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On Iterative Substructuring Methods for Multiscale
Problems

Clemens Pechstéin

December 19, 2012

Abstract

In this note, we discuss iterative substructuring methadsafscalar elliptic model
problem with a strongly varying diffusion coefficient thattypically discontinuous and
exhibits large jumps. Opposed to earlier theory, we treattse where the jumps happen
on a small spatial scale and can in general not be resolvedbsain decomposition. We
review the available theory of FETI methods for coefficights are—on each subdomain
(or a part of it)—quasi-monotone. Furthermore, we presementheoretical robustness
results of FETI methods for coefficients which have a largmioer of inclusions with
large values, and a constant “background” value (by far not quoasiotone). In both
cases, the coarse space is the usual space of constantbgemstn.

Keywords  FETI, varying coefficients, robustness

1 Introduction

Model Problem Let Q c R? or R® be a Lipschitz polytope with boundagQ = Fp Uy,
wherel'p Ny = 0. We are interested in finding, € V{}(Q) such that

/aDuh-Dvhdx = (f,w)  Vu,eVI(Q). 1)
Q

Above,VS(Q) denotes the finite element space of continuous and piecewise linear fnction
with respect to a mesi"(Q) that vanish on the Dirichlet boundafy. The functionalf <
VS(Q)* is assumed to be composed from a volume integral Ovand a surface integral over
N-

The diffusion coefficientr € L*(Q) is assumed to be uniformly positive, i.e., &$&eq a(X) >
0. We allow here thatr varies of several orders of magnitude in an unstructured way through-
out the domairmQ. In particular, we allow thatr is discontinuous and exhibits large jumps
(high contrast). If the jumps occur at a scgle« diam(Q), one speaks of multiscale problem
(cf. e.q., [1]).

Problem (1) is equivalent to the linear system

Kh,C{ gh = ih, (2)
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Figure 1: Top row: three coefficient distributions Second row: spectra(Ky, o) correspond-
ing to the three distributions. Third rover(diag(Kn o) ~*Kn q). Bottom row: o(M;, 2Knq). In
each case structured mesh with mesh kizel/32. The contrast foo = a* is 10%.

where the stiffness matrix,  and load vectof, are defined with respect to the standard nodal
basis ofV}(Q). For a quasi-uniform mesh, one easily shows that

€sSSURcq 0 (X) , o

<
K(Kng) <C essinfycq a(X)

Although in many cases, this might be a pessimistic bound, it is sharp in geGeredequently,
an ideal preconditioner fdf;, o should be robust in (i) the contrastan (i) the mesh sizé, (iii)
the scalep at which the coefficient varies, where here we may assumétidaj < diam(Q).

Spectral Properties and the Weighted Poincag Inequality To get an idea, how difficult
it is to precondition System (2), we display the enspectrunof K;, 4 for the pure Neumann
problem (p = 0) on the unit squar® = (0, 1)? and for three coefficient distributiors (see
the top row of Fig. 1). The smallest eigenvaluekpf, is always zero and not shown in the
following plots.

The second row of Fig. 1 displays(Kn o). We see that compared to the reference coeffi-
cienta = 1, the spectrum is distorted in the two other casgsa .

In the third and fourth row, we change the point of view, and display tleetspm of
diag(Khva)‘lKh_,a and ofng Kh.a, WhereM;, o denotes the weighted mass matrix correspond-
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ing to the inner produdy, W), 2(q) o := Jo @ VWdx On a quasi-uniform mesh, one can easily
show that diagKp o) and h—2 M o are spectrally equivalent with uniform constants. For this
reason, the spectra in the third and fourth row differ mainly by a simple shoft céefficient
ay, with 8 inclusions of large values (plotted in red), we obtain 7 additional srigghgalues
compared to the reference coefficient. This fact has been theoretibalynsoy Graham &
Hagger [10].

For coefficienta;, with 8 inclusions of small values (plotted in blue), the spectra are es-
sentially the same as for the reference coefficient. The theoretical exiplawof this fact is the
so-calledweighted Poincas inequality[17].

Definition 1.1. Let {D;} be a finite partition of into polytopes, letr be piecewise constant
w.r.t. {Dj} with value a; on Dj, and let/* be an index such that,- = maxaj. Thena is
calledquasi-monotonen Q iff for eachi we can find a pat®,, UD,, U...UD,, of subregions
connected through proper faces with= i, ¢, = ¢* such thato,, < a,, <... < ay,.

