) present novel theoretical robustness results of FETI methods for coefficients which re-
sult from a large number of inclusions withlarge values (i.e., of typeαH , by far not
quasi-monotone). In particular, we allow the inclusions to cut through or touch certain
interfaces of the (non-overlapping) domain decomposition.

In both cases, the coarse space is the usual space of constants per subdomain. After fixing some
notation in Sect. 2, we present the review (i) in Sect. 3. Section 4 deals with technical tools
needed for the novel theory (ii), which is contained in Sect. 5. The numerical results in Sect. 6
confirm these theoretical findings. At the end we shall draw some conclusions.

2 FETI and TFETI

FETI Basics We briefly introduce classical and total FETI; for details see e.g., [22, 13].
The domainΩ is decomposed into non-overlapping subdomains{Ωi}

s
i=1, resolved by the fine

meshT h(Ω). The interfaceis defined byΓ :=
⋃s

i 6= j=1(∂Ωi ∩ ∂Ω j) \ΓD. Let Ki denote the
“Neumann” stiffness matrix corresponding to the local bilinear form

∫
Ωi

α ∇u ·∇vdx, and let
Si be the Schur complement ofKi eliminating the interior degrees of freedom and those corre-
sponding to non-coupling nodes on the Neumann boundary. In theclassicalvariant of FETI
[6], the corresponding local spaces are chosen to be

Wi := {v∈Vh(∂Ωi \ΓN) : v|ΓD
= 0}.

In the case of thetotal FETI (TFETI) method [4], the Dirichlet boundary conditions are not
included intoKi , and correspondinglyWi := Vh(∂Ωi \ΓN). We setW := ∏s

i=1Wi andS :=
diag(Si)

s
i=1. Let R be a block-diagonal full-rank matrix such that ker(S) = range(R), and let

B : W →U be a jump operator such that ker(B) = Ŵ, whereŴ ⊂W is the space of functions
being continuous acrossΓ and fulfilling the homogeneous Dirichlet boundary conditions. The
rows of Bu= 0 are formed by all (fully redundant) constraintsui(xh)− u j(xh) = 0 for xh ∈
∂Ωi ∩ ∂Ω j \ΓD. In TFETI, there are further local constraints of the formui(xh) = 0 for xh ∈

∂Ωi∩ΓD. Finally, System (2) is reformulated by

[
S B⊤

B 0

][
u
λ

]
=

[
f
0

]
, wheref contains

the reduced local load vectors, and further reformulated by

find λ̃ ∈ range(P) : P⊤F λ̃ = d̃ := P⊤BS†(g−B⊤λ0), (3)

whereS† is a pseudo-inverse ofS, F := BS†B⊤, P := I −QG(G⊤QG)−1G⊤, G := BR, λ0 =
QG(G⊤QG)−1R⊤ f , andQ is yet to be specified. The solutionu can be recovered easily from
λ = λ0+ λ̃ via S† and(G⊤QG)−1.

Scaled Dirichlet Preconditioner For each subdomain indexj and each degree of freedom
(i.e., node)xh ∈ ∂Ω j ∩Γ, we fix a weightρ j(xh)> 0 and define

δ †
j (x

h) :=
ρ j(xh)γ

∑k∈Nxh
ρk(xh)γ ∈ [0, 1], ∑

j∈Nxh

δ †
j (x

h) = 1.
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ρ j (xh) theoretical practical problems

(a) 1 1 (multiplicity scaling) jumps across interfaces

(b) αmax
Ω j

‖Kdiag
j ‖ℓ∞ jumps within subdomains

(c) max
τ⊂Ω j :xh∈τ

α|τ Kdiag
j (xh) (stiffness scaling)

oscillating coefficients,
unstructured meshes

(d) max
Y(k)

j :xh∈Y
(k)
j

αmax
Y(k)

j

{
1 if Kdiag

j (xh)≃ maxk∈Nxh
Kdiag

k (xh)

0 else
small geometric scaleη

Table 1: Various choices for the weightsρ j(xh). Here,Kdiag
j denotes the diagonal ofK j , ‖ · ‖ℓ∞

the maximum norm,Kdiag
j (xh) the diagonal entry ofK j corresponding to nodexh, and{Y(k)

j }k

is a partition of a neighborhood of∂Ω j ∩Γ, as coarse as possible, such thatα is constant or

only mildly varying in each subregionY(k)
j , cf. [13, Sect. 3.3].

