
INSTITUTE for MATHEMATICS
(Graz University of Technology)

&
INSTITUTE for MATHEMATICS

and
SCIENTIFIC COMPUTING

(University of Graz)

G. Haase and M. Liebmann

A Hilbert-Order Multiplication Scheme for
Unstructured Sparse Matrices

Report No. 3/2005 October, 2005

Institute for Mathematics D,
Graz University of Technology
Steyrergasse 30
A-8010 Graz, Austria

Institute for Mathematics and
Scientific Computing,
University of Graz
Heinrichstrasse 36
A-8010 Graz, Austria





A Hilbert-Order Multiplication Scheme for
Unstructured Sparse Matrices∗

Gundolf Haase† Manfred Liebmann‡

Abstract

We investigate a new storage format for unstructured sparse ma-
trices, based on the space filling Hilbert curve. Numerical tests with
matrix-vector multiplication show the potential of the fractal storage
format (FS) in comparison to the traditional compressed row storage
format (CRS). The FS format outperforms the CRS format by up to
50% for matrix-vector multiplications with multiple right hand sides.

1 Introduction

The simulation of stationary processes often involves elliptic partial differ-
ential equations (PDEs). Solving these problems, that is determining the
state variables from given source and boundary data, with the finite ele-
ment method (FEM) is standard in numerical analysis today. This situation
changes for time-dependent nonlinear optimization problems and related in-
verse problems arising from different practical applications. Here the numer-
ical analysis leads to a sequence of linear equations and it is often necessary
to solve multiple large-scale linear systems in order to solve the whole nu-
merical problem. Therefore, improvements in linear solvers will reduce the
time required for the solution of the practical problem significantly.

∗This research has been partially supported by the bm:bwk (Federal Ministry for Ed-
ucation, Science and Culture) in the “Austrian Grid“

†Institute for Mathematics and Scientific Computing, Karl-Franzens University Graz,
Heinrichstr. 36, A–8010 Graz, Austria, (gundolf.haase@uni-graz.at).

‡Institute for Analysis and Computational Mathematics, Johannes Kepler University
Linz, Altenberger Str. 69, A–4040 Linz, Austria, (manfred.liebmann@uni-graz.at).

1



We focus in this paper on symmetric positive definite scalar problems
in 3D, discretized with the finite element method on an unstructured mesh.
The resulting system of equations

Au = f (1)

is unstructured and sparse. The matrix A with n columns and rows typically
has O(n) non-zero entries.

Direct solvers for solving (1) are suboptimal because of their storage
requirements and related time complexity for the solution process. In-
stead, iterative methods like a conjugate gradient solver together with a
good problem-specific preconditioner give optimal results. For the prob-
lem class at hand multigrid (MG) techniques especially algebraic multigrid
(AMG) [BHM00, HL02] methods are a good choice. A profiling of the
Pebbles [PEB02] AMG solver showed, that 75% of the time required for the
solution of the linear system is spent in kernel routines, like matrix-vector
multiplication and closely related routines like Gauss-Seidel smoothers in the
AMG preconditioner. Sparse matrix-vector multiplications are also used in
the intergrid transfer operators for the multigrid cycle. Aside from the re-
duction of arithmetic operations [HR05] and parallelization [Haa00, DHL03]
the effective usage of the processor caches is key for high throughput appli-
cation. On modern processor architectures cache misses can cost hundreds
of valuable clock cycles.

There are several ways to improve the cache hit rate. Focusing on many
smoothing sweeps as the group in Erlangen [WKRK00, KW03] showed results
in high floating point throughput, but the method is restricted to tensor
product and similar grids. Similar techniques for unstructured grids have
been tested by the Kentucky group [Hu00], see also [DHH+00a, DHH+00b].
Techniques based on space-filling curves have been implemented recently by
the group in München [Die05] for adaptive multilevel schemes and resulted
in nearly optimal cache performance [Meh05, Zen05]. These results where
achieved only on structured grids.