Def. 1.1 is independent of the choice ©f if a attains its maximum in more than one
subregion, them is either not quasi-monotone, or all the maximum subregions are connected.
In our exampleqy is quasi-monotone, whereas, is not.

Theorem 1.2.1f a (as in Def. 1.1) is quasi-monotone @nthen there exists a constari (X Q)
independent of thealuesa; and ofdiam(Q) such that

inf [|u—clli2(q).q < Cra(Q)diam(Q)[Ulga  YuEH(Q),

WhereHvHEZ(Q)ﬂr = Joavidx and|V]yy g o == Jo o |Ov/Zdx.

For thegeometricalependence @&@p, (Q) on the partition{D; } (in our previous example,
the scalen), we refer to [17]. The infimum on the left hand side is attained at the welghte
averagec = 0% = [yaudx/ [,adx Due to the fact that the coefficient in Fig. 1 is
guasi-monotonge

A2(Mp eKna) > Cra(Q)?diam(Q) 2

and thus bounded from below independently of the contragt in

Related Preconditioners The simple examples in Fig. 1 show that it is not necessarily con-
trast alone, which makes preconditioning difficult, but a spédiad of contrast. The fact that a
smallnumber of large inclusions lead to essentially well-conditioned problems lgasbeen
exploited in [23]. Overlapping Schwarz theory is given in [11] for ¢o&nts of typeay,

and in [7, 18]. forlocally quasi-monotone coefficients. Robustness theory of FETI methods
for locally quasi-monotone coefficients has been developed in [15,4,613]. Achieving
robustnessn the general case, requires a good coarse space (either forppregeschwarz

or FETI). Spectral techniques, in particular solving local generalizgehealue problems to
computecoarse basis functions, have come up in [8, 5, 20] (see also thenedsrénerein).
Very recently, this approach has been even carried over to FETI nefBaf] see also Axel
Klawonn’s DD21 talk and proceedings contribution. Although the speapptoaches above
guaranteeobust preconditioners, the dimension of the coarse may be large, therefore mak-
ing the preconditioner inefficient. For analyzing the coarse space dimereia like the
weighted Poincd inequality are quite useful, cf. [5].



4 C. Pechstein

Outline In the note at hand, we shall

(i) review the available theoretical results of FETI methods for coefficidrdas are—on
each subdomain (or a part of it)—quasi-monotone (i.e., of type

(ii) present novel theoretical robustness results of FETI methodsofficients which re-
sult from a large number of inclusions witarge values (i.e., of typexy, by far not
guasi-monotone). In particular, we allow the inclusions to cut through ahtcertain
interfaces of the (non-overlapping) domain decomposition.

In both cases, the coarse space is the usual space of constantsdmenain. After fixing some
notation in Sect. 2, we present the review (i) in Sect. 3. Section 4 deals withitat tools
needed for the novel theory (ii), which is contained in Sect. 5. The nuaiegsults in Sect. 6
confirm these theoretical findings. At the end we shall draw some coochis

2 FETIand TFETI

FETI Basics We briefly introduce classical and total FETI; for details see e.g., [2R, 13
The domainQ is decomposed into non-overlapping subdomdi@s}? ,, resolved by the fine
mesh.7M(Q). Theinterfaceis defined byl := Ubzj—1(0QindQj) \Ip. LetK; denote the
“Neumann” stiffness matrix corresponding to the local bilinear fgfno Ou- Ovdx and let

S be the Schur complement &f eliminating the interior degrees of freedom and those corre-
sponding to non-coupling nodes on the Neumann boundary. Ioldssicalvariant of FETI

[6], the corresponding local spaces are chosen to be

W = {veV"(0Qi\Tn) : v, =0}

In the case of theéotal FETI (TFETI) method [4], the Dirichlet boundary conditions are not
included intoK;, and correspondingl\\ := Vh(in \n). We setW =[] ;W andS:=
diagS); ;. Let R be a block-diagonal full-rank matrix such that K8r= rang€R), and let
B:W — U be a jump operator such that kBy = W, whereW C W is the space of functions
being continuous acrogsand fulfilling the homogeneous Dirichlet boundary conditions. The
rows of Bu= 0 are formed by all (fully redundant) constrainigx") — uj(x") = 0 for x" €
0QiNdQ;\lp. In TFETI, there are further local constraints of the fourtx") = 0 for x €

