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An H1-Kaczmarz reconstructor for Atmospheric

Tomography

Markus Eslitzbichler∗, Clemens Pechstein†, and Ronny Ramlau‡

December 14, 2012

Abstract

Atmospheric tomography is a prerequisite step before wavefront perturbations can be
corrected in Multi Conjucate Adaptive Optics (MCAO) systems. Recently, the use of a
Landweber-Kaczmarz iteration has been proposed to solve the tomography problem. How-
ever, due to the geometric partitioning of the update steps in this method, discontinuities
in the solution appear that are physically implausible. We investigate augmenting the
Landweber-Kaczmarz iteration with a smoothing step based on solving an elliptic partial
differential equation to alleviate these discontinuities.

Keywords: Atmospheric tomography, Kaczmarz iteration, Adaptive Optics, Multi Conjugate Adaptive Optics

2010 Mathematics Subject Classification: 65R32, 45Q05, 85-08, 78A55

1 Introduction

As light passes through the atmosphere, inhomogeneous temperature distributions distort its
wavefront, which degrades image quality of ground based astronomical telescopes. To counter
this effect, modern telescopes use adaptive optics systems, which employ one or more deformable
mirrors to correct for phase perturbations in the wavefronts caused by the atmosphere turbu-
lences. The shape of the deformable mirrors (DM) has to be computed from wavefront mea-
surements obtained from either natural or artificial (laser) guide stars. For the reconstruction
of the DM shapes, the specific hardware design of the wavefront sensors, the structure of the
atmosphere and harsh computational limits have to be taken into account.

In the case of Multi Conjugate Adaptive Optics (MCAO), multiple wavefront sensors as well
as multiple deformable mirrors are employed to achieve a high degree of wavefront correction
over a wide field of view. The wavefront measurements from multiple directions are used to
solve the atmospheric tomography problem, i.e., the reconstruction of turbulent layers above
the telescope. Atmospheric tomography is a limited-angle tomography problem and therefore
severely ill-posed. Furthermore, the reconstruction has to be done within strict time limits:
depending on the specific application and usage scenario, usually below 1 ms, which is related
to the timeframe within which the turbulences are expected to be “frozen”. Both direct and
iterative methods have been applied to solve the atmospheric tomography problem. Matrix-
vector-multiplication based methods have been investigated in [15, 20]. However, with growing
hardware capabilities (such as the number and resolution of wavefront sensors), the resulting
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systems of equations become very large. Iterative methods such as preconditioned conjugate
gradients have also been studied for use in atmospheric tomography (cf., e.g., [8, 7, 22]).

In this paper, we investigate an extension of a Landweber-Kaczmarz based atmospheric
reconstruction method introduced in [16]. The Landweber-Kaczmarz method is an iterative
method that operates only on sub-domains of the turbulent layers in every iteration, which
makes it computationally very competitive. It is particularly well suited for high dimensional
ill-posed problems (cf, e.g., [3]). Note that we will always assume that the wavefronts have
already been reconstructed from wavefront sensor measurements, using, e.g., the CuRe (Cumu-
lative reconstructor) [23, 18]. In the particular case of atmospheric tomography, the iterative
update steps are executed on overlapping domains of annuli formed by telescope apertures being
projected onto different atmospheric layers and into different directions, see Figure 3. In [16],
the space L2 is used to model the atmosphere. In this case, discontinuities are introduced into
the iterates of the Kaczmarz algorithm that are not physically plausible. However, statistical
models show that atmospheric turbulences have much higher smoothness than L2. Thus, we
choose the Sobolev space H1 as the space of turbulences. Choosing a different function space
affects in particular the adjoint of the atmospheric tomography operator, which leads to an ad-
ditional smoothing effect in the reconstruction that will be analyzed in more detail in Sections
3 and 4.

It turns out that the H1 algorithm differs from the original algorithm only by an additional
smoothing step, thus, we refer to the H1 algorithm as the smoothed Landweber-Kaczmarz
method.

The remainder of the paper is structured as follows. In Section 2, we give a mathematical de-
scription of the atmospheric tomography problem and the corresponding Landweber-Kaczmarz
method. In Section 3 we introduce the smoothed Landweber-Kaczmarz method. We further
analyze in detail the regularity of the smoothed reconstruction. Finally, Section 4 investigates
the performance of the smoothed Landweber-Kaczmarz method compared to the conventional
L2 method.