Above,Nxh is the set of subdomain indices sharing nodexh andγ ∈ [1/2, ∞] (the limit γ → ∞
has to be carried out properly, cf. [13, Rem. 2.27]). We stress that in the presence of jumps inα ,
the choice of the weightsρ j(xh) (or the scalingsδ †

j (x
h)) is highly important for the robustness

of the Dirichlet preconditioner and will be discussed further below. Let us note that for any
choiceρ j(xh) above and any exponentγ ∈ [1/2,∞], we have the elementary inequality

ρi(x
h)δ †

j (x
h)2 ≤ min(ρi(x

h), ρ j(x
h)) ∀i, j ∈ Nxh. (4)

The weighted jump operatorBD is defined similarly toB, but each row ofBD w = 0 is of the
form δ †

j (x
h)wi(xh)− δ †

i (x
h)w j(xh) = 0 for xh ∈ ∂Ωi ∩ ∂Ω j \ΓD. In TFETI, there are further

rows of the formwi(xh) = 0 for xh ∈ ∂Ωi ∩ΓD. The preconditioned FETI system now reads

find λ̃ ∈ range(P) : PM−1P⊤F λ̃ = PM−1 d̃, (5)

whereM−1 := BD SB⊤D . SinceP⊤F is SPD on range(P) up to ker(B⊤), this system can be
solved by a Krylov method, e.g., by conjugate gradients. Hence, one is interested in a bound
on the condition numberκFETI := κ(PM−1P⊤F|range(P)/ker(B⊤)). As the analysis in [22] shows
(see also [13, Lem. 2.45, Lem. 2.103, Lem. 2.105]), for the choiceQ= M−1, the estimate

|PD w|2S ≤ µ |w|2S ∀w∈W⊥ , (6)

implies κFETI ≤ 4µ. Above,PD := B⊤
DB is a projection (this is due to the partition of unity

property ofδ †
j ), W⊥ = ∏s

i=1W⊥
i , and eachW⊥

i ⊂Wi is any complementary subspace such that

the sumWi = ker(Si)+W⊥
i is direct. Note that the same estimate implies a bound of the related

balancing Neumann-Neumann (BDD) method.

Choice of Weights Table 1 shows several choices for the weightsρ j(xh). In each row, we
display atheoreticalchoice, which has been used in certain analyses, and then apractical
choice, which tries to mimic the theoretical one. Choices (a)–(c) in Table 1 arenot suitable
for coefficients with jumps (see columnproblems). The theoretical choice (d) will be used in
the analyses below and lead to “good” condition number bounds under suitable assumptions,
however, it is practically infeasible. Under suitable assumptions on the variation of α , the
practical choice (d) can be shown to be essentially equivalent to the theoretical one, if one sets
γ = ∞. “Good” means that the bounds are robust with respect to contrast inα . However, they
depend on the spatial scaleη of the coefficient variation.
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Remark 2.1. A further choice, namedSchur scaling, has been suggested in [3], see also [2].
There,δ †

j (x
h) is set to the entry of(∑k∈NG

Sk,G G )
−1Sj,G G corresponding toxh, whereG is

the (unique) subdomain vertex/edge/face containingxh andSk,G G denotes the restriction ofSk

to the nodes on the subdomain vertex/edge/faceG . This choice is the only known (practical)
candidate that could allow for robustness also with respect to the spatial scaleη , but its analysis
is still under development, cf. [2]. Nevertheless, it has been successfully analyzed in the context
of BDDC methods for the eddy current problem~curl(α ~curl~u)+β~u= ~f , whereα ,β > 0 are
constant in each subdomain [3].

3 Robustness Results for Locally Quasi-monotone Coefficients

In this section, we review robustness results of TFETI, developed originally in [15, 16] and
further refined in [13, Chap. 3]. Because of space limitation, we do not list the full set of
assumptions, but refer to [13, Sect. 3.3.1, Sect. 3.5]. The essential assumption is thatα is
piecewise constant with respect to a shape-regular meshT η(Ω), at least in the neighborhood
of the interfaceΓ and the Dirichlet boundaryΓD, and that this mesh resolvesΓ∪ ΓD. For
simplicity of the presentation we assume further that each subdomainΩi is the union of a few
elements of a coarse meshT H(Ω), and that the three meshesT h(Ω), T η(Ω), andT H(Ω)
are nested, shape-regular, and global quasi-uniform with mesh parametersh≤ η ≤ H.