.
0QiNIlp. Finally, System (2) is reformulated t{yg % ] [ ;\J ] = [ (f) },Wheref contains

the reduced local load vectors, and further reformulated by
findA crangéP): P'FA = d:=P'BS(g—B" o), 3)

whereS' is a pseudo-inverse & F :=BS'B",P:=1 -QG(G'QG)'1G", G:=BR Ao =
QG(G'QG)IR'f, andQ s yet to be specified. The solutiancan be recovered easily from
A =X+AviaStand(G'QG)

Scaled Dirichlet Preconditioner For each subdomain indgxand each degree of freedom
(i.e., node)x" € 9Q;NT, we fix a weightp; (x") > 0 and define

(MY
5Ty = — P ST — 1
J (X ) ZKGJK(h pk(xh)y S [ ) ]7 jeg/h | (X )

X
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[ pj(x") [ theoretical | practical | problems \
(@) 1 1 (multiplicity scaling) jumps across interfaces
(b) ag™ ||K?Iag“gw jumps within subdomaing
diag, h . . oscillating coefficients,
(c) Tcg%ga“ K]- (x")  (stiffness scaling) unstructured meshes
£ ediag hy diag , h
(d) max qgmax L I KT = madgee g, K (XT) small geometric scalg
vy yh ey K ij 0 else
Table 1: Various choices for the weighg(x"). Here,K?'ag denotes the diagonal &, | - ||

the maximum normKquag(xh) the diagonal entry oK; corresponding to node’, and{Yj(k)}k

is a partition of a neighborhood @fQ; NT, as coarse as possible, such thas constant or
only mildly varying in each subregio‘q(k>, cf. [13, Sect. 3.3].

Above, 4 is the set of subdomain indices sharing natiandy € [1/2, o] (the limit y — oo
has to be carried out properly, cf. [13, Rem. 2.27]). We stress thag ipressence of jumps im,
the choice of the weightg; (x") (or the scalingsSjT(xh)) is highly important for the robustness
of the Dirichlet preconditioner and will be discussed further below. lsehote that for any
choicep; (x") above and any exponept [1/2, ], we have the elementary inequality

A & (M2 < min(pi(x"), pj(x") Vi, j € A (4)

The weighted jump operatd@yp is defined similarly tdB, but each row oBpw = 0 is of the
form &/ (x")wi (x) — &7 (x") w; (x") = 0 for X" € 9Q; N 9Q; \ Fp. In TFETI, there are further
rows of the formw (xh) =0 forx" € dQ; NIp. The preconditioned FETI system now reads

findA erangéP): PM 'P'FA = PM 1d, (5)

whereM~! := Bp SB]. SinceP'F is SPD on rangé) up to ke(B"), this system can be
solved by a Krylov method, e.g., by conjugate gradients. Hence, one isstedrin a bound
on the condition numbetreti := K(PM P Fan44p) kersT))- AS the analysis in [22] shows
(see also [13, Lem. 2.45, Lem. 2.103, Lem. 2.105]), for the ch@ieeM 1, the estimate

Pow§ < pwlz  YweWw?, (6)

implies kpey < 4. Above, B = BBB is a projection (this is due to the partition of unity
property of6jT), W+ =i, W, and eaclw+ ¢ W is any complementary subspace such that
the sum\ = ker(S) +W is direct. Note that the same estimate implies a bound of the related
balancing Neumann-Neumann (BDD) method.

Choice of Weights  Table 1 shows several choices for the weights). In each row, we
display atheoreticalchoice, which has been used in certain analyses, and tipeactical
choice, which tries to mimic the theoretical one. Choices (a)—(c) in Table harsuitable
for coefficients with jumps (see colunproblem$. The theoretical choice (d) will be used in
the analyses below and lead to “good” condition number bounds undeblsugissumptions,
however, it is practically infeasible. Under suitable assumptions on thetivariaf a, the
practical choice (d) can be shown to be essentially equivalent to thestiebione, if one sets
y = . “Good” means that the bounds are robust with respect to contrastlifowever, they
depend on the spatial scajeof the coefficient variation.
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Remark 2.1. A further choice, name&chur scalinghas been suggested in [3], see also [2].
There,5jT(xh) is set to the entry ofyyc 4, S<gg)7lsj7gg corresponding tod", where? is
the (unique) subdomain vertex/edge/face contaiwﬂ@nd&gg denotes the restriction &

to the nodes on the subdomain vertex/edge/fédcé his choice is the only known (practical)
candidate that could allow for robustness also with respect to the spaitiahsdut its analysis

is still under development, cf. [2]. Nevertheless, it has been suctlysmfialyzed in the context
of BDDC methods for the eddy current problerﬁirl(a curl u)+puU= f, wherea, > 0 are
constant in each subdomain [3].

