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Stability Estimates and Structural Spectral Properties
of Saddle Point Problems∗

Wolfgang Krendl† Valeria Simoncini‡ Walter Zulehner§

Abstract

For a general class of saddle point problems sharp estimates for Babuška’s inf-sup stabil-
ity constants are derived in terms of the constants in Brezzi’s theory. In the finite-dimensional
Hermitian case more detailed spectral properties of preconditioned saddle point matrices
are presented, which are helpful for the convergence analysis of common Krylov subspace
methods. The theoretical results are applied to two model problems from optimal control
with time-periodic state equations. Numerical experiments with the preconditioned minimal
residual method are reported.

Keywords: Saddle point problems, Babuška-Brezzi theory, inf-sup constants, eigenvalues
of saddle point matrices, optimal control, time-periodic state equation

Mathematical Subject Classification (2000): 65F08, 65N22, 65K10, 49K40

1 Introduction
In this paper we consider linear problems in saddle point form: Find u ∈V and p ∈ Q such that

M

[
u
p

]
=

[
f
g

]
with M =

[
A B∗

B −C

]
(1)

with complex Hilbert spaces V and Q, f ∈V ∗ and g ∈ Q∗ and linear operators

A ∈ L(V,V ∗), B ∈ L(V,Q∗), B∗ ∈ L(Q,V ∗), C ∈ L(Q,Q∗).
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Here H∗ denotes the dual of a Hilbert space H, which is defined as the set of all bounded and
antilinear functionals on H, L(H1,H2) denotes the set of all bounded and linear operators from
H1 to H2, and B∗ is the adjoint of B.

For the special finite dimensional setting V =Cn and Q =Cm, the linear operators above can
be identified with corresponding matrices

A ∈ Cn×n, B ∈ Cn×m, B∗ ∈ Cm×n, C ∈ Cm×n,

where B∗ denotes the conjugate transpose of a matrix B. Then (1) becomes a linear system of
equations in standard matrix-vector notation.

A variety of interesting problems in science and engineering can be framed in this way, for
example, mixed formulations of elliptic boundary value problems, the Stokes problem in fluid
mechanics and the optimality system of PDE-constraint optimization problems, see, e.g., [18],
[8], [4], [26], [15]. Nonlinear versions of such problems are typically approximated by a se-
quence of systems of the form (1) during a linearization process, see, e.g, [26]. Discretized ver-
sions of these problems lead to finite dimensional linear systems of the form (1) with large scale
and sparse matrices A, B and C, see, e.g, [8]. The use of a framework based on complex rather
than real Hilbert spaces is motivated by particular applications in spaces of time-periodic func-
tions, for which the Fourier transform naturally introduces a representation in complex Hilbert
spaces.

We will address two fundamental and related topics: stability estimates for (1) in general
Hilbert spaces and spectral properties of the matrix M in the finite dimensional setting for Her-
mitian matrices M .

Stability estimates for (1) are estimates of the norm of the solution

x =
[

u
p

]
∈ X =V ×Q

in terms of the norm of the right-hand side[
f
g

]
∈V ∗×Q∗.

The product space V ∗×Q∗ can be identified with X∗, the dual of X , in a canonical way. That
makes M a bounded linear operator from X to X∗ and a stability estimate can be written in form
of an upper bound for the corresponding norm of M−1:

‖M−1‖L(X∗,X) ≤
1
c
, (2)

where ‖ · ‖H denotes the norm in a Hilbert space H. Of course, such an estimate depends on the
choice of the norm or better the inner product in X . We will concentrate on inner products in X
of the particular form(

x,y
)

X = (u,v)V +(p,q)Q for x =
[

u
p

]
, y =

[
v
q

]
, (3)
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where (·, ·)H denotes the inner product in a Hilbert space H.
Stability estimates are required for showing the well-posedness of (1) and are also important

for discretization error estimates. Rather sharp stability bounds c for the case C = 0 are already
contained in the pioneering paper [7] and have been improved, e.g., in [27]. For C = 0 we will
show how to further improve the estimates and present the best possible bounds in a general
Hilbert space setting under the same assumptions as in [7] and [27]. For general linear operators
C we will formulate a simple but rather helpful criterion which leads to stability estimates for
certain problems from optimal control.

Note that, contrary to (2), sharp upper bounds of the form

‖M ‖L(X ,X∗) ≤ c (4)

are easy to obtain and well-known.
For V =Cn and Q=Cm, inner products can be represented by Hermitian and positive definite

matrices. In particular, (3) corresponds to inner products of the following form(
x,y
)

X = 〈Pu,v〉+ 〈Rp,q〉= 〈Px,y〉 with P =

[
P 0
0 R

]
,

where 〈·, ·〉 denotes the Euclidean inner product in Cr and P ∈ Cn×n, R ∈ Cm×m, and, therefore,
also P ∈ C(n+m)×(n+m) are Hermitian and positive definite matrices.

In the Hermitian case M ∗ = M the estimates (2) and (4) immediately lead to corresponding
estimates

c≤ |µ| ≤ c,

for the eigenvalues µ of the matrix M̂ = P−1M . Therefore, we have

µ ∈ [−c,−c]∪ [c,c].

We will show that inclusions of this form with two intervals symmetrically arranged around 0
are appropriate for the case C = A and R = P due to symmetry properties of the spectrum of M̂ .
For the case C = 0 and A positive definite, sharp estimates of the more general form

µ ∈ [µ1,µ2]∪ [µ3,µ4] (5)

with µ1 ≤ µ2 < 0 < µ3 ≤ µ4 were derived in [24]. For positive semidefinite C and indefinite A,
rather sharp estimates were presented in [12]. For the special case C = 0 we will further improve
these estimates and present the best possible bounds under similar assumptions as in [12].

Preconditioned Krylov subspace methods are an important class of iterative methods for solv-
ing (1) in the finite dimensional setting with large and sparse matrices A, B, and C; we refer to
the survey article [4] and the references cited there for these as well as other solution techniques
for saddle point problems. In the Hermitian case M ∗ = M a prominent representative of these
methods is the preconditioned minimal residual method (MINRES), see [23], whose convergence
analysis relies on inclusions of the form (5), see, e.g., [23], [13].

The paper is organized as follows. Sect. 2 contains stability estimates of the form (2) in
general Hilbert spaces for C = 0. In Sect. 3 we study the finite dimensional Hermitian case and

3



derive sharp estimates of the form (5) for C = 0. Structural properties of the spectrum of M̂ for
C = A and R = P are studied in Sect. 4. In Sect. 5 the general results of the preceding sections are
applied to two model problems from optimal control, distributed time-periodic parabolic control
and distributed time-periodic Stokes control. The paper finishes with concluding remarks and
some technical details of a proof shifted to the appendix.

2 The general case
For the analysis we use a reformulation of (1) as a variational problem: The linear operators A, B,
and C uniquely determine sesquilinear forms a, b, and c on V×V , V×Q and Q×Q, respectively,
given by

a(u,v) = 〈Au,v〉, b(v,q) = 〈Bv,q〉= 〈B∗q,v〉, c(p,q) = 〈Cp,q〉, (6)

where, in general, 〈·, ·〉 denotes the duality pairing in Hilbert spaces. (It reduces to the Euclidean
inner product, as used in the introduction, in matrix-vector notation in the finite dimensional
setting.) Then (1) becomes a mixed variational problem: For given f ∈ V ∗ and g ∈ Q∗, find
u ∈V and p ∈ Q such that

a(u,v)+b(v, p) = f (v) for all v ∈V,
b(u,q)− c(p,q) = g(q) for all q ∈ Q,

(7)

or, equivalently, a variational problem in the product space X =V ×Q: Find x ∈ X such that

B(x,y) = F (y) for all y ∈ X (8)

with

B(x,y) = 〈M x,y〉= a(u,v)+b(v, p)+b(u,q)− c(p,q), F (y) = f (v)+g(q)

for

x =
[

u
p

]
and y =

[
v
q

]
.