All the following results hold for the TFETI method as defined in Sect. 2 with the theo-
retical choice (d) forρ j(xh) and withQ = M−1, where the regionsY(k)

j are unions of a few
elements fromT η(Ω). The general bound reads

κFETI ≤ C
(H

η

)β
(1+ log(η/h))2 , (7)

whereC is independent ofH, η , h, andα . The exponentβ is specified below in each particular
case.

Definition 3.1. For each subdomain indexi, the boundary layerΩi,η is the union of those
elements fromT η(Ω) that lie inΩi and touchΓ∪ΓD.

The following theorem is essentially [13, Thm. 3.64] and shows that contrast in the interior
of subdomains is taken care of by TFETI (in form of the subdomain solves), except that the
geometrical scale shows up in the condition number bound. The original result on classical
FETI can be found in [15, Thm. 3.3].

Theorem 3.2(Constant Coefficients in the Boundary Layers). If α is constant in each bound-
ary layerΩi,η , i = 1, . . . ,s, then (7) holds withβ = 2. The exponentβ = 2 is sharp in general.
If the values ofα in Ωi \Ωi,η do not fall below the constant value inΩi,η for each i= 1, . . . ,s,
then (7) holds withβ = 1.

The next theorem (cf. [13, Sect. 3.5.2]) extends the above result to coefficients that are
quasi-monotone in each boundary layer.

Theorem 3.3(Quasi-monotone coefficients in the Boundary Layers). If α is quasi-monotone
in each boundary layerΩi,η , i = 1, . . . ,s, then (7) holds withβ = 2 if d = 2 andβ = 4 if d = 3.
Under suitable additional assumptions onα in Ωi,η , one can achieveβ = 2 for d = 3 as well.
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Γ

φ
D1a D2a

D2b

D1b

Figure 2: Illustration of Def. 4.1: a quasi-mirror in 2D.

In many cases, quasi-monotonicity may not hold in each boundary layer, but in a certain
sense on a larger domain. The following theorem summarizes essentially [13,Sect. 3.5.3] We
note that the concept of anartificial coefficientin the context of FETI goes back to [16].

Theorem 3.4(Quasi-monotone Artificial Coefficients). If for each i= 1, . . . ,s there exists an
auxiliary domainΛi with Ωi,η ⊂ Λi ⊂ Ωi and anartificial coefficientαart such that

αart = α in Ωi,η ,

αart ≤ α in Λi \Ωi,η ,

αart quasi-monotone onΛi ,

then (7) holds with C independent ofαart. The exponentβ depends onΛi andαart. If Λi = Ωi

thenβ ≤ 2d. Under additional assumptions onαart, one can achieve, e.g.,β ≤ d+1.

Remark 3.5. The proofs of Thm. 3.3 and Thm. 3.4 make heavy use of the weighted Poincaré
inequality (Thm. 1.2). We note that Thm. 3.3 and Thm. 3.4 can be generalized to so-called
type-m quasi-monotonicity (see [17]). Also, all the results of this section can be generalized
to (i) coefficients that vary mildly in each element ofT η(Ω) in the neighborhood ofΓ∪ΓD,
(ii) up to a certain extent to suitable diagonal choices of the matrixQ, and (iii) under suitable
conditions to classical FETI. However, we do not present these resultshere and refer to [13,
Chap. 3] and [15, 16] for the full theory.

4 Technical Tools

In this section, we present two technical tools needed for Sect. 5. The first tools is an extension
operator on so-calledquasi-mirrors.