3 Robustness Results for Locally Quasi-monotone Coefficients

In this section, we review robustness results of TFETI, developed alfgim [15, 16] and
further refined in [13, Chap. 3]. Because of space limitation, we do niothiesfull set of
assumptions, but refer to [13, Sect. 3.3.1, Sect. 3.5]. The essentimhptésn is thata is
piecewise constant with respect to a shape-regular mestQ), at least in the neighborhood
of the interfacel” and the Dirichlet boundaryp, and that this mesh resolvésUl'p. For
simplicity of the presentation we assume further that each subddasthe union of a few
elements of a coarse mesfit (Q), and that the three mesh&g"(Q), .717(Q), and.7H(Q)
are nested, shape-regular, and global quasi-uniform with mesh parame n < H.

All the following results hold for the TFETI method as defined in Sect. 2 with tlee-+th

retical choice (d) forp; (x") and withQ = M1, where the regionS’j(k) are unions of a few
elements fromZ1(Q). The general bound reads

wen < ¢ (57)' (log(n/m)? @

whereC is independent dfl, ), h, anda. The exponeng is specified below in each particular
case.

Definition 3.1. For each subdomain index the boundary layerQ; , is the union of those
elements from71(Q) that lie inQ; and touch” UTp.

The following theorem is essentially [13, Thm. 3.64] and shows that camtrée interior
of subdomains is taken care of by TFETI (in form of the subdomain sqlesskpt that the
geometrical scale shows up in the condition number bound. The origindt msclassical
FETI can be found in [15, Thm. 3.3].

Theorem 3.2(Constant Coefficients in the Boundary Layer)a is constant in each bound-
ary layerQ; ,,i=1,...,s, then (7) holds witlt = 2. The exponenf = 2 is sharp in general.
If the values ofx in Q; \ Q; , do not fall below the constant value & , for eachi=1,...,s,
then (7) holds with3 = 1.

The next theorem (cf. [13, Sect. 3.5.2]) extends the above resultetificgents that are
guasi-monotone in each boundary layer.

Theorem 3.3(Quasi-monotone coefficients in the Boundary Layelsy is quasi-monotone
in each boundary laye®; ,,i=1,...,s, then (7) holds witl = 2ifd =2andp =4ifd = 3.
Under suitable additional assumptions anin Q; ,, one can achievg = 2 for d = 3 as well.
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r
D D,

mﬁ ]

Figure 2: lllustration of Def. 4.1: a quasi-mirror in 2D.

In many cases, quasi-monotonicity may not hold in each boundary laytein bcertain
sense on a larger domain. The following theorem summarizes essentiallydd3 3.5.3] We
note that the concept of atificial coefficientin the context of FETI goes back to [16].

Theorem 3.4(Quasi-monotone Artificial Coefficients)f for each i=1,...,s there exists an
auxiliary domain/; with Q; , € Ai C Q; and anartificial coefficienta®" such that

art H
a"=a inQjp,

a?<a inA \ Qin,
a®* quasi-monotone on;

then (7) holds with C independent@f™. The exponenB depends o\ and a®™. If Aj = Q;
thenB < 2d. Under additional assumptions @, one can achieve, e.g3, < d+ 1.

Remark 3.5. The proofs of Thm. 3.3 and Thm. 3.4 make heavy use of the weighted Peincar
inequality (Thm. 1.2). We note that Thm. 3.3 and Thm. 3.4 can be generalizedcalled
typesm quasi-monotonicity (see [17]). Also, all the results of this section can hergbzed

to (i) coefficients that vary mildly in each element.6f1(Q) in the neighborhood of UTp,

(i) up to a certain extent to suitable diagonal choices of the m&¥riand (iii) under suitable
conditions to classical FETI. However, we do not present these rémriésand refer to [13,
Chap. 3] and [15, 16] for the full theory.