From the famous Babuška-Brezzi theory, see [2], [3], [7], applied to the case C = 0, it is
well-known that the following three statements are equivalent:

1. M is an isomorphism between X and X∗

2. ‖B‖< ∞ with

‖B‖= sup
06=x∈X

sup
0 6=y∈X

|B(x,y)|
‖x‖X‖y‖X

and

inf
06=x∈X

sup
06=y∈X

|B(x,y)|
‖x‖X‖y‖X

= inf
06=y∈X

sup
06=x∈X

|B(x,y)|
‖x‖X‖y‖X

≡ γ > 0.

4



3. ‖a‖< ∞, ‖b‖< ∞ with

‖a‖= sup
06=u∈V

sup
06=v∈V

|a(u,v)|
‖u‖V‖v‖V

, ‖b‖= sup
0 6=v∈V

sup
06=q∈Q

|b(v,q)|
‖v‖V‖q‖Q

,

and

inf
06=u∈kerB

sup
06=v∈kerB

|a(u,v)|
‖u‖V‖v‖V

= inf
06=v∈kerB

sup
06=u∈kerB

|a(u,v)|
‖u‖V‖v‖V

≡ α > 0,

inf
06=q∈Q

sup
0 6=v∈V

|b(v,q)|
‖v‖V‖q‖Q

≡ β > 0.

It is also well-known that the quantities ‖B‖ and γ can be expressed in terms of norms of the
associated operator M :

‖B‖= ‖M ‖L(X ,X∗),
1
γ
= ‖M−1‖L(X∗,X). (9)

With these notations and relations, (2) and (4) take the following form

0 < c≤ γ and ‖B‖ ≤ c < ∞.

Our aim is thus to derive lower bounds of γ and upper bounds for ‖B‖. One possible approach
to obtain these bounds is based on available lower bounds for α , β and upper bounds for ‖a‖,
‖b‖. These quantities can also be expressed in terms of norms of the associated operators A and
B. We follow here the presentation in [1] and introduce a space decomposition on V :

V =V0 +V1 with V0 = kerB and V1 =V⊥0 ,

and define the operators Ai j ∈ L(Vj,V ∗i ) for all i, j ∈ {0,1} by

〈Ai ju,v〉= a(u,v) for all u ∈Vj, v ∈Vi

and B1 ∈ L(V1,Q∗) by

〈B1v,q〉= b(v,q) for all v ∈V1, q ∈ Q.

Then it is easy to see that A00 and B1 are isomorphisms and we have:

‖a‖= ‖A‖L(V,V ∗), ‖b‖= ‖B‖L(V,Q∗) = ‖B1‖L(V1,Q∗) = ‖B
∗
1‖L(Q,V ∗1 )

, (10)

and
1
α

= ‖A−1
00 ‖L(V ∗0 ,V0),

1
β
= ‖B−1

1 ‖L(Q∗,V1) = ‖(B
∗
1)
−1‖L(V ∗1 ,Q). (11)

With these operators we can rewrite the original problem in a 3-by-3 block form, as suggested
in [1]: A00 A01 0

A10 A11 B∗1
0 B1 0

u0
u1
p

=

 f0
f1
g

 , (12)

5



with u= u0+u1, ui ∈Vi and fi ∈V ∗i are given by 〈 fi,v〉= 〈 f ,v〉, v∈Vi for i∈ {0,1}. As observed
in [1] the inverse of the 3-by-3 block operator in (12) is given by A−1

00 0 −A−1
00 A01B−1

1
0 0 B−1

1
−(B∗1)−1A10A−1

00 (B∗1)
−1 −(B∗1)−1 [A11−A10A−1

00 A01
]

B−1
1

 .
Using this representation and (10), (11) it follows immediately for (12) that‖u0‖V

‖u1‖V
‖p‖Q

≤


1
α

0 1
β

∥∥A−1
00 A01

∥∥
0 0 1

β
1
β

∥∥A10A−1
00

∥∥ 1
β

1
β 2

∥∥A11−A10A−1
00 A01

∥∥

‖ f0‖V ∗0
‖ f1‖V ∗1
‖g‖Q∗

 .
Here, we dropped indices of the operator norms for simplicity. It is clear from the context which
operator norm is meant. Obviously, we have ‖Ai j‖ ≤ ‖A‖= ‖a‖ for i ∈ {0,1}. Therefore,

∥∥A−1
00 A01

∥∥≤ ‖a‖
α

,
∥∥A10A−1

00

∥∥≤ ‖a‖
α

, (13)

and ∥∥A11−A10A−1
00 A01

∥∥≤ ‖a‖+ ‖a‖2

α
, (14)

which imply ‖u0‖V
‖u1‖V
‖p‖Q

≤


1
α

0 ‖a‖
αβ

0 0 1
β

‖a‖
αβ

1
β

‖a‖
β 2

(
1+ ‖a‖

α

)

‖ f0‖V ∗0
‖ f1‖V ∗1
‖g‖Q∗

 . (15)

Using
‖u‖V ≤ ‖u0‖V +‖u1‖V and ‖ f0‖V ∗0 ≤ ‖ f‖V ∗ , ‖ f1‖V ∗1 ≤ ‖ f‖V ∗,

it easily follows that [
‖u‖V
‖p‖Q

]
≤

 1
α

1
β

(
1+ ‖a‖

α

)
1
β

(
1+ ‖a‖

α

)
‖a‖
β 2

(
1+ ‖a‖

α

)[‖ f‖V ∗

‖g‖Q∗

]
.

These are exactly the estimates that can be already found in [7] and later in [1] with essentially
the same line of arguments. Since [

u
p

]
= M−1

[
f
g

]
and f ∈V ∗, g ∈ Q∗ can be chosen arbitrarily, this estimate shows that

‖M−1‖L(X∗,X) ≤ ρ(D1) with D1 =

 1
α

1
β

(
1+ ‖a‖

α

)
1
β

(
1+ ‖a‖

α

)
‖a‖
β 2

(
1+ ‖a‖

α

) , (16)
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where ρ(M) denotes the spectral radius of a matrix M. From (9) we learn that 1/ρ(D1) is a lower
bound for γ .

With a slight variation of the arguments we obtain a better lower bound for γ . The essential
step is an improvement of the estimates in (13), (14).

Lemma 1. We have

‖A10A−1
00 ‖ ≤

√
‖a‖2

α2 −1, ‖A−1
00 A01‖ ≤

√
‖a‖2

α2 −1

and ∥∥A11−A10A−1
00 A01

∥∥≤ ‖a‖2

α
.

Proof. By using the simple estimate∥∥∥∥[A00
A10

]∥∥∥∥≤ ∥∥∥∥[A00 A01
A10 A11

]∥∥∥∥= ‖A‖= ‖a‖,
it follows that:

1+‖A10A−1
00 ‖

2 =

∥∥∥∥[ I
A10A−1

00

]∥∥∥∥2

=

∥∥∥∥[A00
A10

]
A−1

00

∥∥∥∥2

≤ ‖a‖
2

α2 ,

from which the first inequality follows immediately. The second inequality can be shown analo-
gously. For the third estimate we have

‖A10A−1
00 A01−A11‖=

∥∥∥∥[A10A−1
00 −I

][A01
A11

]∥∥∥∥≤ ∥∥[A10A−1
00 −I

]∥∥∥∥∥∥[A01
A11

]∥∥∥∥
=
√

1+‖A10A−1
00 ‖2

∥∥∥∥[A01
A11

]∥∥∥∥≤ ‖a‖α
‖a‖= ‖a‖

2

α
,

which completes the proof.