Definition 4.1. LetD1, D2⊂R
d be two disjoint Lipschitz domains sharing a(d−1)-dimensional

manifold Γ. For i = 1,2 let Dia and Dib be open and disjoint Lipschitz domains such that
Di = Dia ∪Dib. We say that(D2a,D2b) is aquasi-mirrorof (D1a,D1b) iff there exists a contin-
uous and piecewiseC1 bijectionφ with ‖∇φ‖L∞ and‖∇φ−1‖L∞ bounded, such thatDia, Dib, Γ
are mapped tôDia, D̂ib, Γ̂, respectively, wherêΓ lies in the hyperplanexd = 0 andD̂2a, D̂2b are
the reflections through that hyperplane ofD̂1a, D̂1b, respectively (for an illustration see Fig. 2).

Lemma 4.2. Let (D2a,D2b) be a quasi-mirror of(D1a,D1b) as in Def. 4.1. Then there exists a
linear operator E: H1(D1)→ H1(D2) such that for all v∈ H1(D1), we have(Ev)|Γ = v|Γ and

|E v|H1(D2a) ≤C|v|H1(D1a), |E v|H1(D2b) ≤C|v|H1(D1b),

‖E v‖L2(D2a) ≤C‖v‖L2(D1a), ‖E v‖L2(D2b) ≤C‖v‖L2(D1b).
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The constant C is dimensionless, but depends on the transformationφ from Def. 4.1.

Proof. We first define the linear operator̂E : C∞(φ(D1)) → C∞(φ(D2)) by the reflection re-
lation (Êv)(x1, . . . ,xd−1,xd) := v(x1, . . . ,xd−1,−xd). One can easily show that̂E has a unique
extension as a continuous operatorÊ : H1(φ(D1))→ H1(φ(D2)) which preserves the trace on
the interface∂ D̂1∩∂ D̂2. Finally, we setE v := (Ê(v◦φ−1))◦φ .

Our second tool is a special Scott-Zhang quasi-interpolation operator.

Lemma 4.3. Let the domain D be composed from two disjoint Lipschitz regionsD = D1∪D2

with interfaceΓ = ∂D1∩ ∂D2, and letΣ ⊂ ∂D be non-trivial. LetT h(D) be a shape-regular
mesh resolvingΓ and Σ, and let Vh(D) denote the corresponding space of continuous and
piecewise linear finite element functions. Then there exists a projection operator Πh : H1(D)→
Vh(D) such that (i) for any v∈ H1(D) that is piecewise linear onΓ andΣ, (Πhv)Γ∪Σ = v|Γ∪Σ
and (ii) for all v∈ H1(D),

|Πhv|H1(Di) ≤C|v|H1(Di), ‖Πhv‖L2(Di) ≤C‖v‖L2(Di), for i = 1, 2,

where the constant C only depens on the shape-regularity of the mesh.

Proof. For eachi ∈ {1,2}, let Πh,i denote the Scott-Zhang interpolation operator that preserves
piecewise linear values onΓ∪Σ. The latter property is ensured by defining the value at a node
xh on Γ∪Σ essentially as the average over a facefxh ⊂ Γ∪Σ, cf. [19]. This operator is stable
in the L2-norm andH1-seminorm. If we further choosefxh ⊂ Γ for all the nodesxh ∈ Γ,
then forv ∈ H1(D), (Πh,1v)|Γ = (Πh,2v)Γ. Thus, by defining(Πhv)|Di

:= Πh,iv, we fulfill the
requirements of the lemma.

5 Novel Robustness Results for Inclusions

For this section, we adopt again the notations of Sect. 2 and 3. However, we restrict to coeffi-
cientsα ∈ L∞(Ω), given by

α(x) =

{
αk if x∈ Dk for somek= 1, . . . ,nH ,
αL else,

(8)

whereαk ≥ αL are constants and the regionsDk ⊂ Ω are pairwise disjoint (disconnected) Lip-
schitz polygons that are contractible (i.e., topologically isomorphic to the ball). Furthermore,
we assume that the subdomainsΩi as well as the inclusion regionsDk are resolved by a global
meshT η(Ω). For the sake of simplicity letT h(Ω) andT η(Ω) be nested, shape-regular, and
quasi-uniform with mesh sizesh andη , respectively (h≤ η). Our main assumption concerns
the location of the inclusion regionsDk relative to the interface.