4 Technical Tools

In this section, we present two technical tools needed for Sect. 5. Bheofits is an extension
operator on so-calleguasi-mirrors

Definition 4.1. LetD1, D, € RY be two disjoint Lipschitz domains sharingé-— 1)-dimensional
manifold . Fori = 1,2 let Dj; and Dj, be open and disjoint Lipschitz domains such that
Dj = Dia UDjp. We say thatDza, D2p) is aquasi-mirrorof (D14, D1p) iff there exists a contin-
uous and piecewisg" bijection ¢ with ||0¢||.- and||[J¢ ||~ bounded, such th@a, Dip, I

are mapped t®j,, Dip, I, respectively, wher€ lies in the hyperplangy = 0 andDg, Doy, are
the reflections through that hyperplanelnf,, D1y, respectively (for an illustration see Fig. 2).

Lemma 4.2. Let (D24, Do) be a quasi-mirror of D14, D1p) as in Def. 4.1. Then there exists a
linear operator E: H'(D1) — H!(D2) such that for all ve H(D1), we have(EV)r = vr and

[EVIH1(D50) < CIVIH1(DL): [EVIH1(D,) < CIVIH1(D):
IEVIlL2(D,) < ClIVIIL2(Dyn) IEVIlL2(D,) < ClIVIL2(Dy)-
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The constant C is dimensionless, but depends on the transforngatiom Def. 4.1.

Proof. We first define the linear operatér: C*(¢(D1)) — C*(¢(D2)) by the reflection re-
lation (EV)(Xq, ..., Xd—1,Xd) := v(xll. .., Xd—1, —Xd). One can easily show th&t has a unique
extension as a continuous operatorH*(p(D1)) — H(¢@(D2)) which preserves the trace on

A

the interfacedD1 N dD,. Finally, we seE v:= (E(vo ¢ 1)) o ¢. O
Our second tool is a special Scott-Zhang quasi-interpolation operator.

Lemma 4.3. Let the domain D be composed from two disjoint Lipschitz regidasD; U D>

with interfacel’ = dD1 N dD5, and letZ c dD be non-trivial. Let7"(D) be a shape-regular
mesh resolving and %, and let V(D) denote the corresponding space of continuous and
piecewise linear finite element functions. Then there exists a projectioatopE, : H(D) —
VM(D) such that (i) for any \e HY(D) that is piecewise linear ofi and %, (MpV)rus = Virus

and (ii) for all v € HY(D),

MVliiyp) <CWVlwpy,  IAWVllizp) <ClVlzpy,  fori=1,2
where the constant C only depens on the shape-regularity of the mesh.

Proof. For each € {1,2}, lety; denote the Scott-Zhang interpolation operator that preserves
piecewise linear values dnu >. The latter property is ensured by defining the value at a node
x" onT U essentially as the average over a fdgec ' UZ, cf. [19]. This operator is stable

in the L2-norm andH!-seminorm. If we further choosé, C I' for all the nodest" € T,

then forv € HY(D), (Mhav)ir = (Mh2v)r. Thus, by definingdMyv) p, := Mpjv, we fulfill the
requirements of the lemma. O

5 Novel Robustness Results for Inclusions

For this section, we adopt again the notations of Sect. 2 and 3. Howeveestvict to coeffi-
cientsa € L*(Q), given by

a, if xe Dy forsomek=1,...,ng,

a(x) = { o else. | " ®)
L else,

whereay > a, are constants and the regiddg C Q are pairwise disjoint (disconnected) Lip-
schitz polygons that are contractible (i.e., topologically isomorphic to the ballth&more,
we assume that the subdomafisas well as the inclusion regioi¥ are resolved by a global
mesh.7"(Q). For the sake of simplicity le?"(Q) and.7"(Q) be nested, shape-regular, and
quasi-uniform with mesh sizédsandn, respectively It < ). Our main assumption concerns
the location of the inclusion regiom relative to the interface.

Assumption Al. Each regiorDy, k=1,...,ny, is either

(a) aninterior inclusion Dy C C Q; for some index,

(b) adocking inclusionthere is a unique indeixwith Dy C Q; andDx N dQ; # 0, or

(c) a(proper) face inclusionthere exists a subdomain fagg; (shared by only two subregions
Q;j, Qj) such that

e DyNI CC Zjj,
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e 0(DkNQi)N.Fij =0(DkNQj)NFj,
e Dy NT is simply connected,

¢ the neighborhood constructed fronDy by adding one layer of elements frofi' (Q)
fulfills Dy CC % C QiU Q;.