Using the estimates of the previous lemma we obtain the following result.

Theorem 1. With the notation introduced above, the following holds:

1. Let γopt(α,β ,‖a‖) be the smallest positive root of the cubic equation

µ
3− (‖a‖2 +β

2)µ +α β
2 = 0. (17)

Then γ ≥ γopt(α,β ,‖a‖).

2. We have [
‖u‖V
‖p‖Q

]
≤

 1
α

1
β

‖a‖
α

1
β

‖a‖
α

‖a‖
β 2
‖a‖
α

 [‖ f‖V ∗

‖g‖Q∗

]
(18)

and γ ≥ α/(1+κ2) with κ = ‖a‖/β .
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Proof. From (15) and Lemma 1 it follows that‖u0‖V
‖u1‖V
‖p‖Q

≤ E

‖ f0‖V ∗0
‖ f1‖V ∗1
‖g‖Q∗

 , with E =


1
α

0 1
β

√
‖a‖2

α2 −1
0 0 1

β

1
β

√
‖a‖2

α2 −1 1
β

1
β 2
‖a‖2

α
,

 . (19)

Therefore, ∥∥∥∥[u
p

]∥∥∥∥
X
≤ ρ(E)

∥∥∥∥[ f
g

]∥∥∥∥
X∗

,

which implies that 1/ρ(E) is a lower bound for γ . Since E is a nonnegative matrix, ρ(E) is an
eigenvalue of E, see [5, page 26]. Therefore, ρ(E) is the largest positive root of the characteristic
polynomial of E, which directly leads to the cubic equation (17) for 1/ρ(E) = γopt(α,β ,‖a‖).
Using

‖u‖2
V = ‖u0‖2

V +‖u1‖2
V , ‖ f‖2

V ∗ = ‖ f0‖2
V ∗0

+‖ f1‖2
V ∗1
,

and Cauchy’s inequality, it easily follows from (19) that[
‖u‖V
‖p‖Q

]
≤ D2

[
‖ f‖V ∗

‖g‖Q∗

]
, with D2 =

 1
α

1
β

‖a‖
α

1
β

‖a‖
α

‖a‖
β 2
‖a‖
α

 .
As above, this implies that 1/ρ(D2) is a lower bound for γ . Observe that D2 is a rank-one matrix

D2 =
1
α

[
1
κ

][
1 κ

]
, with κ =

‖a‖
β

,

whose spectrum is given by {0,(1+κ2)/α}. Therefore, 1/ρ(D2) = α/(1+κ2), which com-
pletes the proof.

We would like to remark that the estimate γ ≥ γ3(α,β ,‖a‖) is sharp. Indeed, for the matrix
M in (1) with

A =

[
α −

√
‖a‖2−α2

−
√
‖a‖2−α2 −α

]
, B =

[
0 β

]
and C = 0, (20)

we obtain

M−1 =


1
α

0 1
β

√
‖a‖2

α2 −1
0 0 1

β

1
β

√
‖a‖2

α2 −1 1
β

1
β 2
‖a‖2

α

 .
The conditions of the Babuška-Brezzi theory are satisfied with constants ‖a‖, α , and β for P =
I, the identity matrix. Since M−1 coincides with the matrix E, it immediately follows that

γ = γopt(α,β ,‖a‖).
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We would also like to emphasize that both bounds of Theorem 1 are sharper than the classical
bound 1/ρ(D1). Indeed, if we apply the estimates for γ from Theorem 1 to the matrices in (20),
we obtain γ = γopt(α,‖a‖,‖b‖)≥ α/(1+κ2). Actually, we have a strict inequality

γopt(α,‖a‖,‖b‖)> α

1+κ2 ,

since the cubic polynomial in (17) is strictly positive on [0,α/(1+κ2)]. Moreover, for

D(ξ ) =
1
α

[
1 κξ

κξ κ2ξ

]
,

we have

D2 = D(1) and D1 = D(ξ1) with ξ1 =
α +‖a‖
‖a‖

> 1.

It is easy to check that ρ(D(ξ )) is a strictly increasing function of ξ . Therefore, ρ(D1)> ρ(D2),
or, equivalently,

α

1+κ2 >
1

ρ(D1)
.

Comparing the results in Theorem 1 with similar bounds in the literature, we notice that the
bound presented in [27] is of the same form, say γ̃(α,β ,‖a‖), and one can show that

α

1+κ2 > γ̃(α,β ,‖a‖)> 1
ρ(D1)

.

For completeness we finally include a trivial upper bound for ‖B‖. Since we have[
‖ f‖V ∗
‖g‖Q∗

]
≤
[
‖a‖ ‖b‖
‖b‖ 0

][
‖u‖V
‖p‖Q

]
,

it follows that

‖B‖ ≤ ρ

([
‖a‖ ‖b‖
‖b‖ 0

])
=

1
2

(
‖a‖+

√
‖a‖2 +4‖b‖2

)
. (21)

It is well known that this estimate is sharp; see, e.g., [24].

3 The finite dimensional Hermitian case
In this section we consider the finite dimensional case V = Cn and Q = Cm. Inner products
in these spaces can be represented by Hermitian and positive definite matrices P ∈ Cn×n and
R ∈ Cm×m:

(u,v)V = 〈u,v〉P, (p,q)Q = 〈p,q〉R,

where here and in the sequel the following standard notations are used: For a Hermitian and
positive definite matrix M ∈Cr×r, the associated inner product is given by 〈z,w〉M = 〈Mz,w〉 for
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z,w ∈Cr. Both the vector norm and the matrix norm associated with the inner product 〈·, ·〉M are
denoted by ‖ · ‖M.

With the notation introduced above, the inner product (3) in X =V ×Q = Cn+m is given by

(x,y)X = 〈x,y〉P with P =

[
P 0
0 R

]
∈ C(n+m)×(n+m). (22)

The discussion in this section is restricted to the Hermitian case:

M ∗ = M .

For the inf-sup constant γ and the norm ‖B‖ of the bilinear form B associated with M as
introduced in Sect. 2, it is well-known that

γ = |µmin| and ‖B‖= |µmax|,

where µmin and µmin are the eigenvalues of the matrix M̂ = P−1M with minimal and maximal
modulus, respectively. Or, equivalently, for the eigenvalues µ of the generalized eigenvalue
problem

M x = µ Px, (23)

we have
µ ∈ [−‖B‖,−γ ] ∪ [γ, ‖B‖ ] . (24)

For the rest of this section we concentrate on matrices of the form

M =

[
A B∗

B 0

]
∈ C(n+m)×(n+m) (25)

with A∗ = A ∈ Cn×n satisfying

〈Av,v〉> 0 for all 0 6= v ∈ kerB,

and B ∈ Cm×n of full rank m ≤ n. Under these conditions the matrix M is Hermitian and
non-singular. This setting is typical for optimality systems (Karush-Kuhn-Tucker conditions)
of equality-constrained optimization problems. Let Pi ∈ L(Vi,V ∗i ) be given by

〈Piu,v〉= 〈Pu,v〉 for all u,v ∈Vi, i ∈ {0,1}.