Assumption A1. Each regionDk, k= 1, . . . ,nH , is either
(a) aninterior inclusion: Dk ⊂⊂ Ωi for some indexi,
(b) adocking inclusion: there is a unique indexi with Dk ⊂ Ωi andDk∩∂Ωi 6= /0, or
(c) a(proper) face inclusion: there exists a subdomain faceFi j (shared by only two subregions
Ωi , Ω j ) such that

• Dk∩Γ ⊂⊂ Fi j ,
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• ∂ (Dk∩Ωi)∩Fi j = ∂ (Dk∩Ω j)∩Fi j ,

• Dk∩Γ is simply connected,

• the neighborhoodUk constructed fromDk by adding one layer of elements fromT η(Ω)
fulfills Dk ⊂⊂ Uk ⊂ Ωi ∪Ω j .

Above,⊂⊂ means compactly contained. Note that since the regionsDk are disjoint and
resolved byT η(Ω), in Case (c) above, it follows thatα = αL in Uk\Dk. The second condition
in (c) avoids that a part ofDk is only “docking”. The third condition ensures thatDk passes
through the faceFi j only once.

Theorem 5.1. Let the above assumptions, in particular Assumption A1, be fulfilled. For the
case of classical FETI, assume that for d= 3 the intersection of a subdomain withΓD is either
empty, or contains at least an edge ofT η(Ω). For the case of TFETI, assume that none of the
docking inclusions in Ass. A1(b) intersects the Dirichlet boundary. Then

κFETI ≤C(η)(1+ log(η/h))2 ,

where C(η) is independent of h, the number of subdomains, as well as the valuesαk, αL.

The dependence ofC(η) on η can theoretically be made explicit (at least under suitable
mild assumptions onα), but is ignored here. In general, it is at least(H/η)2. To prove
Thm. 5.1, we show estimate (6). If ker(Si) = span{1}, we choose

W⊥
i := {w∈Wi : w∂Ωi = 0},

andW⊥
i =Wi otherwise. Letw∈W⊥ be arbitrary but fixed. To estimate|PDw|S, we decompose

the interfaceΓ into globsg. These are vertices, edges, or faces of the meshT η(Ω), with one
exception: for a face inclusionDk, we combine all vertices/edges/faces ofT η(Ω) contained in
Dk∩Γ into a single globg. The following estimate follows from (the proofs of) [13, Lem. 3.21,
Lem. 3.27] or alternatively [16, Lem. 5.4, Lem. 5.6]:

|(PD w)i |
2
Si

≤ C ∑
g⊂∂Ωi∩Γ

∑
j∈Ng\{i}

(δ †
j|g)

2 |Ih(ϑg(w̃
g
ii − w̃g

i j ))|
2
H1(Ui,g),α

︸ ︷︷ ︸
=:ϒi,g

, (9)

whereϑg ∈Vh(Ω) is a cut-off function (yet to be specified) that equals one on all the nodeson
g vanishes on all other nodes onΓ, Ih is the nodal interpolation operator, andUi,g = supp(ϑg)∩
Ωi . In the case of TFETI, we have to add another sum with contributions fromthe Dirichlet
boundary. Their treatment is similar, cf. [13, Chap. 3], but one needs the additional assumption
stated in Thm. 5.1. The (generic) constantC above only depends the shape regularity constant
of T η(Ω) and is thus uniformly bounded. Forj ∈ Ng, the functionw̃g

i j ∈ Vh(Ui,g) is an

extension ofw j (yet to be specified) in the sense thatw̃g
i j (x

h) = w j(xh) for all nodesxh on g.
We treat two cases.

Case 1: g is not part of a face inclusion, i.e., for allk ∈ {1, . . . ,nH} with Dk being a face
inclusion,Dk ∩ g = /0. We choose the cut-off functionϑg like in [22, Sect. 4.6] (where the
subdomains there are the elements ofT η(Ω)). In that case, the support ofϑg is the union of
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those elements inT η(Ω) that have non-trivial intersection withg. From the results of [22,
Sect. 4.6], we get

|Ih(ϑgv)|2H1(Ui,g)
≤C

(
ω2 |v|2H1(Ui,g)

+
ω
η2 ‖v‖2

L2(Ui,g)

)
∀v∈Vh(Ωi), (10)

whereω := (1+ log(η/h)). From the definition of the weightsρi(xh), we find thatρi|g =
supx∈Ui,g

α(x). Furthermore, sinceg is not part of a face inclusion, it follows from (4) that