2 Landweber-Kaczmarz Iteration for Atmospheric Tomog-
raphy

In this section we will first introduce the notation necessary to formulate the atmospheric
tomography problem. In order to solve the problem, i.e., to reconstruct the turbulent layers
from incoming wavefronts of several guide stars, G operator equations have to be solved. The
Landweber-Kaczmarz algorithm, which is introduced in Section 2.2, is a natural choice for the
solution of the inverse problem. Note that we will restrict our analysis to the case of natural
guide stars only. Thus, additional effects from laser guide stars such as the cone effect or spot
elongation have not been taken into account. Additionally, we will always assume that the
wavefronts have already been reconstructed from the wave front sensor measurements. Please
note that the section is mainly based on [16].

2.1 Notation and Problem Formulation

As in [16], the telescope aperture ΩT is modeled as an annulus with inner and outer radii ti
and to, respectively:

ΩT := {r ∈ R2 : ti ≤ ‖r‖ ≤ to},

Note that the following analysis might also be applied to other geometric shapes. The disk
describing the telescope can be embedded into R3 by setting the height coordinate z = 0. In
atmospheric tomography, we do not aim at the reconstruction of the full turbulence profile
above the telescope, in particular as there is simply not enough data available to achieve a
reasonable reconstruction. Instead, the turbulence is modeled by a finite number of thin layers
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Figure 1: Notation for atmospheric tomography. The vectors αg denote the directions of
guide stars. The functions Φ` represent turbulent atmospheric layers located at altitudes h`
and defined on the domains Ω`. The incident wavefronts originating from the guide stars and
measured by wavefront sensors are represented by the functions ϕg.

(cf., e.g., [17]). Each layer has to be understood as a two dimensional subset of a plane parallel
to the telescope. Let L be the total number of the layers and let h` denote the altitude of the
`-th layer relative to the telescope, ` = 1, . . . , L. Furthermore, let G be the number of guide
stars and let αg ∈ R2 denote the projection of the three-dimensional unit vector pointing from
the centre (0, 0, 0) of the telescope to guide star number g to the plane R × R × {0}, where
g = 1, . . . , G. The area in layer ` covered by the g-th wavefront sensor is then given as

Ω`,g := h`αg + ΩT = {r ∈ R2 : r − h`αg ∈ ΩT }.

Thus, the total area of layer ` covered by all wavefront sensors is simply given by

Ω` :=

G⋃
g=1

Ω`,g ,

i.e. the union of the shifted telescope apertures. For an illustration see Figure 1.
For each ` = 1, . . . , L, let V` ⊂ L2(Ω`) be the space of possible turbulences in layer `. We
assume that V` is a Hilbert space with inner product 〈·, ·〉V` . Later on, V` will be chosen either
as L2(Ω`) or H1(Ω`). By Φ` ∈ V` we denote the (unknown) turbulence in layer `. As the
turbulence in the atmosphere changes rapidly, Φ` generally depends on time. However, as we
want to reconstruct the turbulence for a fixed time, the time dependency can be neglected.
Furthermore, let ϕg ∈ L2(ΩT ) denote the wavefront originating from guide star number g in
direction αg, g = 1, . . . , G (see again Figure 1 for an illustration). Following [17], the wavefronts
ϕg are related to the turbulent layers Φ` by

ϕg(r) =

L∑
l=1

Φ`(r + h`αg), r ∈ ΩT , g = 1, . . . , G. (1)

As we can see, the phase perturbations induced by the discrete layers are simply summed up
along the line of sight. The sum ϕg ∈ L2(ΩT ) is well-defined because Φ` ∈ V` ⊂ L2(Ω`) and
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the restriction of Φ` to Ω`,g is again in L2. In practice, the quantities ϕg are available via the
reconstruction of the wavefront sensor measurements, whereas the turbulences Φ` are unknown
and shall be be reconstructed from these data.

In order to devise a compact notation for Equation (1), we introduce the (linear) shift
operators Tαg,h` : L2(Ω`,g)→ L2(ΩT ), given by

(Tαg,h`θ)(r) := θ(r + h`αg) for θ ∈ L2(Ω`,g).