Above, cC means compactly contained. Note that since the rediynare disjoint and
resolved by7(Q), in Case (c) above, it follows that= ay_in %\ Dx. The second condition
in (c) avoids that a part dDi is only “docking”. The third condition ensures th2af passes
through the face¥j; only once.

Theorem 5.1. Let the above assumptions, in particular Assumption A1, be fulfilled. For the
case of classical FETI, assume that fo=d3 the intersection of a subdomain with is either
empty, or contains at least an edge.sf! (Q). For the case of TFETI, assume that none of the
docking inclusions in Ass. Al(b) intersects the Dirichlet boundary. Then

Kremi < C(n) (1+log(n/h))?,
where Gn) is independent of h, the number of subdomains, as well as the \@lues.

The dependence @(n) on n can theoretically be made explicit (at least under suitable
mild assumptions om), but is ignored here. In general, it is at ledbt/n)2. To prove
Thm. 5.1, we show estimate (6). If K&) = spar 1}, we choose

Wt = {weW W% =0},

andW! =W otherwise. Letv € W+ be arbitrary but fixed. To estimagw|s, we decompose
the interfacd™ into globsg. These are vertices, edges, or faces of the mig8(Q), with one
exception: for a face inclusidby, we combine all vertices/edges/faces®f (Q) contained in
DxNT into a single glolg. The following estimate follows from (the proofs of) [13, Lem. 3.21,
Lem. 3.27] or alternatively [16, Lem. 5.4, Lem. 5.6]:

(RWiE <C S 5 (321" — %)) Ry, a- )
gCoQiNm jeAg\{i}

::Yi.g

whered, € VM(Q) is a cut-off function (yet to be specified) that equals one on all the nadles

g vanishes on all other nodes bnl" is the nodal interpolation operator, adg, = supgdg) N

Q;. In the case of TFETI, we have to add another sum with contributions finenirichlet
boundary. Their treatment is similar, cf. [13, Chap. 3], but one needadtitional assumption
stated in Thm. 5.1. The (generic) const@rabove only depends the shape regularity constant
of .71(Q) and is thus uniformly bounded. Fgre .4, the functionwﬁ € VM(Ui,) is an
extension ofw; (yet to be specified) in the sense tlvTﬁt(xh) =W (x") for all nodesx" on g.

We treat two cases.

Case 1: g is not part of a face inclusion, i.e., for &le {1,...,ny} with Dy being a face
inclusion,DyNg = 0. We choose the cut-off functiof; like in [22, Sect. 4.6] (where the
subdomains there are the elements/df(Q)). In that case, the support 6f is the union of
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those elements it71(Q) that have non-trivial intersection witgh From the results of [22,
Sect. 4.6], we get

w
L h(ﬁgv) ’ai(ui.g) <C (wz ‘le(ui,g) + n? HVHEZ(ULg)) wve Vi), (10)

wherew := (1+log(n/h)). From the definition of the weightg;(x"), we find thatp; , =
SURcu;, a(x). Furthermore, sincg is not part of a face inclusion, it follows from (4) that

(8])2Pig < min(pig, pyg) =ar Vi€ A\ i}, (11)

because at least one of the weights eqaalsUsing the fact thaMﬁ|
as well as estimates (11) and (10), we can conclude that

Yig < (87 )2 01 (9 (78 — 8 ) B 12)
jeg\ i}
_ . W "
< C z aL (wz‘vvﬁ_vvﬁ‘al(Ui,g)—i_?H\Nﬁ_\Nﬁ||EZ(Ui,g))’
e\ i}

2 1GE |2 W g2
< C_Z/VGL (w ‘\Nﬁ’Hl(Ui‘g)+?|yvvigj“L2(Ui7g)>a
jENg

1(Ui7g),a S pl\g ‘V|al(ulg)

where in the very last step, we have used the triangle inequality and thibdatte cardinality
of 45 is uniformly bounded.

Case 2:g is part of a face inclusion (see Assumption Al), i.e., there ekistith g = DN T,
Recall that in this casg can be the union of many vertices/edges/faces68{Q). We choose
a special cut-off functio®, supported i'J; g := %N Q;:

e 9,(x") = 1 for all nodes<" € Dy,
e 9,(x") =0 for all nodesx" € 02U (7N (T \ g)),

¢ on the elements of the layer, i.e., those elem@&nts.71(Q) with T C %4\ Dk, we set
J, to the sum of local cut-off functions, such that we have the inequality

h 2 2112 W, 2
"OeVlianmon < SO Minanmon + pz MEzenmon): 03

forallve Vh(Qj) and for each of the (two) subdomain indiges . #;. Thanks to a finite
overlap argument, the constabis independent of the number of elements in the layer
U\ Dk.