(δ †
j|g)

2 ρi|g ≤ min(ρi|g, ρ j|g) = αL ∀ j ∈ Ng \{i}, (11)

because at least one of the weights equalsαL. Using the fact that|v|2H1(Ui,g),α
≤ ρi|g |v|

2
H1(Ui,g)

as well as estimates (11) and (10), we can conclude that

ϒi,g ≤ ∑
j∈Ng\{i}

(δ †
j|g)

2 ρi|g |I
h(ϑg(w̃

g
ii − w̃g

i j ))|
2
H1(Ui,g)

, (12)

≤ C ∑
j∈Ng\{i}

αL

(
ω2 |w̃g

ii − w̃g
i j |

2
H1(Ui,g)

+
ω
η2‖w̃g

ii − w̃g
i j‖

2
L2(Ui,g)

)
,

≤ C ∑
j∈Ng

αL

(
ω2 |w̃g

i j |
2
H1(Ui,g)

+
ω
η2‖w̃g

i j‖
2
L2(Ui,g)

)
,

where in the very last step, we have used the triangle inequality and the factthat the cardinality
of Ng is uniformly bounded.

Case 2:g is part of a face inclusion (see Assumption A1), i.e., there existsk with g = Dk∩Γ.
Recall that in this caseg can be the union of many vertices/edges/faces ofT η(Ω). We choose
a special cut-off functionϑg supported inUi,g := Uk∩Ωi :

• ϑg(xh) = 1 for all nodesxh ∈ Dk,

• ϑg(xh) = 0 for all nodesxh ∈ ∂Uk∪ (Uk∩ (Γ\g)),

• on the elements of the layer, i.e., those elementsT ∈ T η(Ω) with T ⊂ Uk \Dk, we set
ϑg to the sum of local cut-off functions, such that we have the inequality

|Ih(ϑgv)|2H1(Ω j∩(Uk\Dk))
≤ C

(
ω2 |v|2H1(Ω j∩(Uk\Dk))

+
ω
η2 ‖v‖2

L2(Ω j∩(Uk\Dk))

)
, (13)

for all v∈Vh(Ω j) and for each of the (two) subdomain indicesj ∈Ng. Thanks to a finite
overlap argument, the constantC is independent of the number of elements in the layer
Uk \Dk.

Note that by construction,ϑg = 1 on Dk, whereα = αk. On the remainder,Uk \Dk, by the
assumptions on the coefficient,α = αL. Therefore, by usingδ †

j|g ≤ 1, the triangle inequality,
and (13), we get

ϒi,g ≤C ∑
j∈Ng

(
|w̃g

i j |
2
H1(Ωi∩Dk),αk

+ |Ih(ϑg w̃g
i j )|

2
H1(Ωi∩(Uk\Dk)),αL

)

≤C ∑
j∈Ng

[
|w̃g

i j |
2
H1(Ωi∩Dk),αk

+αL

(
ω2 |w̃g

i j |
2
H1(Ωi∩(Uk\Dk))

+
ω
η2‖w̃g

i j‖
2
L2(Ωi∩(Uk\Dk))

)]

≤C ∑
j∈Ng

(
ω2 |w̃g

i j |
2
H1(Ui,g),α +αL

ω
η2 ‖w̃g

i j‖
2
L2(Ωi∩(Uk\Dk))

)
. (14)
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Choice ofw̃g
i j in Case 1:LetU′

j,g ⊂ Ω j be any element ofT η(Ωi) with g ⊂ U
′
j,g. Then there

exists a discrete extension operator

Eh
j,g : Vh(U′

j,g)→Vh(Ui,g)

with (Eh
j,gv)(xh) = v(xh) for all nodesxh ∈ g and

|Eh
j,gv|H1(Ui,g) ≤C|v|H1(Ui,g), ‖Eh

j,gv‖L2(Ui,g) ≤C‖v‖L2(Ui,g),

for all v∈Vh(U′
j,g). The operatorEh

j,g can be constructed as the composition of a suitable Scott-
Zhang quasi-interpolation operator and a Sobolev extension operator (cf. [12]). For details see
e.g., [16, Lemma 5.5] or [13, Lemma 3.22]. For Case 1, we set

w̃g
i j := Eh

j,gH
α,h
j w j ,

whereH
α,h
j : Wj → Vh(Ω j) denotes the discrete “PDE-harmonic” extension operator which

minimizes the weighted seminorm| · |H1(Ω j ),α overVh(Ω j), such that|w j |Sj = |H α,h
j w j |H1(Ω j ),α .