Moreover, let the product space V :=
⊗L

`=1 V` be equipped with the natural inner product

〈Φ, Ψ〉V :=

L∑
`=1

〈Φ`, Ψ`〉V` . (2)

Finally, we define the linear operator Pg : V → L2(ΩT ) by

PgΦ :=

L∑
`=1

Tαg,h`(Φ`|Ω`,g ), (3)

which can be regarded as a projection operator. In vectorized form, the system of equations (1)
now reads as

PgΦ = ϕg, g = 1, . . . , G, (4)

where Φ = (Φ1, . . . ,ΦL)T denotes the vector of unknown turbulences. Finally, we wish to
remark that, in case of a 3 dimensional turbulence profile, the sum in (1) would turn into a
line integral, which means we would have to solve a limited angle tomography problem from
incomplete measurements (cf., e.g., [14]).

2.2 Solution with the Landweber-Kaczmarz Method

To solve system (4), we use a Landweber-Kaczmarz method (cf., e.g., [3, 11]), which reads in

our context as follows: for a given initial guess Φ(0) ∈ V for the turbulences, the iterates are
given by

Φ(k+1) := Φ(k) − βkP ∗g (PgΦ
(k) − ϕg), with g := 1 + (k mod G). (5)

Above, βk is a non-negative relaxation parameter and P ∗g : L2(ΩT ) → V denotes the adjoint
of Pg, given by the relation

〈PgΦ, ψ〉L2(ΩT ) = 〈Φ, P ∗g ψ〉V for Φ ∈ V , ψ ∈ L2(ΩT ).

Obviously, each step of (5) operates only on a part of system (4). Specifically, for the defini-
tion (3) at hand, we make adjustments in the iterate only for one guidestar at a time.

As an important issue, let us note that the method inherently depends on the choice of the
turbulence spaces V` ⊂ L2(Ω`) and on their associated inner products, since different choices
of spaces will lead to different adjoint operators P ∗g . We will consider two cases:

(a) L2-case: V` = L2(Ω`), equipped with inner product

〈v, w〉V` = 〈v, w〉L2(Ω`) :=

∫
Ω`

v w dx (6)

and Ag :
⊗L

`=1 L
2(Ω`) → L2(ΩT ) denote the corresponding projection operators Pg

defined in (3). Then one can show that (see [16])

A∗gψ =
(
χΩ1,g

· (Tαg,h1)∗ψ, . . . , χΩL,g · (Tαg,hL)∗ψ
)
, (7)
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where χΩ`,g denote the characteristic functions. The adjoint (Tαg,h`)∗ : L2(ΩT ) →
L2(Ω`,g) of the shift operator Tαg,h` is simply given by the inverse shift, i.e.,

((Tαg,h`)∗ψ)(r) = ψ(r − h`αg).

The Landweber-Kaczmarz algorithm for this case already delivers good results, both
with respect to performance and quality of the solution (see [16]). However, due to the
overlapping geometries Ω`,g on which the update steps (5) are executed and due to the
presence of the characteristic functions in (7), discontinuities in the solution arise, which
are physically implausible.

(b) H1-case: V` = H1(Ω`), equipped with inner product

〈v, w〉V` = 〈v, w〉H1(Ω`) :=

∫
Ω`

v w dx+ σ

∫
Ω`

∇v · ∇w dx, (8)

where σ is a positive parameter. In Section 3 below, we will give a motivation for this
choice and comment on the role of the parameter σ.

Let Bg :
⊗L

`=1H
1(Ω`) → L2(ΩT ) denote the corresponding projection operators. If i`,

` = 1, . . . , L, denote the embedding operators from H1(Ω`) into L2(Ω`) and if

i :

L⊗
`=1

H1(Ω`)→
L⊗
`=1

L2(Ω`) : Ψ 7→ (i1Ψ1, . . . , iLΨL) (9)

denotes the corresponding embedding operator of the product spaces, it apparently follows
that

Bg = Agi and B∗g = i∗A∗g, (10)

i.e., the adjoint projection operator A∗g from the L2-case is augmented by the adjoint i∗.
As we will see in the next section, the adjoint i∗ has some smoothing effect. Therefore,
when considering the H1-case, we call the corresponding Landweber-Kaczmarz method a
smoothed Landweber-Kaczmarz method.