This paper introduces a new fractal storage format to improve the cache
performance of matrix-vector multiplication compared to standard com-
pressed row storage format, with matrices derived from unstructured grids.
The basic idea of the fractal storage format is derived from the space-filling
Hilbert curve. Where some algorithmic details are adapted for a simple soft-
ware implementation, while preserving the intrinsic locality properties of the
space-filling Hilbert curve.



2 Matrix formats and matrix-vector multipli-

cations

2.1 The compressed row storage format

We introduce the well-known classical compressed row storage (CRS) format
for completeness and for introducing the notations therein. The CRS format
for sparse matrices uses two vectors of length nnz named val for storing a
non-zero matrix entries Ai,j and col idx for storing the appropriate column
indices j. An entry row ptr(i) of the vector row ptr points to the beginning
of the matrix row i in the two vectors above see Figure 1. Assuming a memory

val

col_idx

row_ptr

Figure 1: Matrix in CRS storage.

consumption of 8 Byte (double precision) for storing the matrix entries and
4 Byte for column and row indices we end up with total memory costs of
M = 12 ∗ nnz + 4 ∗ (n + 1). The matrix-vector multiplication is as follows.
A multiplication with the transposed matrix requires a different subroutine

Algorithm 1 Matrix-vector multiplication in CRS: d ←− d + A ∗ w

void CRS Mult(const double val[], const int col idx[], const int row ptr[],
int n, const double w[], double d[])

for all i=0,. . . ,n-1 do
tmp = 0.0;
for all jp=row ptr[i],. . . ,row ptr[i+1]-1 do

tmp += val[jp] * w[col idx[jp]];
end for
d[i] = tmp;

end for
return;

with worse memory access patterns.



2.2 The fractal storage format

Space filling curves are used as a tool in computer graphics and computer
science. They are typically applied to regular structures like tensor product
meshes. But instead of applying the space filling Hilbert curve to the nodes of
a finite element mesh, we pick up an idea from computer graphics hardware
design [MWM01] to store the sparse system matrix in Hilbert-order. Thus
enabling a matrix-vector multiplication scheme, that takes advantage of the
intrinsic locality of the Hilbert curve to improve the cache access patterns
for the multiplication process. Finally the Hilbert-order access pattern is
locally modified to enable a simpler software implementation of the coordi-
nate mapping between Hilbert-order and standard coordinate format. This
modification does not change the overall properties of the algorithm. We call
the above defined storage format the fractal storage (FS) format.

Figure 2: Hilbert curve through an extented domain and fractal curve with
non-zero matrix elements

If we think of all n × n matrix entries of A as pixels, we can draw a
Hilbert curve across an extended 2k × 2k square domain, see left side in
Fig. 2. Now, starting at the upper left corner (A1,1) we follow the Hilbert
curve and store all non-zero matrix elements along the way in Hilbert-order
in a linear sequence, Fig. 2. Due to the fact, that the fractal curve changes
rows and columns we have to store row and column indices for all non-zero
matrix entries, in a structure like

struct{ int row; int col; double val; } FS_Entry;



The resulting fractal storage format of the sparse matrix is simply an array
FS_Entry a[] depicted in Fig. 3. The matrix-vector multiplication for the

i j val1 1 n n A(n,n)A(1,1)

Figure 3: Matrix in FS format with a 16 Byte structure for the entries

FS format contains only a simple loop. Swapping the row with the column

Algorithm 2 Matrix-vector multiplication in FS format: d ←− d + A ∗ w

void FS Mult(const SF Entry a[], int nnz, const double w[], double d[])
for all i=0,. . . ,nnz-1 do

const FS Entry &ai = a[i];
d[ai.row] += ai.val * w[ai.col];

end for
return;

index in the above algorithm results immediately in a multiplication with
the transposed matrix, while the memory access patterns are essentially the
same. For the sake of a simpler software implementation, we slightly modify
the algorithm and locally rotate the arcs of the Hilbert curve as noted above.