This results in the estimates

|w̃g
i j |H1(Ui,g) ≤C|H α,h

j w j |H1(U′
j,g)

, ‖w̃g
i j‖L2(Ui,g) ≤C‖H α,h

j w j‖L2(U′
j,g)

. (15)

Choice ofw̃g
i j in Case 2:Recall that in this case we are dealing with a face inclusion such that

g is part of the face shared byΩi andΩ j and we chooseUi,g =Uk∩Ω j . To define the extension
w̃g

i j ∈Vh(Ui,g), we shall combine the technical tools from Sect. 4. LetU′
j,g :=Uk∩Ω j . It can be

seen from Assumption A1 that(Ui,g \Dk, Ui,g∩Dk) is a quasi-mirror of(Uj,g
′ \Dk, Uj,g

′∩Dk).
Thus, by Lem. 4.2, there exists an extension operator

E
α
j,g : H1(U′

j,g)→ H1(Ui,g), |E α
j,gv|H1(Ui,g),α ≤C|v|H1(U′

j,g),α , (16)

E
α
j,gv= v ong, ‖E α

j,gv‖L2(Ui,g),α ≤C‖v‖L2(U′
j,g),α

for all v∈ H1(U′
j,g) with C independent of the valuesαL, αk. The weighted inequalities hold

because they holdseparatelyon the regions whereαL andαk are attained. Recall further that
g is a(d−1)-dimensional manifold, and so the trace above is well-defined.

Secondly, we need a special Scott-Zhang quasi-interpolation operatorΠα,h
j,g with

Πα,h
j,g : H1(U′

j,g)→Vh(U′
j,g), |Πα,h

j,g v|H1(U′
j,g),α ≤C|v|H1(U′

j,g),α , (17)

‖Πα,h
j,g v‖L2(U′

j,g),α ≤C‖v‖L2(U′
j,g),α

for all v ∈ H1(U′
j,g) and with withC independent of the valuesαL andαk. Furthermore, the

boundary values of functions that are piecewise linear ong and on the interfaceU ′
j,g ∩ ∂Dk

must be preserved. The operatorΠα,h
i,g can be constructed as in Lem. 4.3. We can now set

w̃g
i j := Πh,α

j,g E
α,h
j,g H

α,h
j w j ,

whereH
α,h
j is defined as above. It has now to be argued that the transformationφ in Def. 4.1

can be chosen such thatE
α,h
j,g H

α,h
j w j is still piecewise linear on the interfaceU ′

j,g ∩∂Dk, and
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sow̃g
i j is indeed an extension ofw j . Due to the properties of the above operators, we have the

total stability estimates

|w̃g
i j |H1(Ui,g),α ≤C|H α

j w j |H1(U′
j,g),α , ‖w̃g

i j‖L2(Ui,g) ≤C‖H α
j w j‖L2(U′

j,g)
(18)

for all w j ∈Vh(∂Ω j), with C independent ofαL andαk.

By combining the local estimates (12), (14), (15), and (18), we obtain by afinite overlap
argument that

|(PD w)i |
2
Si

≤ C ∑
j∈Ni

(
ω2 |H α,h

j w j |H1(Ω j ),α +αL
ω
η2 ‖H

α,h
j w j‖

2
L2(Ω j )

)
, (19)

whereNi := { j = 1, . . . ,s : ∂Ωi ∩ ∂Ω j 6= /0}. Recall that forw j ∈ W⊥
j eitherw

∂Ω j
j = 0, or

Ω j ∩ΓD 6= /0 andw j vanishes there. Thus, by a conventional Poincaré or a (discrete) Friedrichs
inequality, we obtain

αL ‖H
α,h
j w j‖

2
L2(Ω j )

≤ αLCω H2 |H α,h
j w j |

2
H1(Ω j )

≤Cω H2 |H α,h
j w j |

2
H1(Ω j ),α . (20)

Combining (19), (20), and the fact that|H α,h
j w j |H1(Ω j ),α = |w j |Sj , we obtain (6) withµ =Cω2.