Note that other smoothing approaches would be possible, but are not considered here.

3 Smoothed Landweber-Kaczmarz iteration

In this section, we study the smoothed Landweber-Kaczmarz method, which uses the adjoint i∗

from the previous section for smoothing. In Section 3.1, we give a short motivation of the choice
V` = H1(Ω`) for the space of turbulences by considering the von Karman turbulence model,
which is a statistical description of atmospheric turbulence. In Section 3.2, we show that the
application of i∗ corresponds to solving elliptic partial differential equations on the domains Ω`
with a source function in L2. In Section 3.3, the choice of the parameter σ is discussed. Finally,
the smoothing effect of i∗ is studied in Section 3.4.

3.1 Atmospheric Turbulences

Atmospheric turbulences are usually described using either the Kolmogorov turbulence model or
the von Karman turbulence model [17], which expresses the distribution of energy of small scale
turbulent motions. Standard reconstruction algorithms use the related atmospheric phase co-

variance matrix CΦ as regularization operator by enforcing ‖C−1/2
Φ Φ‖ to be bounded. Following

[4], we have for the Kolmogorov model

‖C−1/2
Φ Φ‖2 ∝

∫
|Φ̂(ω)|2|ω|11/3 dω ,
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which suggests Φ ∈ H11/6.

Thus, the atmospheric model leads us to expect a much higher smoothness for the functions
representing turbulences than just L2, which is the reason for choosing V` = H1(Ωl) in the
H1-case. As we will see in Section 3.4, the use of the adjoint H1 embedding operator will lead
to atmospheric layers with the expected smoothness.

3.2 Algorithmic Description of the Smoothed Landweber-Kaczmarz
Iteration

Noting that i∗` : L2(Ω`)→ H1(Ω`) is given by the relation

〈i`w, v〉L2(Ω`) = 〈w, i∗`v〉H1(Ω`) for w ∈ H1(Ω`), v ∈ L2(Ω`),

it follows immediately that u = i∗`v ∈ H1(Ω`) is the solution of the variational problem∫
Ω`

σ∇u · ∇w + uw dx =

∫
Ω`

v w dx ∀w ∈ H1(Ω`), (11)

where σ is the positive parameter from (8). This is in turn the variational formulation of the
classical Neumann boundary value problem

u− σ∆u = v in Ω`

∂u

∂n
= 0 on ∂Ω` ,

(12)

where n is the outward unit normal to ∂Ω` (cf., e.g., [6, 13] and also [16]).

Apparently, in order to apply the adjoint operator i∗ = (i∗1, . . . , i∗L) in the H1-case, we
have to solve an elliptic partial differential equation on each of the domains Ω` of overlapping
telescope apertures. Although the solution u of (11) is a priori sought in H1(Ω`), one can prove
higher regularity. In Section 3.4, we will show that u ∈ Hs(Ω`) for some s ∈ (3/2, 2]. The
solution u of (11) can be seen as a smoothed version of the corresponding “source function” v.
The parameter σ > 0 controls the strength of the smoothing, and we discuss its choice further
in Section 3.3.

Thus, we end up with Algorithm 1, a Landweber-Kaczmarz iteration with an additional
smoothing step based on solving (12) (cf. [16, 5]). Note that the smoothing can be done
independently on each layer, and may, thus, be straightforward parallelized.

Algorithm 1 Smoothed Landweber-Kaczmarz iteration.

Require: ϕg, g = 1, . . . , G # Incoming wavefronts
Require: Φ(0) # Initial guess
i← 1
repeat

for g = 1, . . . , G do # Loop over all guide stars
r ← ϕg −AgΦ

(i−1) # Evaluation of residual
a← A∗g r # Application of L2 adjoint operator (7)
s← i∗ a # Smoothing via (11)
Φ(i) ← Φ(i−1) + βi s # Weighted update
i← i+ 1

end for
until stopping criterion fulfilled
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Figure 2: A polygonal domain with corner points Pj and interior angles ωj .

3.3 Choice of the Parameter σ

The fact that the parameter σ > 0 controls the strength of the smoothing operation i∗` (see
(11)) is seen from the following extreme cases: σ = 0 corresponds to the L2-case, i.e., u = v
and no smoothing occurs. For σ →∞, the solution u tends to a constant.