3 Numerical Results

We used the discretized potential equations in a simulation of arryhthmia in-
duction in a rabbit ventricular model for our numerical tests, see Fig. 4. This
involves solving a stationary problem embedded in a time dependent simula-
tion [PLKV05]. The first test, named TBunnyC2, is a small 111589×111589
sparse matrix with 1444052 non-zero elements. The second example, TBun-
nyC, is a 862515 × 862515 sparse matrix with 12775719 non-zero elements.

Simulations are carried out for the fractal multiplication scheme named
FS, for an SSE2 optimized version of the fractal multiplication scheme:
FS/SSE2 for the classical compressed row storage multiplication scheme CRS
and the transposed version of the compressed row storage scheme: CRST. All
test cases, that is FS, FS/SSE2, CRS and CRST are carried out with up to
eight right hand sides, that are stored in an interleaved way to improve data



Figure 4: Electrical potential in the rabbit heart

locality. RHS denotes the number of right hand sides and the performance
is measured in MFLOPS.

The performance data was collected over typically 16 to 32 iterations over
the same matrix with an initial startup iteration to avoid memory manage-
ment related performance issues. The average in million floating point op-
erations per second (MFLOPS) for the various test cases is displayed below.
The test machines are a Pentium4 1.3GHz processor with 256KB L2-cache
and 800MHz RDRAM and a Pentium4 3.4GHz processor with 1MB L2-cache
and 533MHz DDR2 SDRAM.

The first test was carried out on the smaller example TBunnyC2 with
111589 non-zero elements. We see that FS is always better on the CPU with
the small cache and the same holds for more than two right hand sides on the
larger cache computer. The use of the SSE unit improves the performance
by 23% and 15%, respectively.

Performance data for TBunnyC with 862515 nodes and 12775719 non-
zero elements. Again, FS is always better on the CPU with the small cache
but the same holds only for eight right hand sides on the larger cache com-
puter. The use of the SSE unit improves the performance by 25% and 17%,
respectively.



Table 1: TBunnyC2

P4 1.3GHz/RHS 8 4 2 1

FS 153.808 159.069 140.883 106.107
FS/SSE2 189.773 192.34 147.635 99.2689

CRS 116.986 118.715 107.34 97.0791
CRST 124.094 117.172 88.7368 73.8174

P4 3.4GHz/RHS 8 4 2 1

FS 534.602 487.701 400.952 288.81
FS/SSE2 614.592 556.324 446.47 295.742

CRS 407.92 430.107 455.268 394.112
CRST 346.627 375.498 363.856 303.512

4 Conclusions

The direct comparison of the fractal multiplication scheme FS derived from
the idea of a Hilbert curve with the traditional compressed row storage
scheme CRS shows an overall performance advantage on the low end Pen-
tium4 machine with a small 256K L2 cache in almost all cases.

On the high end Pentium4 machine with 1MB of L2 cache the traditional
scheme has an advantage for one and two right hand sides, but the frac-
tal multiplication scheme gives always the best peak performance typically
achieved with eight simultaneous right hand sides.

Using compiler intrinsics to optimize the inner loop with SSE2 instruc-
tions to perform two simultaneous multiplications or additions improves the
performance of the fractal multiplication scheme by about 15− 20% points.

Finally it should be noted that the performance of the fractal multipli-
cation scheme is not sensible to matrix transposition due to the intrinsic
locality of the data access pattern. While in the case of the compressed row
storage format the data access pattern in the transposed case is suboptimal
and this is reflected in the performance data. In the transposed case the
fractal multiplication scheme is at least equal and in many cases superior
to the traditional scheme. The same will be valid for symmetric matrices
where a simple change in Alg. 3 reduces the amount of memory for storing
the matrix while the MFLOP rate will remain the same. Doing the same for
a CRS-matrix will result in a performance between the test CRS and CRST.



Table 2: TBunnyC

P4 1.3GHz/RHS 8 4 2 1

FS 166.969 180.237 158.551 114.999
FS/SSE2 208.943 216.566 157.634 107.983

CRS 109.814 120.508 115.962 116.974
CRST 117.562 119.635 97.5478 90.1285

P4 3.4GHz/RHS 8 4 2 1

FS 584.268 531.932 428.031 310.538
FS/SSE2 680.167 613.848 489.096 311.484

CRS 445.114 533.276 538.102 422.011
CRST 375.121 454.563 428.031 314.298

References

[BHM00] W. L. Briggs, V. E. Henson, and S. McCormick. A Multigrid
Tutorial. SIAM, second edition, 2000.