This concludes the proof of Thm. 5.1.

6 Numerical Results

Numerical examples illustrating the results of Sect. 3 can be found in [15, 16,13]. Here, we
would like to illustrate the novel results of Sect. 5. In each of the following cases,Ω = (0, 1)2

is partitioned into 2× 2 square-shaped subdomains. The Dirichlet boundary is given at as
0× [0, 1]∪ [0, 1]× {0}. Figures 3–5 show three coefficient distributions together with the
condition number of classical FETI (estimated by the Lanczos method) for increasing contrast.
In these examples we have simply used the stiffness scaling (see Table 1) because the chosen
mesh is structured.

In the first example (Fig. 3), the assumptions of Thm. 5.1 are fulfilled, and thecondition
number in the left plot confirms the statement of Thm. 5.1.

The two other examples are situations where Assumption A1 is violated. In both cases,
the estimated condition numberdependson the contrast. As stated in the Conclusion (Sect. 7),
the theories of Sect. 3 and Sect. 5 can probably be combined, leading to overall sharper and
more general estimates. Nevertheless, the example in Fig. 4 shows that an inclusion that tra-
verses three subdomains leads to non-robust behavior, and the examplein Fig. 5 shows that an
inclusion shared by two subdomains which touches a subdomain vertex is problematic. Sum-
marizing, for the setting at hand, Assumption A1 is necessary.

7 Conclusions

Section 3 shows robustness of TFETI for (artificial) coefficients that are quasi-monotone in
boundary layers. Sect. 5 shows that these conditions are far from necessary for the robustness
of FETI or TFETI.

It is interesting to note that the assumptions and robustness properties of Sect. 5 are similar
to the theory in [11] for overlapping Schwarz. Actually, several ideas from the latter theory
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Figure 3: Left: Coefficient distribution that fulfills Assumption A1 (blue:α = 1, red: α =
αH > 1) and decomposition into 4× 4 subdomains.Right: Estimated condition number for
H/h= 32 and for increasing contrastαH ∈ [1, 108].

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

co
nd

iti
on

ALPHA

FETI, long channel example, H/h=32

Figure 4: Left: Coefficient distribution that violates Assumption A1, in the sense that the
“channel” is neither a docking nor a proper face inclusion (blue:α = 1, red:α = αH > 1) and
decomposition into 4×4 subdomains.Right: Estimated condition number forH/h= 32 and
for increasing contrastαH ∈ [1, 108].
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Figure 5: Left: Coefficient distribution that violates Assumption A1, in the sense that one of
the inclusion touches a subdomain vertex and is part of two subdomains (blue: α = 1, red:
α = αH > 1) and decomposition into 4×4 subdomains.Right: Estimated condition number
for H/h= 32 and for increasing contrastαH ∈ [1, 108].

have been reused in the analysis of Sect. 5. However, the robustness for overlapping Schwarz
requires a sophisticated coarse space, whereas for FETI/TFETI, theusual coarse space can be
used, which simplifies the implementation a lot.

A combination of the two theories (Sect. 3 and Sect. 5) is of course desirable. However, the
general case ofα is left open. As Sect. 6 shows, the problematic cases in FETI/TFETI are (a)
inclusions touching vertices (or edges in 3D) and being shared by more than one subdomain,
and (b) long channels that traverse through more than one face, or traverse a face more than
once.

Item (a) might be fixed using suitable FETI-DP/BDDC methods, and we hope that novel
analysis of Sect. 5 will have positive impact here (the known theory of FETI-DP/BDDC for
multiscale coefficients is yet limited, cf. [13, 14, 9]). Item (b) can only be addressed by a
larger coarse space: either by FETI-DP/BDDC with more sophisticated primal DOFs and/or
by spectral techniques as suggested in [21]. Robustness in the spatial scale η is achieved
neither in Sect. 3 nor Sect. 5. We believe that the only possibility to gain robustness is a more
sophisticated weight selection (cf. Rem. 2.1) and probably again a larger coarse space.

Acknowledgement The author would like to thank Robert Scheichl, Marcus Sarkis, and
Clark Dohrmann for the inspiring collaboration and discussions on this topic.
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