To get a real smoothing effect without too much blur, the parameter σ has to be chosen
carefully, typically small. Note that, because σ occurs in front of the Laplace operator, it should
be chosen proportional to the square of the length scale of the problem. In our application, we do
not compute i∗` exactly, but solve a discretized version of (11) with finite differences. Therefore,
σ should be adapted to the mesh size. In our computations we use the (experimentally tuned)
choice σ ≈ h2, where h is the mesh size.

3.4 Analysis of the Smoothing Operations i∗`

In this section, we investigate the smoothness of the layers after the application of the H1-
adjoint, i.e., we will provide an estimate for s ∈ (3/2, 2] such that the solution u of (11) fulfills
u ∈ Hs(Ω`).

The regularity of solutions of elliptic PDEs has been studied intensively (cf., e.g., [2, 9, 10]).
In general, it depends on the shape of the computational domain, on the boundary conditions,
and on the data.

Since in practice all data gathered by wavefront sensors are provided on a regular finite grid,
the set ΩT is never an exact annullus but rather an approximation of it, where the boundaries
are polygons. Therefore, we may restrict our analysis to polygonal domains Ω, i.e., Ω is a
connected bounded open subset of R2, where the outer boundary and the inner boundaries (if
holes exist) are polygons. The corner points and corresponding interior angles are denoted by
Pi and ωi, respectively, i = 1, . . . , n (see Figure 2).

Our smoothness result is based on the following theorem for polygonal domains:

Theorem 3.1. Let Ω be a polygonal domain and let f ∈ L2(Ω) be such that
∫

Ω
f dx = 0. Then

there exists a solution u ∈ H1(Ω) (unique up to a constant) of the problem∫
Ω

∇u · ∇w dx = −
∫

Ω

f w dx ∀w ∈ H1(Ω) .

Moreover, there exist functions Si and unique numbers ci such that

u−
n∑
i=1
ωi>π

ciSi ∈ H2(Ω) .

The functions Si have local support around the corners Pi and have the property that Si ∈ Hs(Ω)
for all s < π/ωi. Thus, u ∈ Hs(Ω) for all s ≤ 2 with

s < 1 +
π

max
i∈{1,...,n}

ωi
.
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s = 1.99931 s = 1.99795 s = 1.99589

s = 1.99181 s = 1.98373 s = 1.96798

s = 1.93786 s = 1.88242 s = 1.78565

Figure 3: Expected regularity u ∈ Hs(Ω`) in a nine layer model. Only the highest three layers
located at 4500m, 9000m, 18000m are shown (left to right).

Proof. The proof follows immediately with [9, Theorem 4.4.4.13] and [10, Theorem 1.2.18 and
Corollary 2.4.4].

According to this theorem the regularity of the solutions u depends on the degree of non-
convexity of the polygonal domain, or more precisely, on the largest non-convex interior angle
ωi. For a convex polygonal domain we get u ∈ H2(Ω). On non-convex polygonal domains
however, the solutions u contain singular components, which results in the reduced regularity
u ∈ Hs(Ω) for some s ∈ (3/2, 2).

Corollary 3.2. Let Ω` be a polygonal domain, let v ∈ L2(Ω`), and let σ > 0. Then problem
(11) has a unique solution u ∈ H1(Ω). Moreover, u ∈ Hs(Ω) for all s ≤ 2 with

s < 1 +
π

max
i∈{1,...,n}

ωi
.

Proof. The existence and uniqueness of u ∈ H1(Ω) follow from the Lax-Milgram Lemma (cf.,
e.g., [1]). Noting that u then also solves the problem∫

Ω`

∇u · ∇w dx = −
∫

Ω`

f w dx ∀w ∈ H1(Ω`)

for f = σ−1(u− v), the regularity result immediately follows from Theorem 3.1.

Recall that the particular domains Ω` consist of overlapping shifted telescope apertures.
Assuming that the annular region ΩT is approximated sufficiently fine by polygons such that
only the angles at intersection points determine the regularity, it is clear that, in case of an
increased field of view or higher up in the atmosphere, the interior angles increase. Consequently,
this leads in turn to a decrease in the regularity of solutions of (11). Figure 3 shows the
expected regularity according to Corollary 3.2 for some atmospheric layers. One can see how
with increasing layer altitudes, the telescope apertures separate further and further, enlarge the
non-convex angles, and thereby reduce the (expected) regularity.