Under the conditions above we have the following well-known alternative representation of the
inf-sup constant α:

α = inf
06=v0∈V0

〈A00v0,v0〉
〈P0v0,v0〉

. (26)

Instead of ‖a‖, the norm of the bilinear form a associated with A in V , we assume more detailed
information on A in terms of the extreme eigenvalues of P−1A, which can be written as

λ
A
min = inf

06=v∈V

〈Av,v〉
〈Pv,v〉

, λ
A
max = sup

0 6=v∈V

〈Av,v〉
〈Pv,v〉

. (27)

10



Of course, we have λ A
max ≥ α > 0 and ‖a‖= max{|λ A

min|,λ A
max}.

The following representations for the inf-sup constant β and the norm ‖b‖ of the bilinear
form b associated with B in Q hold:

β
2 = inf

06=q∈Q

〈BP−1B∗q,q〉
〈Rq,q〉

= inf
06=v1∈V1

〈B∗1R−1B1v1,v1〉
〈P1v1,v1〉

, (28)

and

‖b‖2 = sup
06=q∈Q

〈BP−1B∗q,q〉
〈Rq,q〉

. (29)

Since M is Hermitian and indefinite we have an inclusion of the form

µ ∈ [µ1,µ2]∪ [µ3,µ4]

with µ1 ≤ µ2 < 0 < µ3 ≤ µ4 for the eigenvalues µ of the generalized eigenvalue problem (23).
Sharp bounds µ1, µ2, and µ4 in the case λ A

min > 0 can be found in [24]. In [12] these bounds
were extended to the case λ A

min ≤ 0 and read, in general,

µ1 =
1
2

(
λ

A
min−

√
(λ A

min)
2 +4‖b‖2

)
,

µ2 =
1
2

(
λ

A
max−

√
(λ A

max)
2 +4β 2

)
,

µ4 =
1
2

(
λ

A
max +

√
(λ A

max)
2 +4‖b‖2

)
.

(30)

It remains to discuss lower bounds for the positive eigenvalues. For the case λ A
min > 0 a simple

bound is known (see [24]):
µ3 = λ

A
min.

This bound is sharp for problems with α = λ A
min. Rather sharp bounds with no restriction on λ A

min
can be found in [12]. The best bound presented in [12] is the smallest root of a cubic equation
whose coefficients are given in terms of α , λ A

min, λ A
max, and β . For the case λ A

min ≤ 0 we will
derive now a sharp bound that involves a similar cubic equation.

Theorem 2. Assume that λ A
min ≤ 0 and let µ be any positive eigenvalue of P−1M .

1. Let γopt(α,β ,λ A
min,λ

A
max) be the smallest positive root of the cubic equation

µ
3− (λ A

min +λ
A
max)µ

2 +(λ A
minλ

A
min−β

2)µ +α β
2 = 0. (31)

Then we have µ ≥ γopt(α,β ,λ A
min,λ

A
max) .

11



2. We have

µ ≥



αβ 2

−λ A
minλ A

max +β 2 if λ
A
min +λ

A
max ≤ 0,

λ A
minλ A

max−β 2

2(λ A
min +λ A

max)
+

√√√√( λ A
minλ A

max−β 2

2(λ A
min +λ A

max)

)2

+
αβ 2

λ A
min +λ A

max

otherwise.

Proof. Let µ > 0 be an eigenvalue of the eigenvalue problem (23) with eigenvector
x = [u0,u1, p]T 6= 0. Using the framework introduced in [1], see Sect. 2, this eigenvalue problem
reads A00 A01 0

A10 A11 B∗1
0 B1 0

u0
u1
p

= µ

P0 0 0
0 P1 0
0 0 R

u0
u1
p

 ,
i.e.,

A00u0 +A01u1 = µ P0u0,

A10u0 +A11u1 +B∗1 p = µ P1u1,

B1u1 = µ Rp.

First we consider the case that A00−µ P0 is non-singular. Then we obtain from the first and the
third equations

u0 =−(A00−µ P0)
−1A01u1 and p =

1
µ

R−1B1u1,

which immediately implies that u1 6= 0. Using these relations for eliminating u0 and p from the
second equation and taking the inner product with µ u1 we obtain

µ
2 〈P1u1,u1〉+µ 〈A10(A00−µ P0)

−1A01u1,u1〉
−µ 〈A11u1,u1〉−〈B∗1R−1B1u1,u1〉= 0.

(32)

We have 〈A00v0,v0〉 ≥ α 〈P0v0,v0〉 for all v0 ∈ V0; see (26). Then, for 0 < µ < α , it is easy to
check that

〈(A00−µ P0)
−1v0,v0〉 ≤

α

α−µ
〈A−1

00 v0,v0〉 for all v0 ∈V0.

With v0 = A01u1, an upper bound for the second term on the left-hand side in (32) follows:

µ 〈A10(A00−µ P0)
−1A01u1,u1〉 ≤

µα

α−µ
〈A10A−1

00 A01u1,u1〉. (33)

For the last term on the left-hand side in (32) we have

〈B∗1R−1B1u1,u1〉 ≥ β
2 〈P1u1,u1〉, (34)

12



see (28). Using (34) and (33) we obtain from (32):

µ
2 〈P1u1,u1〉+

µα

α−µ
〈A−1

00 A01u1,A01u1〉−µ 〈A11u1,u1〉−β
2 〈P1u1,u1〉 ≥ 0.

After dividing by 〈P1u1,u1〉 it follows that

µ
2 +µ

[
α

α−µ
r1− r2

]
−β

2 ≥ 0, (35)

with the Rayleigh quotients

r1 =
〈A10A−1

00 A01u1,u1〉
〈P1u1,u1〉

and r2 =
〈A11u1,u1〉
〈P1u1,u1〉

.

One can show that (see the appendix for the technical details):

α

α−µ
r1− r2 ≤

(λ A
max +λ A

min−α)µ−λ A
maxλ A

min
α−µ

. (36)

Then it follows from (35) that

µ
2 +µ

[
(λ A

max +λ A
min−α)µ−λ A

maxλ A
min

α−µ

]
−β

2 ≥ 0,

i.e.
q(µ) = µ

3− (λ A
max +λ

A
min)µ

2 +(λ A
maxλ

A
min−β

2)µ +αβ
2 ≤ 0.

Therefore, µ cannot lie in the interval between 0 and the first positive root, denoted by
γopt(α,β ,λ A

min,λ
A
max), of the cubic polynomial q(µ), because there the cubic polynomial is strictly

positive.
If A00− µ P is singular, then µ ≥ α because of (26). Since q(α) ≤ 0, it follows also in this

case that µ ≥ γopt(α,β ,λ A
min,λ

A
max). That completes the proof of the first part.

The proof of the second part follows the same line of arguments as presented in the proof of
Proposition 2.2 in [12] and is omitted here.

We remark that the estimate µ ≥ γopt(α,β ,λ A
min,λ

A
max) is sharp: For the matrix M in (25)

with

A =

 α −
√

(λ A
max−α)(α−λ A

min)

−
√
(λ A

max−α)(α−λ A
min) λ A

max +λ A
min−α

 , B =
[
0 β

]
and P = I, we obtain the following characteristic polynomial

µ
3− (λ A

max +λ
A
min)µ

2 +(λ A
maxλ

A
min−β

2)µ +αβ
2,

13



which coincides with the cubic polynomial in (17). Therefore, the smallest positive eigenvalue
of M is equal to γopt(α,β ,λ A

min,λ
A
max).