Note that by constructiond; = 1 on Dy, wherea = ax. On the remainder7 \ Dy, by the
assumptions on the coefficiemt,= a,. Therefore, by usm@‘ < 1, the triangle inequality,
and (13), we get

2
Yie<C Y (W Ruar00.0+ ") Ei0n 000 )

§M

0

€.

i
. W
<C ZA/[|VVIgJ|HlﬁﬂDk oL (wz|wﬁ’al(Qiﬁ(%\Dk))—i_?HWﬁHEZ(Qiﬂ(Of/k\Dk))ﬂ
g
w
ZM (2 19 2, +O’LmH""igj”ﬁzmmm\ok»)‘ (14)
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Choice ofWﬁ in Case 1:LetU|, C Q;j be any element o (Q;) with g C U/j’g. Then there
exists a discrete extension operator

EN VN (U),) = V"(Uig)
with (EI'_v)(x") = v(x") for all nodesx" € g and
EPeViniu,) <CMkuy)  IEfeVlizw,,) < CliViiz,y):

forallveVvh (Ujg) The operatthg can be constructed as the composition of a suitable Scott-
Zhang quasi- mterpolatlon operator and a Sobolev extension operafdi2|¢. For details see
e.g., [16, Lemma 5.5] or [13, Lemma 3.22]. For Case 1, we set

WE = ED "W

wheret%ﬂj"”h W, — V"(Q;) denotes the discrete “PDE-harmonic” extension operator which

minimizes the weighted seminorijy q,) oveth(Q) such thatw;|s; = |jﬁ“’hwj|H1(Q o
This results in the estimates

N h _ h
W5 Iz i) < CLA Wi sy ) » I [l 2u, ) < ClI2E T Wil ) - (15)

Choice ofvT/igj in Case 2:Recall that in this case we are dealing with a face inclusion such that
g is part of the face shared 1§} andQ; and we choos¥; ; = %N Qj. To define the extension

W € V(Ui ), we shall combine the technical tools from Sect. 4. Wef :=2NQ;. Itcan be
seen from Assumption Al th@V; ; \ Dy, U ; N D) is a quasi-mirror of U ;"\ D, Uj¢' N Dx).
Thus, by Lem. 4.2, there exists an extension operator

& T HY(US ) = HY(Uig), |67V ).0 < CIVIny )0 (16)
&fgv=vong, 167eVlIL2(, )0 < CIVIlL2 )
forallve Hl(U’Lg) with C independent of the values , ax. The weighted inequalities hold
because they holseparatelyon the regions whera, anday are attained. Recall further that
g is a(d — 1)-dimensional manifold, and so the trace above is well-defined.
Secondly, we need a special Scott-Zhang quasi-interpolation opﬂ%gbvvith
h.
N HY(U] ) = V(U] ), M vy . < ClViniws, (17)
ne Vi e < CHVHL?(U’Lg),a

for all ve Hl(U’ g) and with withC independent of the valueg anday. Furthermore, the
boundary values of functions that are piecewise lineag @md on the |nterfacé7/1’7g N dDk

must be preserved. The operall’q‘fgh can be constructed as in Lem. 4.3. We can now set
Wg I—Ihagah%ahwh

wherea%”l-o"h is defined as above. It has now to be argued that the transforngatiobef. 4.1
can be chosen such thﬁjf’g’h%“’hwj is still piecewise linear on the interfae%jfg NdDy, and
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sovT/ﬁ is indeed an extension @fj. Due to the properties of the above operators, we have the
total stability estimates

W He(Us )0 < ClA Wil )as 15 [z, ) < ClI W lezuy,) (18)

for all wj € V'(9Qj), with C independent ofr. anda.

By combining the local estimates (12), (14), (15), and (18), we obtainfiyita overlap
argument that

(W) < C z( "W+ O [ W g ) (19)

jeM

where 4 := {j = 1,...,5: dQ;NJQ; # 0}. Recall that forw; € W;- eitherv*v‘j?Qj =0, or
Q;Nlp # 0 andw; vanishes there. Thus, by a conventional Poiecara (discrete) Friedrichs
inequality, we obtain

a|_||jf°’hwj||L2 <aLCwH2|ji”“hW,|H1 <CwH2|jf"’hWJ\H1 (20)

Combining (19), (20), and the fact tha#;" th|H1 = |wj|s,, we obtain (6) withu = C w?.
This concludes the proof of Thm. 5.1.