In some cases, especially when using Shack-Hartman wavefront sensors, ΩT is usually a
collection of quadratic subapertures. Thus, all interior non-convex angles in Ω` are equal
to 3π/2. According to Corollary 3.2 the expected regularity of the solutions will then be
s < 1 + 2/3.

4 Numerical Results

To test the the smoothed Landweber-Kaczmarz method that was derived in Section 3, this
functionality was implemented in an MCAO simulation framework developed by the Mathe-
matical algorithms and software for ELT adaptive optics project, a joint work by the Institute
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Figure 4: Angular positions of guidestars (red stars) and evaluation directions (blue circles)
(units are in arc minutes).

for Industrial Mathematics at the Johannes Kepler University, the Johann Radon Institute
for Computational and Applied Mathematics (RICAM) and the Industrial Mathematics Com-
petence Center (IMCC). The tests were performed in a realistic setting using data from the
European Southern Observatory (ESO) and designs for the European Extremely Large Telescope
(E-ELT).

Von Karman turbulence was used to model turbulent layers in the atmosphere. There are
different ways to generate random turbulences following this statistical model. One popular
method is to use the equation for the Von Karman turbulence directly using a Fourier transform
approach. The periodicity that is caused by using the Fourier transform is particularly useful
when shifting the layers to simulate winds for closed-loop operation. See for example [12, 21]
for more information on simulating atmospheric turbulence. To simulate a full atmosphere,
a model consisting of nine independent layers was used, with realistic values for heights and
turbulence strengths provided by the ESO.

The tests used parameters corresponding to E-ELT designs. Six Shack-Hartmann wavefront
sensors with a resolution of 84x84 pixels were used to observe natural guide stars arranged in a
circle (see Figure 4 about the geometry). Three deformable mirrors were conjugated at ground
level, 4km, and 12km altitude, respectively.

The Shack-Hartmann wavefront sensors provide data on regular grids, so a finite difference
method was used to model the partial differential equation (12). The resolution of the dis-
cretization of the domains Ω` was chosen to match the wavefront sensor resolution. Whereas at
lower atmospheric layers, large areas of the different wavefront sensors overlap (see Figure 3),
at higher layers these areas are spread out more, leading to slightly bigger systems for solving
(12) on those layers. The use of higher resolutions and more sophisticated meshing strategies
are not investigated in the present paper.

As possible solvers for the resulting sparse systems of linear equations, both PCG and
direct methods based on sparse LU-factorization were considered. For the problem sizes at
hand, both methods performed well. PCG was tested with incomplete LU preconditioning
and typically required only two iterations to converge to a sufficiently good solution. For the
highest atmospheric layer in the nine layers model used in the tests, the system matrix consists
of about 52,000 nonzero entries. The sparse LU factorization of this matrix results in a system
with about 2 million nonzero entries. The CG method with incomplete LU factorization as a
preconditioner (using Matlab’s ilu function with the parameter drop tolerance set to 10−5)
requires storing about 325,000 nonzero elements. Smoothing all layers on a 2.5 GHz processor
took about 0.02 seconds with the direct method and 0.05 seconds using PCG. However, layers
are smoothed independently of each other, so these computations can be executed in parallel.

For the smoothed Landweber-Kaczmarz iteration, we used the parameter choice σ = 0.2 ≈
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Figure 5: Strehl ratios on field of view for different iterations with and without additional
smoothing.

(40/84)2, here depending on the diameter of 40m of the telescope and the number 84 of grid
points in each direction, cf. Section 3.3.

To evaluate the performance of the smoothed Kaczmarz-Landweber method, we used the
Strehl ratio, which measures how strongly light from a single source is spread out, compared
with the best possible focus (as dictated by the diffraction limit). The maximum value is 1.0
and a lower value indicates a decrease in image resolution due to optical imperfections in the
telescope optics and image distortions due to atmospheric turbulences. To calculate the Strehl
ratio, we have used the Maréchal approximation (cf., e.g., [19]) S ≈ e−σ̄2

, where σ̄2 denotes the
variance in the residual phase (after correction by the deformable mirrors). This measure was
evaluated for a number of directions in the sky, as shown in Figure 4.