In many applications A is positive semidefinite with a non-trivial kernel. Then λ A
min = 0 and

λ A
max = ‖a‖, which leads to the cubic equation

µ
3−‖a‖µ

2−β
2

µ +α β
2 = 0,

whose smallest positive root is a sharp lower bound for the positive eigenvalues µ of P−1M
in this case, see Theorem 2 and the example above. The second part of Theorem 2 yields the
following simpler bound:

µ ≥ β

2‖a‖

(
−β +

√
β 2 +4α‖a‖

)
=

2αβ

β +
√

β 2 +4α‖a‖

for the positive eigenvalues µ of P−1M .
Finally, we would like to stress that because of simple monotonicity arguments, all presented

estimates on the spectrum of P−1M remain valid if α , β , γ , and λ A
min are replaced by lower

bounds and λ A
max, ‖b‖, and ‖B‖ are replaced by upper bounds. For example, if λ A

min is replaced
by its lower bound −‖a‖ and λ A

max by its upper bound ‖a‖ in (31), then we also obtain a lower
bound for the positive eigenvalues of P−1M , which is not necessarily sharp but it goes without
specific knowledge on the spectrum of A other than the spectral radius of P−1A. Observe that,
with these replacements, (31) coincides with (17), and the corresponding smallest positive root
is identical to γopt(α,β ,‖a‖), derived in Sect. 2.

4 On a class of matrices with symmetric spectrum
In this section we specialize our considerations to the following Hermitian matrix

M =

[
A B∗

B −A

]
∈ C2n×2n,

with A ∈ Rn×n real and symmetric positive definite, and B ∈ Cn×n complex symmetric, i.e.,
B = BT , where BT denotes the transpose of the possibly complex matrix B. We know that the
matrix M has all real eigenvalues, n positive and n negative ones. We next show that the negative
eigenvalues are the mirrored images of the positive eigenvalues. This property has a few conse-
quences, both in the choice of the preconditioner, and on the convergence of MINRES. Indeed,
the spectrum of M is symmetric with respect to the origin, and MINRES behaves like CG on a
matrix having only the positive eigenvalues, but with twice as many iterations. Therefore, MIN-
RES on M will only make some progress every other iteration, showing complete stagnation
otherwise; we refer to [11] for a similar phenomenon for 2× 2 block matrices with a different
nonzero structure.

We first need the following technical lemma.
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Lemma 2. Let H be a nonsingular complex symmetric matrix (i.e., H =HT ), and S be a complex
skew-symmetric matrix (i.e., S = −ST ), both of size n. Then the (nonzero) eigenvalues of the
2n×2n matrix [

0 I
H S

]
come in pairs, (µ,−µ).

Proof. For nonsingular H, we have the similarity transformation[
−iH

1
2

I

][
0 I
H S

][
iH−

1
2

I

]
=

[
0 −iH

1
2

iH
1
2 S

]
,

where the matrix in the right-hand side is complex skew-symmetric. Since any skew-symmetric
matrix T is similar to its transpose T T = −T , to each Jordan block with eigenvalue µ in the
Jordan decomposition of T there is a corresponding Jordan block of the same size with eigenvalue
−µ .

Theorem 3. Assume that B is nonsingular. Then the eigenvalues µ of M come in pairs, (µ,−µ),
with µ ∈ R.

Proof. The eigenvalue problem for M can be written as

Ax+B∗y = µx, Bx−Ay = µy.

Substituting x = B−1(µI +A)y in the first equation and after some simple algebra we obtain

−µ
2B−1y+µ[AB−1−B−1A]y+[AB−1A+B∗]y = 0.

After multiplication by B
1
2 from both matrix sides we obtain

−µ
2ỹ +µ

[
B

1
2 AB−

1
2 −B−

1
2 AB

1
2

]
ỹ+
[
B

1
2 AB−1AB

1
2 +B

1
2 B∗B

1
2

]
ỹ = 0,

with ỹ = B−
1
2 y, which gives[

−µ
2I +µ(G−GT )+(GGT +B

1
2 B∗B

1
2 )
]

ỹ = 0.

The eigenvalues of the quadratic matrix equation above can be obtained as eigenvalues of the
linearized problem [

O I
GGT +B

1
2 B∗B

1
2 G−GT

]
z = µz ⇔ G z = µz.

We then recall that all eigenvalues of M , and thus of G , are real, and that n of them are positive
and the other n are negative. The matrix G satisfies the hypotheses of Lemma 2, therefore the
eigenvalues of G come in pairs (µ,−µ), which completes the proof.
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5 Application to optimal control problems
Let Ω be an open and bounded domain in Rd for d ∈ {1,2,3} with Lipschitz-continuous bound-
ary Γ. For T > 0, we introduce the space-time cylinder QT = Ω× (0,T ) and its lateral surface
ΣT = Γ× (0,T ).

5.1 Distributed optimal control for time-periodic parabolic equations
First we consider the following model problem: Find the state y(x, t) and the control u(x, t) that
minimizes the cost functional

J(y,u) =
1
2

∫ T

0

∫
Ω

|y(x, t)− yd(x, t)|2 dx dt +
ν

2

∫ T

0

∫
Ω

|u(x, t)|2 dx dt

subject to the time-periodic parabolic problem

∂

∂ t
y(x, t)−∆y(x, t) = u(x, t) in QT ,

y(x, t) = 0 on ΣT ,

y(x,0) = y(x,T ) on Ω,

u(x,0) = u(x,T ) on Ω.

Here yd(x, t) is a given target (or desired) state and ν > 0 is a cost or regularization parameter.
We assume that yd(x, t) is time-harmonic, i.e.:

yd(x, t) = yd(x)eiωt with ω =
2πk
T

for some k ∈ Z.

Then there is a time-periodic solution to the original control problem of the form

y(x, t) = y(x)eiωt , u(x, t) = u(x)eiωt ,

where y(x) and u(x) solve the following time-independent optimal control problem: Minimize

1
2

∫
Ω

|y(x)− yd(x)|2 dx+
ν

2

∫
Ω

|u(x)|2 dx

subject to

iω y(x)−∆y(x) = u(x) in Ω,

y(x) = 0 on Γ.

Using an appropriate finite element space Vh of dimension n for both y and u, we obtain the
following discrete version: Minimize

1
2
(y− yd)

∗M(y− yd)+
ν

2
u∗Mu
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subject to

iω M y+Ky = Mu.

Here the real matrices M and K are the mass matrix, representing the L2-inner product in Vh, and
the discretized negative Laplacian, respectively. The underlined quantities y, yd , and u denote
the coefficient vectors of the corresponding finite element functions relative to the chosen set of
basis functions in Vh.

The Lagrangian functional for this constrained optimization problem is given by

L (y,u, p) =
1
2
(y− yd)

∗M(y− yd)+
ν

2
u∗Mu+ p∗

(
iω M y+Ky−Mu

)
,

where p denotes the Lagrangian multiplier associated with the constraint. The first-order nec-
essary optimality conditions, which are also sufficient for the problem considered here, are
∇L (y,u, p) = 0, and read in details: M 0 K− iω M

0 ν M −M
K + iω M −M 0

y
u
p

=

Myd
0
0

 . (37)

This is a linear system of the form (1) with

A =

[
M 0
0 ν M

]
∈ R2n×2n, B =

[
K + iω M −M

]
∈ Cn×2n, C = 0. (38)

The system (37) was discussed in [25] for the special case ω = 0, which corresponds to an elliptic
optimal control problem. Observe that in this case all matrices are real. The preconditioner
constructed in [25] is an indefinite 3-by-3 block matrix and leads to convergence rates of the
preconditioned conjugate gradient method which do not deteriorate if the mesh size, say h, and/or
the cost parameter ν approach 0.