6 Numerical Results

Numerical examples illustrating the results of Sect. 3 can be found in [13,316Here, we
would like to illustrate the novel results of Sect. 5. In each of the followings& = (0, 1)2

is partitioned into 2x 2 square-shaped subdomains. The Dirichlet boundary is given at as
0x [0,1] U0, 1] x {0}. Figures 3-5 show three coefficient distributions together with the
condition number of classical FETI (estimated by the Lanczos method) fi@asitng contrast.

In these examples we have simply used the stiffness scaling (see Tablealisée¢he chosen
mesh is structured.

In the first example (Fig. 3), the assumptions of Thm. 5.1 are fulfilled, anddhdition
number in the left plot confirms the statement of Thm. 5.1.

The two other examples are situations where Assumption Al is violated. In be#sc
the estimated condition numbeéepend®n the contrast. As stated in the Conclusion (Sect. 7),
the theories of Sect. 3 and Sect. 5 can probably be combined, leadingrédl ebarper and
more general estimates. Nevertheless, the example in Fig. 4 shows thalusioimthat tra-
verses three subdomains leads to non-robust behavior, and the examigle5 shows that an
inclusion shared by two subdomains which touches a subdomain vertexbisipiatic. Sum-
marizing, for the setting at hand, Assumption Al is necessary.

7 Conclusions

Section 3 shows robustness of TFETI for (artificial) coefficients thatgarasi-monotone in
boundary layers. Sect. 5 shows that these conditions are far froesseey for the robustness
of FETI or TFETI.

It is interesting to note that the assumptions and robustness propertiest.d See similar
to the theory in [11] for overlapping Schwarz. Actually, several ideamfthe latter theory
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FETI, nice inclusions example, H/h=32
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Figure 3: Left: Coefficient distribution that fulfills Assumption Al (bluex = 1, red: o =
ay > 1) and decomposition into ¥4 4 subdomains Right: Estimated condition number for
H /h = 32 and for increasing contrast; < [1, 10f].
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T
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FETI, long channel example, H/h=32
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Figure 4: Left: Coefficient distribution that violates Assumption Al, in the sense that the
“channel” is neither a docking nor a proper face inclusion (bwe: 1, red:a = ay > 1) and
decomposition into 4 4 subdomainsRight: Estimated condition number fét /h = 32 and

for increasing contrasty € [1, 108].
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FETI, vertex island example, H/h=32
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Figure 5: Left: Coefficient distribution that violates Assumption Al, in the sense that one of
the inclusion touches a subdomain vertex and is part of two subdomains (blg€l, red:

o = ay > 1) and decomposition into 4 4 subdomainsRight: Estimated condition number
for H/h = 32 and for increasing contrast; € [1, 10°].

have been reused in the analysis of Sect. 5. However, the robustnes®flapping Schwarz
requires a sophisticated coarse space, whereas for FETI/TFE Tistia coarse space can be
used, which simplifies the implementation a lot.

A combination of the two theories (Sect. 3 and Sect. 5) is of course desitddhaever, the
general case df is left open. As Sect. 6 shows, the problematic cases in FETI/TFETI are (a
inclusions touching vertices (or edges in 3D) and being shared by maretigasubdomain,
and (b) long channels that traverse through more than one face, erseaa face more than
once.

Iltem (a) might be fixed using suitable FETI-DP/BDDC methods, and we h@ientvel
analysis of Sect. 5 will have positive impact here (the known theory of fEEYBDDC for
multiscale coefficients is yet limited, cf. [13, 14, 9]). Item (b) can only bdrassed by a
larger coarse space: either by FETI-DP/BDDC with more sophisticated lpDi@&s and/or
by spectral techniques as suggested in [21]. Robustness in the spat@hss achieved
neither in Sect. 3 nor Sect. 5. We believe that the only possibility to gain radsssis a more
sophisticated weight selection (cf. Rem. 2.1) and probably again a lavgesecspace.

Acknowledgement The author would like to thank Robert Scheichl, Marcus Sarkis, and
Clark Dohrmann for the inspiring collaboration and discussions on this topic.
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