4.1 Tests

4.1.1 Fixed Photon Flux

In Figure 5, we have plotted a contour map of the Strehl ratio for the entire field of view
(3 arcminutes) for the original L2-case reconstructors and the corresponding H1-case recon-
structors for different iteration numbers. Note that the hot spots at 1.5 arcminutes distance
from the centre correspond to the direction of the guide stars (Figure 4). Generally, we see
how the reconstruction focuses more and more on the guidestar directions, as we iterate. The
smoothing (second row) helps “spread out” the correction from those spots towards the centre
of the field of view. Figure 6 shows the Strehl ratios as a function of the distance from the
centre of the field of view, where we can see more clearly, what effect the smoothing has on
the reconstruction. In these cases, the solvers were tasked with reconstructing a three layers
atmosphere (as compared to the actual nine layers atmospheric make-up). This corresponds to
cases with insufficient available a-priori knowledge of the actual atmospheric structure, or to
cases where computational concerns lead to the decision to reconstruct only an approximate
atmosphere.

In Figures 7 and 8 we see the corresponding tests, where the reconstructors where provided
an accurate atmospheric model as a-priori information. One immediately sees, how much the
Strehl ratios have improved compared to the previous test.

With regards to the smoothing, we can observe two different effects. In the three recon-
structed layers case, the smoothing is able to increase the Strehl ratio particularly in the inner
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Figure 6: Strehl ratios on field of view for different iterations with and without additional
smoothing.
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Figure 7: Strehl ratios on field of view for different solutions.

field of view, where the astronomical object under observation is located. In the nine layers
reconstruction the smoothing spreads the correction factor outwards from the centre, which
might be useful when observing wide-spread astronomical targets.

We also see that the three layers case is so badly conditioned, that additional iterations past
the first few actually degrade the quality of the solution; an effect that is not present in the
better conditioned nine layers case.

4.2 Noisy Layer Altitudes

To simulate uncertainty in a-priori knowledge of the atmospheric structure, we have taken
the nine layer atmosphere and slightly modified each layer’s altitude by up to ±5%, so that
the reconstructed layers, i.e. the a-priori model, doesn’t match the actual structure exactly
anymore.

The results for a nine layers reconstruction can be seen in Figure 9. Comparing with the
previous section’s results, it is clear just how important a-priori information is. Not surprisingly,
the results are much worse than in the case of completely accurate a-priori information, but
still better than in the very inaccurate case of trying to reconstruct only three layers. The
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Figure 8: Strehl ratios vs. radial distance.
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Figure 9: Strehl ratios on field of view for different iterations with and without additional
smoothing. The altitudes of the reconstructed layers do not precisely match the actual atmo-
spheric layer heights, but randomly perturbed by about ±10%.

additional smoothing step is capable of maintaining a much higher Strehl ratio in the face of
such imprecisions. Also note that now the problem is conditioned badly enough for the 100
iterations case to be worse than the 20 iterations case.

4.2.1 Different Photon Flux Levels

Next, we will investigate the effect that the photon flux level has on the performance of various
reconstruction methods.

Starting with a three layers reconstruction, in Figure 10 we have plotted the average Strehl
ratio of several reconstructors for different photon flux levels. The average was taken on the
inner field of view with a diameter of approximately 0.5 arcminutes. We can see that the
smoothing improves the reconstruction results in the inner field of view for all photon flux
levels. Even so, in this very badly conditioned test case, fewer iterations are still better than
high iteration numbers. (However, there are many more potential sources of noise in an adaptive
optics system, which might offer more potential for the application of the smoothed Kaczmarz-
Landweber method.)

Next, Figure 11 shows the same analysis but with nine reconstructed layers. Again we notice
how, due to more precise a-priori information, we can now achieve higher iteration numbers
before the reconstruction quality degrades. We see that for few iterations, the smoothing
is actually harmful to the reconstruction effort, however, as the iteration numbers increase,
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Figure 10: Average Strehl ratio in inner field of view for different photon flux levels.
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Figure 11: Average Strehl ratio in inner field of view for different photon flux levels.

the smoothing becomes more and more effective. Note in particular, how the 100 iterations
solutions are the best solutions for photon fluxes p > 10, whereas below that limit the 20
iterations solution performs better.
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