Based on ideas very close to those developed in [25] we obtain the following properties of
the bilinear forms a and b associated with A and B, respectively, in terms of the quantities α ,
λ A

min, λ A
max, β , and ‖b‖:

Theorem 4. Let M be given by (1) and (38). Then, for P , given by

P =

[
P 0
0 R

]
with P =

[
Y 0
0 ν M

]
, R =

1
ν

Y, and Y = M+
√

ν (K +ω M),

we have

α ≥ 2−
√

2, λ
A
min ≥ 0, λ

A
max ≤ 1, β ≥

√
2

2
, ‖b‖ ≤ 1.

Proof. The estimate λ A
min ≥ 0 is trivial. The upper bounds for λ A

max = ‖a‖ and ‖b‖ follow com-
pletely analoguously to the proof of Lemma 4.1 in [25].
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The proof of the lower bounds for the inf-sup constants α and β in [25] covers only the case
ω = 0. An essential step of that proof was the estimate

‖y‖2
K ≤ ‖y‖M ‖u‖M

for all y and u satisfying the state equation for ω = 0, i.e., Ky = Mu. That part of the proof has
to be replaced for general ω by the estimate

‖y‖2
K +ω ‖y‖2

M ≤
√

2‖y‖M‖u‖M

for all y and u satisfying the state equation (K + iω M)y = Mu, which easily follows:(
‖y‖2

K +ω ‖y‖2
M
)2 ≤ 2

(
‖y‖4

K +ω
2 ‖y‖4

M
)

= 2 |〈(K + iω M)y,y〉|2 = 2 |〈Mu,y〉|2 ≤ 2‖y‖2
M‖u‖2

M.

All other arguments are completely identical to the corresponding arguments used in [25] and
are omitted.

If α , λ A
min, λ A

max, β , and ‖b‖ in (30) and (31) are replaced by the corresponding lower or
upper bounds provided by Theorem 4, it immediately follows that the spectrum of P−1M is
contained in the set [

−1,
1
2
(1−
√

3)
]
∪
[

µ3,
1
2
(1+
√

5)
]
,

where µ3 is the smallest positive root of the cubic equation

µ
3−µ

2− 1
2

µ +1−
√

2
2

= 0.

These intervals read in 3-digit accuracy

[−1,−0.366]∪ [0.396,1.618].

From the second part of Theorem 2 we know a simple lower bound for µ3:

µ3 ≥
4−2

√
2

1+
√

17−8
√

2
≈ 0.346.

There is a frequently used alternative approach for solving (37). From the second row of
(37) it follows that u = p/ν . Therefore, we can eliminate the control u and obtain the reduced
optimality system [

M K− iω M
K + iω M − 1

ν
M

][
y
p

]
=

[
Myd

0

]
.

This system was discussed in [28] for the special case ω = 0. The preconditioner constructed in
[28] leads to convergence rates of the preconditioned MINRES method which do not deteriorate
if the mesh size h and/or the cost parameter ν approach 0. The results from [28] were extended
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to the case ω 6= 0 in [17] (based on results from [10]), where a preconditioner was constructed
and a bound for the number of MINRES-iterations was derived which is independent of h, ν , and
ω .

Here we will shed some new light on the preconditioner from [17] by presenting a slightly
different analysis of the already known properties within the framework of complex matrices,
and by supplementing these properties by a new statement on the symmetry of the spectrum of
the preconditioned matrix. This new approach is helpful for extending the analysis of precondi-
tioners for other optimal control problems, like the one discussed in the subsequent subsection.

A simple scaling leads to the equivalent system[
M

√
ν (K− iω M)

√
ν (K + iω M) −M

][
y

1√
ν

p

]
=

[
Myd

0

]
,

which is of the form (1) with

A = M ∈ Rn×n, B =
√

ν (K + iω M) ∈ Cn×n, and C =−A. (39)

Using Sect. 2 and 4 we obtain the following results on the eigenvalues of P−1M :

Theorem 5. Let M be given by (1) and (39). Then, for P , given by

P =

[
P 0
0 P

]
,

with P real and symmetric positive definite, the spectrum of P−1M is real and symmetric around
zero. Moreover, for P = M+

√
ν (K +ω M), the following estimates hold

γ ≥ 1√
3

and ‖B‖ ≤ 1,

where γ is the inf-sup constant, and B is the bilinear form associated with M .

Proof. The symmetry of the spectrum of P−1M around zero directly follows from Theorem 3
applied to the similar matrix P− 1

2 MP− 1
2 . Let

H =

[
I (1− i) I

(1+ i) I −I

]
.

Then, by direct calculations, one shows that

Re〈M x,H x〉= ‖x‖2
P and ‖H x‖2

P = 3‖x‖2
P for all x ∈ C2n.

Therefore,

γ = inf
0 6=x∈X

sup
06=w∈X

|〈M x,w〉|
‖x‖P‖w‖P

≥ inf
06=x∈X

|〈M x,H x〉|
‖x‖P‖H x‖P

≥ inf
06=x∈X

Re〈M x,H x〉
‖x‖P‖H x‖P

= inf
06=x∈X

‖x‖2
P

‖x‖P
√

3‖x‖P
=

1√
3
.
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Moreover, since

〈M x,x〉= 〈My,y〉+2
√

ν
(

Re〈Ky, p〉−ω Im〈My, p〉
)
−〈Mp, p〉 for x =

[
y
p

]
,

and
| Im〈My, p〉| ≤ |〈My, p〉| ≤ ‖y‖M‖p‖M, |Re〈Ky, p〉| ≤ |〈Ky, p〉| ≤ ‖y‖K‖p‖K,

it follows that

|〈M x,x〉| ≤ ‖y‖2
M +2

√
ν (‖y‖K‖p‖K +ω ‖y‖M‖p‖M)+‖p‖2

M

≤ ‖y‖2
M +
√

ν
(
‖y‖2

K +‖p‖2
K +ω

(
‖y‖2

M +‖p‖2
M
))

+‖p‖2
M

= 〈Px,x〉 for all x ∈ C2n,

which implies that

‖B‖= sup
06=x∈X

sup
06=w∈X

|〈M x,w〉|
‖x‖P‖w‖P

= sup
0 6=x∈X

|〈M x,x〉|
〈Px,x〉

≤ 1.

This completes the proof.

If γ is replaced by the lower bound 1/
√

3 and ‖B‖ by the upper bound 1, it immediately
follows from (24) that the spectrum of P−1M is contained in the set[

−1,− 1√
3

]
∪
[

1√
3
,1
]
≈ [−1,−0.577]∪ [0.557,1].

Remark 1. The essential step for estimating the inf-sup constant γ from below was the introduc-
tion of the matrix H . Translated into a general Hilbert space setting and slightly more general,
the essential requirements on such a linear operator H : X −→ X are that there are some positive
constants c1, c2 such that

|B(z,H z)| ≥ c1 ‖z‖2
X and ‖H z‖ ≤ c2 ‖z‖X for all z ∈ X .

Then it follows analogously to the previous proof that γ ≥ c1/c2.

5.2 Distributed optimal control for the time-periodic Stokes equations
Next we consider the following problem: Find the velocity u(x, t), the pressure p(x, t), and the
force f(x, t) that minimizes the cost functional

J(u, f) =
1
2

∫ T

0

∫
Ω

|u(x, t)−ud(x, t)|2 dx dt +
ν

2

∫ T

0

∫
Ω

|f(x, t)|2 dx dt
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subject to the time-periodic Stokes problem

∂

∂ t
u(x, t)−∆u(x, t)+∇p(x, t) = f(x, t) in QT ,

∇ ·u(x, t) = 0 in QT ,

u(x, t) = 0 on ΣT ,

u(x,0) = u(x,T ) on Ω,

p(x,0) = p(x,T ) on Ω,

f(x,0) = f(x,T ) on Ω.