[DHH+00a] C. Douglas, G. Haase, J. Hu, W. Karl, M. Kowarschik, U. Rüde,
and C. Weiss. Portable memory hierarchy techniques for pde
solvers, part I. SIAM News, 33(5):1, 8–9, 2000.

[DHH+00b] C. Douglas, G. Haase, J. Hu, W. Karl, M. Kowarschik, U. Rüde,
and C. Weiss. Portable memory hierarchy techniques for pde
solvers, part II. SIAM News, 33(6):1, 10–11, 16, 2000.

[DHL03] Craig C. Douglas, Gundolf Haase, and Ulrich Langer. A Tutorial
on Elliptic PDE Solvers and Their Parallelization. Software,
Environments, and Tools,. SIAM, Philadelphia, 2003. ISBN 0-
89871-541-5.

[Die05] Nadine Dieminger. Kriterien für die selbstadaption cache-
effizienter mehrgitteralgorithmen. Diplomarbeit, Fakultät für
Informatik, Technische Universität München, 2005.

[Haa00] Gundolf Haase. A parallel AMG for overlapping and non-
overlapping domain decomposition. Electronic Transactions on
Numerical Analysis (ETNA), 10:41–55, 2000.



[HL02] Gundolf Haase and Ulrich Langer. Modern Methods in Scientific
Computing and Applications, volume 75 of NATO Science Series
II. Mathematics, Physics and ChemistryD, chapter Multigrid
Methods: From Geometrical to Algebraic Versions, pages 103–
154. Kluwer Academic Press, Dordrecht, 2002.

[HR05] Gundolf Haase and Stefan Reitzinger. Cache issues of algebraic
multigrid methods for linear systems with multiple right-hand
sides. SIAM J. Sci. Comput., 27(1):1–18, 2005.

[Hu00] J. Hu. Cache Based Multigrid on Unstructured Grids in Two
and Three Dimensions. PhD thesis, University of Kentucky,
Department of Mathematics, Lexington, KY, 2000.

[KW03] M. Kowarschik and C. Weiß. An overview of cache optimiza-
tion techniques and cache-aware numerical algorithms. In Pro-
ceedings of the GI-Dagstuhl Forschungseminar: Algorithms for
Memory Hierarchies, volume 2625 of (LNCS). Springer, 2003.

[Meh05] Miriam Mehl. A cache-oblivious self-adapted full multigrid
method. Talk at the Copper Mountain Conference on Multi-
grid Methods, April 2005.

[MWM01] Michael D. McCool, Chris Wales, and Kevin Moule. In-
cremental and hierarchical hilbert order edge equation poly-
gon rasterizatione. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
volume 119, pages 65–72, New York, 2001. ACM Press.

[PEB02] PEBBLES. User’s Guide. Johannes Kepler Uni-
versity Linz, SFB ”Numerical and Symbolic Sci-
entific Computing”, 2002. http://www.numa.uni-
linz.ac.at/Research/Projects/pebbles.html.

[PLKV05] G. Plank, L.J. Leon, S. Kimber, and E.J. Vigmond. Defibril-
lation depends on conductivity fluctuations and the degree of
disorganization in reentry patterns. J. Cardiovasc. Electrophys-
iol, 16(2):205–216, 2005.



[WKRK00] C. Weiss, M. Kowarschik, U. Rüde, and W. Karl. Cache-aware
multigrid methods for solving poisson’s equation in two dimen-
sions. Computing, 64(4):381–399, 2000.

[Zen05] Christoph Zenger. A cache-oblivious adaptive parallel multilevel
implementation of the finite element method using space-filling
curves. Talk at the Oberwolfach Seminar on Fast Solvers for
PDEs, May 2005.