Here ud(x, t) is a given target velocity, ν > 0 is a cost or regularization parameter, and |.| denotes
the Euclidean norm in Rd . We assume that ud(x, t) is time-harmonic, i.e.:

ud(x, t) = ud(x)eiωt with ω =
2πk
T

for some k ∈ Z.

Then there is a time-periodic solution to the original control problem of the form

u(x, t) = u(x)eiωt , p(x, t) = p(x)eiωt , f(x, t) = f(x)eiωt ,

where u(x), p(x), and f(x) solve the following time-independent optimal control problem: Min-
imize

1
2

∫
Ω

|u(x)−ud(x)|2 dx+
ν

2

∫
Ω

|f(x)|2 dx

subject to

iω Mu(x)−∆u(x)+∇p(x) = f(x) in Ω,

∇ ·u(x) = 0 in Ω,

u(x) = 0 on Γ.

Using appropriate finite element spaces Vh of dimension n and Qh of dimension m for u and p,
respectively, and the same finite element space Vh for f as well, we obtain the following discrete
version: Minimize

1
2
(u−ud)

∗M(u−ud)+
ν

2
f∗Mf

subject to

iω Mu+Ku−DT p = Mf,
Du = 0.

Here the real matrices M, K, and D are the mass matrix, representing the L2-inner product in
Vh, the discretized negative vector Laplacian, and the discretized divergence, respectively. As
before, underlined quantities denote the coefficient vectors of finite element functions relative to
a basis.

21



Completely similar to the discussion in the previous subsection we obtain the following re-
duced optimality system, again after eliminating the control, here f.

M 0 K− iω M −DT

0 0 −D 0
K+ iω M −DT − 1

ν
M 0

−D 0 0 0




u
p
w
r

=


Mud

0
0
0


This system was discussed in [28] for the special case ω = 0, which corresponds to the steady-
state version of the control problem. The preconditioner constructed in [28] leads to convergence
rates of the preconditioned MINRES method that do not deteriorate if the mesh size h and/or the
cost parameter ν approach 0.

We will now apply the theoretical findings of the preceding sections and construct a precon-
ditioner that will also work for general ω . Convergence results will be derived that guarantee a
bound for the number of iterations which is independent of h, ν , and ω . If applied to the special
case ω = 0, this bound is more accurate than the bound derived in [28].

A first and essential observation is that, by swapping the second and the third rows and
columns, we obtain a saddle point matrix with a vanishing 2-by-2 block in the right lower part.
This leads with a simple scaling to the system

M
√

ν (K− iω M) 0 −
√

ν DT

√
ν (K+ iω M) −M −

√
ν DT 0

0 −
√

ν D 0 0

−
√

ν D 0 0 0




u
1√
ν

w

p
1√
ν

r

=


Mud

0

0

0

 ,

which is of the form (1) with

A =

[
M

√
ν (K− iω M)√

ν (K+ iω M) −M

]
∈ C2n×2n, (40)

B =−
√

ν

[
0 D
D 0

]
∈ C2m×2n, and C = 0. (41)

Using the results of Sect. 3 and 4 we obtain the following properties of the bilinear forms a and
b associated with A and B, respectively, in terms of the quantities α , ‖a‖, β , and ‖b‖:

Theorem 6. Let M be given by (1), (40), and (41). Then, for P , given by

P =

[
P 0
0 R

]
with P =

[
P 0
0 P

]
and R = ν

[
S 0
0 S

]
,

with P and S real and symmetric positive definite, the spectrum of P−1M is real and symmetric
around zero. Moreover, for

P = M+
√

ν (K+ω M) and S = D
[
M+
√

ν (K+ω M)
]−1 DT , (42)
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the following estimates hold

α ≥ 1√
3
, ‖a‖ ≤ 1, β = 1, ‖b‖= 1.

Proof. The symmetry of the spectrum around zero follows from Theorem 3 applied to the system
in the original ordering of the rows and columns. Let

H =

[
I (1− i)I

(1+ i)I −I

]
.

Then, by direct calculations, one shows that

Re〈Au,Hu〉= ‖u‖2
P and ‖Hu‖2

P = 3‖u‖2
P for all u ∈ C2n.

Furthermore, observe that
Hu ∈ kerB for all u ∈ kerB.

Therefore,

α = inf
0 6=u∈kerB

sup
0 6=v∈kerB

|〈Au,v〉|
‖u‖P‖v‖P

≥ inf
06=u∈kerB

|〈Au,Hu〉|
‖u‖P‖Hu‖P

≥ inf
0 6=u∈kerB

Re〈Au,Hu〉
‖u‖P‖Hu‖P

= inf
06=u∈kerB

‖u‖2
P

‖u‖P
√

3‖u‖P
=

1√
3
.

Moreover, since

〈Au,u〉= 〈Mu,u〉

+2
√

ν
(

Re〈Ku,w〉−ω Im〈Mu,w〉
)
−〈Mw,w〉 with u =

[
u
w

]
and

| Im〈Mu,w〉| ≤ |〈Mu,w〉| ≤ ‖u‖M‖w‖M,

|Re〈Ku,w〉| ≤ |〈Ku,w〉| ≤ ‖u‖K‖w‖K,

it follows that

|〈Au,u〉| ≤ ‖u‖2
M +2

√
ν (‖u‖K‖w‖K +ω‖u‖M‖w‖M)+‖w‖2

M

≤ ‖u‖2
M +
√

ν
(
‖u‖2

K +‖w‖2
K +ω

(
‖u‖2

M +‖w‖2
M
))

+‖w‖2
M

= 〈Pu,u〉 for all u ∈ C2n,

which implies that ‖a‖ ≤ 1.
Finally, since 〈BP−1BT q,q〉= 〈Rq,q〉 for all q ∈ C2m, it directly follows from (28) and (29)

that β = ‖b‖= 1.
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If α , ‖a‖, β , and ‖b‖ in (17) and (21) are replaced by the corresponding lower or upper
bounds provided by Theorem 6, it immediately follows from (24) that the spectrum of P−1M
is contained in the set [

−1
2
(1+
√

5),−µ3

]
∪
[

µ3,
1
2
(1+
√

5)
]
,

where µ3 is the smallest positive root of the cubic equation

µ
3−2µ +

1√
3
= 0.

These intervals read in 3-digit accuracy

[−1.618,−0.306]∪ [0.306,1.618].

From the second part of Theorem 1 we know a simple lower bound for µ3:

µ3 ≥
1

2
√

3
≈ 0.289.

Remark 2. The essential step for estimating the inf-sup constant α from below was the existence
of the matrix H. Translated into a general Hilbert space setting and slightly more general, the
essential requirements on such a linear operator H : V −→V are that

1. there are some positive constants c1, c2 such that

|a(u,Hu)| ≥ c1 ‖u‖2
V and ‖Hu‖V ≤ c2 ‖u‖V for all u ∈V,

and

2. kerB is an invariant subspace of H.

Then it follows analogously to the previous proof that α ≥ c1/c2.

5.3 A numerical example
We refer to [17] for numerical experiments for time-periodic parabolic optimal control problems.
Here we present some numerical experiments for the time-periodic Stokes control problem on
the unit square domain Ω = (0,1)× (0,1) ⊂ R2. Following Example 1 in [14] we choose the
target velocity ud(x,y) = [(U(x,y),V (x,y)]T , given by

U(x,y) = 10
∂

∂y
(ϕ(x)ϕ(y)) and V (x,y) =−10

∂

∂x
(ϕ(x)ϕ(y))

with
ϕ(z) =

(
1− cos(0.8πz)

)
(1− z)2.
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The velocity ud(x,y) is divergence free. Note that, contrary to the velocity tracking problem for
time-periodic Stokes flow considered here, in [14] the velocity tracking problem was discussed
for a time-dependent Navier-Stokes flow.

The problem was discretized by the Taylor-Hood pair of finite element spaces consisting
of continuous piecewise quadratic polynomials for the velocity u(x,y) and the force f(x,y) and
continuous piecewise linear polynomials for the pressure p(x,y) on a triangulation of Ω. The
initial mesh contains four triangles obtained by connecting the two diagonals. The final mesh
was constructed by applying ` uniform refinement steps to the initial mesh, leading to a mesh
size h = 2−`. The total number of unknowns on the finest level `= 4 is 18 056.

Table 1 - 3 contain the numerical results produced by the preconditioned MINRES method
with the block diagonal preconditioner P as described in Theorem 6. The considered values
for the mesh size h, the frequency ω , and the regularization parameter ν are specified in the
table caption and the first columns. The second columns show the minimal intervals [µ̂3, µ̂4] that
enclose all positive eigenvalues of P−1M . These intervals were computed with an extended
version of the preconditioned MINRES method by the help Ritz values and harmonic Ritz val-
ues, see [16]. The third columns show the (constant) interval [µ3,µ4] containing all positive
eigenvalues as discussed right after Theorem 6 for comparison. The fourth columns contain the
number k̂ of MINRES iterations that are required for reducing the initial residual in the P−1-
norm by a factor of ε = 10−8 with initial guess x0 = 0. This number k̂ is compared with the
theoretical bound k, which is shown in the last columns, based on the estimate

‖r2l‖P−1 ≤
2ql

1+q2l ‖r0‖P−1 with q =
κ
(
P−1M

)
−1

κ (P−1M )+1
,

for the residual rk of the k-th iterate, see, e.g., [13], and the eigenvalue estimates for P−1M
discussed right after Theorem 6.

Table 1: ν = 1, ω = 1

h [µ̂3, µ̂4] [µ3,µ4] k̂ k

1 [0.627 , 1.595] [0.306, 1.618] 6 102
0.5 [0.620 , 1.612] [0.306, 1.618] 26 102
0.25 [0.619 , 1.616] [0.306, 1.618] 28 102
0.125 [0.618 , 1.618] [0.306, 1.618] 28 102
0.0625 [0.618 , 1.618] [0.306, 1.618] 28 102

As expected from the results of Theorem 6, the eigenvalues of P−1M are bounded away
from 0 and ∞ independent of h, ω , and ν leading to a uniform bound for the number of MINRES-
iterations. The theoretical bound µ4 for the largest positive eigenvalues is rather close to the
observed values, while the theoretical (uniform) bound µ3 for the smallest positive eigenvalues
underestimates the observed values. Numerical experiments indicate that this is mainly due to the
lower bound 1/

√
3, which underestimates α , and not due to the subsequent use of the estimates

from Theorem 1.

25



Table 2: h = 0.0625, ν = 1

ω [µ̂3, µ̂4] [µ3,µ4] k̂ k

0 [0.618 , 1.618] [0.306, 1.618] 18 102
1 [0.618 , 1.618] [0.306, 1.618] 28 102
102 [0.611 , 1.613] [0.306, 1.618] 42 102
104 [0.565 , 1.614] [0.306, 1.618] 44 102
108 [0.618 , 1.618] [0.306, 1.618] 16 102

Table 3: h = 0.0625, ω = 1

ν [µ̂3, µ̂4] [µ3,µ4] k̂ k

10−8 [0.566 , 1.614] [0.306, 1.618] 43 102
10−4 [0.611 , 1.613] [0.306, 1.618] 42 102
10−2 [0.619 , 1.618] [0.306, 1.618] 38 102
1 [0.618 , 1.618] [0.306, 1.618] 28 102
108 [0.618 , 1.618] [0.306, 1.618] 28 102

6 Concluding Remarks
The results from Sect. 2 - 4 apply to quite general classes of saddle point problems and provide
sharp stability estimates as well as particular spectral properties. The subsequent discussion of
two model problems from optimal control does not only demonstrate the applicability of the
theoretical results but also shows the robust behavior of the associated preconditioned MINRES
method with respect to the involved numerical and model parameters for the particularly chosen
preconditioners.

Concerning the implementation of the iterative methods one important issue has not been
addressed so far. The use of a preconditioner P requires the evaluation of expressions of the
form P−1y for some given vector y. In all discussed optimality systems for the discretized model
problems this is a nontrivial task due to the potentially high number of involved unknowns.
For example, the application of the preconditioner for the velocity tracking problem requires
the evaluation of P−1v and S−1q with P and S, given by (42), for some vectors v and q. In a
first step of approximation, S−1 is replaced by (1+

√
νω)M−1

p +
√

νωK−1
p (Cahout-Charbard

preconditioner, see [9]), where Mp and Kp are the mass matrix and the discretized negative
Laplacian in the finite element space Qh for the pressure. With this replacement the application
of the preconditioner involves only matrices which can be interpreted as discretized diffusion-
reaction operators of second order. In a second step of approximation these matrices are replaced
by efficient preconditioners (like multigrid preconditioners) which are well-established for this
class of problems. Such a modified and efficiently realizable preconditioner leads to similar
performance results as the original theoretical preconditioner according to the analysis presented,
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e.g., in [22], [6], [19], [20], [21].

Appendix
The detailed arguments for the inequality (36), see the proof of Theorem 2, are as follows.

The matrix λ A
max P−A is positive semidefinite, see (27). Therefore, its Schur complement is

positive semidefinite, too:〈(
λ

A
max P1−A11−A10

(
λ

A
max P0−A00

)−1
A01

)
u1,u1

〉
≥ 0.

Similar as in the proof of Theorem 2 one obtains〈(
A10

(
λ

A
max P0−A00

)−1
A01

)
u1,u1

〉
≥ α

λ A
max−α

〈
A10A−1

00 A01u1,u1
〉
.

This implies 〈(
λ

A
max P1−A11

)
u1,u1

〉
− α

λ A
max−α

〈
A10A−1

00 A01u1,u1
〉
≥ 0,

and, therefore, after dividing by 〈P1u1,u1〉,

λ
A
max− r2−

α

λ A
max−α

r1 ≥ 0 (43)

for the Rayleigh quotients r1 and r2 from the proof of Theorem 2.
Moreover, the matrix A−λ A

min P is positive semidefinite. Then it follows analogously, how-
ever only for λ A

min ≤ 0, that

r2−λ
A
min−

α

α−λ A
min

r1 ≥ 0. (44)

In the proof of Theorem 2 we need an upper bound for

φ(r1,r2) =
α

α−µ
r1− r2.

It is easy to see that the maximum of the linear function φ(r1,r2) under the linear constraints
(43) and (44) is attained at the intersection of the corresponding straight lines. By elementary
calculations it follows that the value of φ(r1,r2) at the point of intersection of these lines is given
by

(λ A
max +λ A

min−α)µ−λ A
maxλ A

min
α−µ

,

which completes the proof of (36).
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[2] Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)
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